
Network Working Group K. Bhargavan
Internet-Draft A. Delignat-Lavaud
Expires: September 10, 2015 A. Pironti
 Inria Paris-Rocquencourt
 A. Langley
 Google Inc.
 M. Ray
 Microsoft Corp.
 March 9, 2015

 Transport Layer Security (TLS) Session Hash and
 Extended Master Secret Extension
 draft-ietf-tls-session-hash-04

Abstract

 The Transport Layer Security (TLS) master secret is not
 cryptographically bound to important session parameters such as the
 server certificate. Consequently, it is possible for an active
 attacker to set up two sessions, one with a client and another with a
 server, such that the master secrets on the two sessions are the
 same. Thereafter, any mechanism that relies on the master secret for
 authentication, including session resumption, becomes vulnerable to a
 man-in-the-middle attack, where the attacker can simply forward
 messages back and forth between the client and server. This
 specification defines a TLS extension that contextually binds the
 master secret to a log of the full handshake that computes it, thus
 preventing such attacks.

Status of This Memo

 This Internet-Draft is submitted in full conformance with the
 provisions of BCP 78 and BCP 79.

 Internet-Drafts are working documents of the Internet Engineering
 Task Force (IETF). Note that other groups may also distribute
 working documents as Internet-Drafts. The list of current Internet-
 Drafts is at http://datatracker.ietf.org/drafts/current/.

 Internet-Drafts are draft documents valid for a maximum of six months
 and may be updated, replaced, or obsoleted by other documents at any
 time. It is inappropriate to use Internet-Drafts as reference
 material or to cite them other than as "work in progress."

 This Internet-Draft will expire on September 10, 2015.

Bhargavan, et al. Expires September 10, 2015 [Page 1]

Internet-Draft TLS Session Hash Extension March 2015

Copyright Notice

 Copyright (c) 2015 IETF Trust and the persons identified as the
 document authors. All rights reserved.

 This document is subject to BCP 78 and the IETF Trust’s Legal
 Provisions Relating to IETF Documents
 (http://trustee.ietf.org/license-info) in effect on the date of
 publication of this document. Please review these documents
 carefully, as they describe your rights and restrictions with respect
 to this document. Code Components extracted from this document must
 include Simplified BSD License text as described in Section 4.e of
 the Trust Legal Provisions and are provided without warranty as
 described in the Simplified BSD License.

Table of Contents

 1. Introduction . 2
 2. Requirements Notation . 5
 3. The TLS Session Hash . 5
 4. The Extended Master Secret 5
 5. Extension Negotiation . 6
 5.1. Extension Definition 6
 5.2. Client and Server Behavior: Full Handshake 6
 5.3. Client and Server Behavior: Abbreviated Handshake 7
 5.4. Interoperability Considerations 8
 6. Security Considerations 9
 6.1. Triple Handshake Preconditions and Impact 9
 6.2. Cryptographic Properties of the Hash Function 10
 6.3. Handshake Messages included in the Session Hash 10
 6.4. No SSL 3.0 Support 11
 7. IANA Considerations . 11
 8. Acknowledgments . 11
 9. References . 12
 9.1. Normative References 12
 9.2. Informative References 12
 Authors’ Addresses . 13

1. Introduction

 In TLS [RFC5246], every session has a "master_secret" computed as:

 master_secret = PRF(pre_master_secret, "master secret",
 ClientHello.random + ServerHello.random)
 [0..47];

 where the "pre_master_secret" is the result of some key exchange
 protocol. For example, when the handshake uses an RSA ciphersuite,

Bhargavan, et al. Expires September 10, 2015 [Page 2]

Internet-Draft TLS Session Hash Extension March 2015

 this value is generated uniformly at random by the client, whereas
 for DHE ciphersuites, it is the result of a Diffie-Hellman key
 agreement.

 As described in [TRIPLE-HS], in both the RSA and DHE key exchanges,
 an active attacker can synchronize two TLS sessions so that they
 share the same "master_secret". For an RSA key exchange where the
 client is unauthenticated, this is achieved as follows. Suppose a
 client C connects to a server A. C does not realize that A is
 malicious and that A connects in the background to an honest server S
 and completes both handshakes. For simplicity, assume that C and S
 only use RSA ciphersuites.

 1. C sends a "ClientHello" to A, and A forwards it to S.

 2. S sends a "ServerHello" to A, and A forwards it to C.

 3. S sends a "Certificate", containing its certificate chain, to A.
 A replaces it with its own certificate chain and sends it to C.

 4. S sends a "ServerHelloDone" to A, and A forwards it to C.

 5. C sends a "ClientKeyExchange" to A, containing the
 "pre_master_secret", encrypted with A’s public key. A decrypts
 the "pre_master_secret", re-encrypts it with S’s public key and
 sends it on to S.

 6. C sends a "Finished" to A. A computes a "Finished" for its
 connection with S, and sends it to S.

 7. S sends a "Finished" to A. A computes a "Finished" for its
 connection with C, and sends it to C.

 At this point, both connections (between C and A, and between A and
 S) have new sessions that share the same "pre_master_secret",
 "ClientHello.random", "ServerHello.random", as well as other session
 parameters, including the session identifier and, optionally, the
 session ticket. Hence, the "master_secret" value will be equal for
 the two sessions and it will be associated both at C and S with the
 same session ID, even though the server identities on the two
 connections are different. Recall that C only sees A’s certificate
 and is unaware of A’s connection with S. Moreover, the record keys on
 the two connections will also be the same.

 The above scenario shows that TLS does not guarantee that the master
 secrets and keys used on different connections will be different.
 Even if client authentication is used, the scenario still works,

Bhargavan, et al. Expires September 10, 2015 [Page 3]

Internet-Draft TLS Session Hash Extension March 2015

 except that the two sessions now differ on both client and server
 identities.

 A similar scenario can be achieved when the handshake uses a DHE
 ciphersuite. Note that even if the client or server does not prefer
 using RSA or DHE, the attacker can force them to use it by offering
 only RSA or DHE in its hello messages. Handshakes using ECDHE
 ciphersuites are also vulnerable if they allow arbitrary explicit
 curves or use curves with small subgroups. Against more powerful
 adversaries, other key exchanges, such as SRP and PSK, have also been
 shown to be vulnerable [VERIFIED-BINDING].

 Once A has synchronized the two connections, since the keys are the
 same on the two sides, it can step away and transparently forward
 messages between C and S, reading and modifying when it desires. In
 the key exchange literature, such occurrences are called unknown key-
 share attacks, since C and S share a secret but they both think that
 their secret is shared only with A. In themselves, these attacks do
 not break integrity or confidentiality between honest parties, but
 they offer a useful starting point from which to mount impersonation
 attacks on C and S.

 Suppose C tries to resume its session on a new connection with A. A
 can then resume its session with S on a new connection and forward
 the abbreviated handshake messages unchanged between C and S. Since
 the abbreviated handshake only relies on the master secret for
 authentication, and does not mention client or server identities,
 both handshakes complete successfully, resulting in the same session
 keys and the same handshake log. A still knows the connection keys
 and can send messages to both C and S.

 Critically, on the new connection, even the handshake log is the same
 on C and S, thus defeating any man-in-the-middle protection scheme
 that relies on the uniqueness of finished messages, such as the
 secure renegotiation indication extension [RFC5746] or TLS channel
 bindings [RFC5929]. [TRIPLE-HS] describes several exploits based on
 such session synchronization attacks. In particular, it describes a
 man-in-the-middle attack that circumvents the protections of
 [RFC5746] to break client-authenticated TLS renegotiation after
 session resumption. Similar attacks apply to application-level
 authentication mechanisms that rely on channel bindings [RFC5929] or
 on key material exported from TLS [RFC5705].

 The underlying protocol issue leading to these attacks is that the
 TLS master secret is not guaranteed to be unique across sessions,
 since it is not context-bound to the full handshake that generated
 it. If we fix this problem in the initial master secret computation,
 all these attacks can be prevented. This specification introduces a

Bhargavan, et al. Expires September 10, 2015 [Page 4]

Internet-Draft TLS Session Hash Extension March 2015

 TLS extension that changes the way the "master_secret" value is
 computed in a full handshake by including the log of the handshake
 messages, so that different sessions will, by construction, have
 different master secrets.

2. Requirements Notation

 This document uses the same notation and terminology used in the TLS
 Protocol specification [RFC5246].

 The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
 "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
 document are to be interpreted as described in RFC 2119 [RFC2119].

3. The TLS Session Hash

 When a full TLS handshake takes place, we define

 session_hash = Hash(handshake_messages)

 where "handshake_messages" refers to all handshake messages sent or
 received, starting at the ClientHello up to and including the
 ClientKeyExchange message, including the type and length fields of
 the handshake messages. This is the concatenation of all the
 exchanged Handshake structures, as defined in Section 7.4 of
 [RFC5246].

 For TLS 1.2, the "Hash" function is the one defined in Section 7.4.9
 of [RFC5246] for the Finished message computation. For all previous
 versions of TLS, the "Hash" function computes the concatenation of
 MD5 and SHA1.

 There is no "session_hash" for resumed handshakes, as they do not
 lead to the creation of a new session.

4. The Extended Master Secret

 When the extended master secret extension is negotiated in a full
 handshake, the "master_secret" is computed as

 master_secret = PRF(pre_master_secret, "extended master secret",
 session_hash)
 [0..47];

 The extended master secret computation differs from the [RFC5246] in
 the following ways:

Bhargavan, et al. Expires September 10, 2015 [Page 5]

Internet-Draft TLS Session Hash Extension March 2015

 o The "extended master secret" label is used instead of "master
 secret";

 o The "session_hash" is used instead of the "ClientHello.random" and
 "ServerHello.random".

 The "session_hash" depends upon a handshake log that includes
 "ClientHello.random" and "ServerHello.random", in addition to
 ciphersuites, key exchange information, and certificates (if any)
 from the client and server. Consequently, the extended master secret
 depends upon the choice of all these session parameters.

 This design reflects the recommendation that keys should be bound to
 the security contexts that compute them [sp800-108]. The technique
 of mixing a hash of the key exchange messages into master key
 derivation is already used in other well-known protocols such as SSH
 [RFC4251].

 Clients and servers SHOULD NOT accept handshakes that do not use the
 extended master secret, especially if they rely on features like
 compound authentication that fall into the vulnerable cases described
 in Section 6.1.

5. Extension Negotiation

5.1. Extension Definition

 This document defines a new TLS extension, "extended_master_secret"
 (with extension type 0x0017), which is used to signal both client and
 server to use the extended master secret computation. The
 "extension_data" field of this extension is empty. Thus, the entire
 encoding of the extension is 00 17 00 00.

 If the client and server agree on this extension, and a full
 handshake takes place, both client and server MUST use the extended
 master secret derivation algorithm, as defined in Section 4.

 If an abbreviated handshake takes place, the new connection keys are
 derived as usual from the (extended) master secret of the original
 handshake that created the resumed session.

5.2. Client and Server Behavior: Full Handshake

 In the following, we use "aborting the handshake" as shorthand for
 terminating the handshake by sending a fatal "handshake_failure"
 alert.

Bhargavan, et al. Expires September 10, 2015 [Page 6]

Internet-Draft TLS Session Hash Extension March 2015

 In all handshakes, a client implementing this document MUST send the
 "extended_master_secret" extension in its ClientHello.

 If a server implementing this document receives the
 "extended_master_secret" extension, it MUST include the
 "extended_master_secret" extension in its ServerHello message.

 If the server receives a ClientHello without the extension, it SHOULD
 abort the handshake. If it chooses to continue, then it MUST NOT
 include the extension in the ServerHello.

 If a client receives a ServerHello without the extension, it SHOULD
 abort the handshake.

 In a full handshake, if both the ClientHello and ServerHello contain
 the extension, the new session uses the extended master secret
 computation.

 If the client or server choose to continue a full handshake without
 the extension, they use the legacy master secret derivation for the
 new session. In this case, the considerations in Section 5.4 apply.

5.3. Client and Server Behavior: Abbreviated Handshake

 The client SHOULD NOT offer an abbreviated handshake to resume a
 session that does not use an extended master secret. The client MUST
 send the "extended_master_secret" extension in its ClientHello.

 If a server receives a ClientHello for an abbreviated handshake
 offering to resume a previous session, it behaves as follows.

 o If the original session did not use an extended master secret but
 the new ClientHello does contain the "extended_master_secret"
 extension, the server MUST abort the handshake.

 o If the new ClientHello does not contain the
 "extended_master_secret" extension, the server SHOULD fall back to
 a full handshake by sending a ServerHello that rejects the offered
 session but continues with a full handshake. If it continues with
 an abbreviated handshake the considerations in Section 5.4 apply.

 o If the ClientHello contains the extension and the server chooses
 to accept the abbreviated handshake, then the server MUST include
 the "extended_master_secret" extension in its ServerHello message.

 If a client receives a ServerHello that accepts an abbreviated
 handshake, it behaves as follows.

Bhargavan, et al. Expires September 10, 2015 [Page 7]

Internet-Draft TLS Session Hash Extension March 2015

 o If the original session did not use an extended master secret but
 the new ServerHello does contain the "extended_master_secret"
 extension, the client MUST abort the handshake.

 o If the new ServerHello does not contain the
 "extended_master_secret" extension, the client SHOULD abort the
 handshake. If it continues with an abbreviated handshake the
 considerations in Section 5.4 apply.

 If the client and server continue the abbreviated handshake, they
 derive the connection keys for the new session as usual from the
 master secret of the original connection.

5.4. Interoperability Considerations

 To allow interoperability with legacy clients and servers, a TLS peer
 may decide to accept handshakes that use the legacy master secret
 computation. If so, they need to differentiate between sessions that
 use legacy and extended master secrets by adding a flag to the
 session state.

 If a client or server chooses to continue with a full handshake
 without the extended master secret extension, the new session is
 vulnerable to the man-in-the-middle key synchronization attack
 described in Section 1. Hence, the client or server MUST NOT export
 any key material based on the new master secret for any subsequent
 application-level authentication. In particular, it MUST disable
 [RFC5705] and any EAP protocol relying on compound authentication
 [COMPOUND-AUTH].

 If a client or server chooses to continue an abbreviated handshake to
 resume a session that does not use the extended master secret, then
 the current connection is vulnerable to a man-in-the-middle handshake
 log synchronization attack as described in Section 1. Hence, the
 client or server MUST NOT use the current handshake’s "verify_data"
 for application-level authentication. In particular, the client
 should disable renegotiation and any use of the "tls-unique" channel
 binding [RFC5929] on the current connection.

 If the original session uses an extended master secret, but the
 ClientHello or ServerHello in the abbreviated handshake does not
 include the extension, it MAY be safe to continue the abbreviated
 handshake since it is protected from the man-in-the-middle attack by
 the extended master secret. This scenario may occur, for example,
 when a server that implements this extension establishes a session,
 but the session is subsequently resumed at a different server that
 does not support the extension.

Bhargavan, et al. Expires September 10, 2015 [Page 8]

Internet-Draft TLS Session Hash Extension March 2015

6. Security Considerations

6.1. Triple Handshake Preconditions and Impact

 One way to mount a triple handshake attack has been described in
 Section 1, along with a mention of the security mechanisms that break
 due to the attack; more in-depth discussion and diagrams can be found
 in [TRIPLE-HS]. Here, some further discussion is presented about
 attack preconditions and impact.

 To mount a triple handshake attack, it must be possible to force the
 same master secret on two different sessions. For this to happen,
 two preconditions must be met:

 o The client, C, must be willing to connect to a malicious server,
 A. In certain contexts, like the web, this can be easily achieved,
 since a browser can be instructed to load content from an
 untrusted origin.

 o The pre-master secret must be synchronized on the two sessions.
 This is particularly easy to achieve with the RSA and DHE key
 exchanges, but under some conditions, ECDHE, SRP, and PSK key
 exchanges can be exploited to this effect as well.

 Once the master secret is synchronized on two sessions, any security
 property that relies on the uniqueness of the master secret is
 compromised. For example, a TLS exporter [RFC5705] no longer
 provides a unique key bound to the current session.

 TLS session resumption also relies on the uniqueness of the master
 secret to authenticate the resuming peers. Hence, if a synchronized
 session is resumed, the peers cannot be sure about each other
 identity, and the attacker knows the connection keys. Clearly, a
 precondition to this step of the attack is that both client and
 server support session resumption (either via session identifier or
 session tickets [RFC5077]).

 Additionally, in a synchronized abbreviated handshake, the whole
 transcript is synchronized, which includes the "verify_data" values.
 So, after an abbreviated handshake, channel bindings like "tls-
 unique" [RFC5929] will not identify uniquely the connection anymore.

 Synchronization of the "verify_data" in abbreviated handshakes also
 undermines the security guarantees of the renegotiation indication
 extension [RFC5746], re-enabling a prefix-injection flaw similar to
 the renegotiation attack [Ray09]. However, in a triple handshake
 attack, the client sees the server certificate changing across
 different full handshakes. Hence, a precondition to mount this stage

Bhargavan, et al. Expires September 10, 2015 [Page 9]

Internet-Draft TLS Session Hash Extension March 2015

 of the attack is that the client accepts different certificates at
 each handshake, even if their common names do not match. Before the
 triple handshake attack was discovered, this used to be widespread
 behavior, at least among some web browsers, that where hence
 vulnerable to the attack.

 The extended master secret extension thwarts triple handshake attacks
 at their first stage, by ensuring that different sessions necessarily
 end up with different master secret values. Hence, all security
 properties relying on the uniqueness of the master secret are now
 expected to hold. In particular, if a TLS session is protected by
 the extended master secret extension, it is safe to resume it, to use
 its channel bindings, and to allow for certificate changes across
 renegotiation, meaning that all certificates are controlled by the
 same peer. A symbolic cryptographic protocol analysis justifying the
 extended master secret extension appears in [VERIFIED-BINDING].

6.2. Cryptographic Properties of the Hash Function

 The session hashes of two different sessions need to be distinct,
 hence the "Hash" function used to compute the "session_hash" needs to
 be collision resistant. As such, hash functions such as MD5 or SHA1
 are NOT RECOMMENDED.

 We observe that the "Hash" function used in the Finished message
 computation already needs to be collision resistant, for the
 renegotiation indication extension [RFC5746] to work: a collision on
 the verify_data (and hence on the hash function computing the
 handshake messages hash) defeats the renegotiation indication
 countermeasure.

 The hash function used to compute the session hash depends on the TLS
 protocol version. All current ciphersuites defined for TLS 1.2 use
 SHA256 or better, and so does the session hash. For earlier versions
 of the protocol, only MD5 and SHA1 can be assumed to be supported,
 and this document does not require legacy implementations to add
 support for new hash functions. In these versions, the session hash
 uses the concatenation of MD5 and SHA1, as in the Finished message.

6.3. Handshake Messages included in the Session Hash

 The "session_hash" is intended to encompass all relevant session
 information, including ciphersuite negotiation, key exchange messages
 and client and server identities. The session hash needs to be
 available to compute the extended master secret before the Finished
 messages.

Bhargavan, et al. Expires September 10, 2015 [Page 10]

Internet-Draft TLS Session Hash Extension March 2015

 This document sets the "session_hash" to cover all handshake messages
 up to and including the ClientKeyExchange. For existing TLS
 ciphersuites, these messages include all the significant contents of
 the new session---CertificateVerify does not change the session
 content. At the same time, this allows the extended master secret to
 be computed immediately after the pre-master secret, so that
 implementations can shred the temporary pre-master secret from memory
 as early as possible.

 It is possible that new ciphersuites or TLS extensions may include
 additional messages between ClientKeyExchange and Finished that add
 important session context. In such cases, some of the security
 guarantees of this specification may no longer apply, and new man-in-
 the-middle attacks may be possible. For example, if the client and
 server support the session ticket extension [RFC5077], the session
 hash does not cover the new session ticket sent by the server/ Hence,
 a man-in-the-middle may be able to cause a client to store a session
 ticket that was not meant for the current session. Attacks based on
 this vector are not yet known, but applications that store additional
 information in session tickets beyond those covered in the session
 hash require careful analysis.

6.4. No SSL 3.0 Support

 SSL 3.0 [RFC6101] is a predecessor of the TLS protocol, and it is
 equally vulnerable to the triple handshake attacks, alongside other
 vulnerabilities stemming from its use of obsolete cryptographic
 constructions that are now considered weak.

 The countermeasure described in this document relies on a TLS
 extension and hence cannot be used with SSL 3.0. Clients and servers
 implementing this document SHOULD refuse SSL 3.0 handshakes. If they
 choose to support SSL 3.0, the resulting sessions MUST use the legacy
 master secret computation, and the interoperability considerations of
 Section 5.4 apply.

7. IANA Considerations

 IANA has added the extension code point 23 (0x0017), which has been
 used by prototype implementations, for the "extended_master_secret"
 extension to the TLS ExtensionType values registry as specified in
 TLS [RFC5246].

8. Acknowledgments

 The triple handshake attacks were originally discovered by Antoine
 Delignat-Lavaud, Karthikeyan Bhargavan, and Alfredo Pironti, and were
 further developed by the miTLS team: Cedric Fournet, Pierre-Yves

Bhargavan, et al. Expires September 10, 2015 [Page 11]

Internet-Draft TLS Session Hash Extension March 2015

 Strub, Markulf Kohlweiss, Santiago Zanella-Beguelin. Many of the
 ideas in this draft emerged from discussions with Martin Abadi, Ben
 Laurie, Nikos Mavrogiannopoulos, Manuel Pegourie-Gonnard, Eric
 Rescorla, Martin Rex, Brian Smith.

9. References

9.1. Normative References

 [RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
 Requirement Levels", BCP 14, RFC 2119, March 1997.

 [RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
 (TLS) Protocol Version 1.2", RFC 5246, August 2008.

9.2. Informative References

 [RFC5746] Rescorla, E., Ray, M., Dispensa, S., and N. Oskov,
 "Transport Layer Security (TLS) Renegotiation Indication
 Extension", RFC 5746, February 2010.

 [RFC5705] Rescorla, E., "Keying Material Exporters for Transport
 Layer Security (TLS)", RFC 5705, March 2010.

 [RFC5929] Altman, J., Williams, N., and L. Zhu, "Channel Bindings
 for TLS", RFC 5929, July 2010.

 [RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
 Protocol Architecture", RFC 4251, January 2006.

 [RFC5077] Salowey, J., Zhou, H., Eronen, P., and H. Tschofenig,
 "Transport Layer Security (TLS) Session Resumption without
 Server-Side State", RFC 5077, January 2008.

 [RFC6101] Freier, A., Karlton, P., and P. Kocher, "The Secure
 Sockets Layer (SSL) Protocol Version 3.0", RFC 6101,
 August 2011.

 [TRIPLE-HS]
 Bhargavan, K., Delignat-Lavaud, A., Fournet, C., Pironti,
 A., and P. Strub, "Triple Handshakes and Cookie Cutters:
 Breaking and Fixing Authentication over TLS", IEEE
 Symposium on Security and Privacy (Oakland’14) , 2014.

Bhargavan, et al. Expires September 10, 2015 [Page 12]

Internet-Draft TLS Session Hash Extension March 2015

 [VERIFIED-BINDING]
 Bhargavan, K., Delignat-Lavaud, A., and A. Pironti,
 "Verified Contributive Channel Bindings for Compound
 Authentication", Network and Distributed System Security
 Symposium (NDSS’14) , 2015.

 [sp800-108]
 Chen, L., "NIST Special Publication 800-108:
 Recommendation for Key Derivation Using Pseudorandom
 Functions", 2009.

 [COMPOUND-AUTH]
 Asokan, N., Valtteri, N., and K. Nyberg, "Man-in-the-
 middle in tunnelled authentication protocols", 2005.

 [Ray09] Ray, M., "Authentication Gap in TLS Renegotiation", 2009.

Authors’ Addresses

 Karthikeyan Bhargavan
 Inria Paris-Rocquencourt
 23, Avenue d’Italie
 Paris 75214 CEDEX 13
 France

 Email: karthikeyan.bhargavan@inria.fr

 Antoine Delignat-Lavaud
 Inria Paris-Rocquencourt
 23, Avenue d’Italie
 Paris 75214 CEDEX 13
 France

 Email: antoine.delignat-lavaud@inria.fr

 Alfredo Pironti
 Inria Paris-Rocquencourt
 23, Avenue d’Italie
 Paris 75214 CEDEX 13
 France

 Email: alfredo.pironti@inria.fr

Bhargavan, et al. Expires September 10, 2015 [Page 13]

Internet-Draft TLS Session Hash Extension March 2015

 Adam Langley
 Google Inc.
 1600 Amphitheatre Parkway
 Mountain View, CA 94043
 USA

 Email: agl@google.com

 Marsh Ray
 Microsoft Corp.
 1 Microsoft Way
 Redmond, WA 98052
 USA

 Email: maray@microsoft.com

Bhargavan, et al. Expires September 10, 2015 [Page 14]

