Net wor k Wor ki ng Group K. Bhar gavan

I nternet-Draft A. Delignat-Lavaud
Expi res: Septenber 10, 2015 A. Piront
Inria Paris-Rocquencourt

A. Langl ey

Googl e Inc.

M Ray

M crosoft Corp.

March 9, 2015

Transport Layer Security (TLS) Session Hash and
Ext ended Master Secret Extension
draft-ietf-tls-session-hash-04

Abst r act

The Transport Layer Security (TLS) master secret is not

crypt ographi cally bound to inportant session paraneters such as the
server certificate. Consequently, it is possible for an active
attacker to set up two sessions, one with a client and another with a
server, such that the naster secrets on the two sessions are the
same. Thereafter, any mechanismthat relies on the master secret for
aut henti cation, including session resunption, beconmes vulnerable to a
man-in-the-niddl e attack, where the attacker can sinply forward
messages back and forth between the client and server. This
specification defines a TLS extension that contextually binds the
master secret to a log of the full handshake that conputes it, thus
preventing such attacks.

Status of This Meno

This Internet-Draft is submtted in full conformance with the
provi sions of BCP 78 and BCP 79.

Internet-Drafts are working docunents of the Internet Engineering
Task Force (I ETF). Note that other groups may also distribute
wor ki ng documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maxi num of six nonths
and nay be updated, replaced, or obsoleted by other docunents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite themother than as "work in progress.”

This Internet-Draft will expire on Septenber 10, 2015.

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 1]



Internet-Draft TLS Sessi on Hash Extension March 2015

Copyright Notice

Copyright (c) 2015 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

This docunment is subject to BCP 78 and the | ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunent. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this docunent. Code Conponents extracted fromthis docunent nust
include Sinplified BSD Li cense text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e of Contents

1. Introduction . . 2
2. Requiremnents Not atlon . 5
3. The TLS Session Hash . . . 5
4. The Extended Master Secret 5
5. Extension Negotiation . 6
5.1. Extension Definition . 6
5.2. dient and Server BehaV|or FuII thdshake .. . 6
5.3. dient and Server Behavior: Abbreviated andshake . 7
5.4. Interoperability Considerations . 8
6. Security Considerations . . 9
6.1. Triple Handshake Precond|t|ons and Inpact Co 9
6.2. Cryptographic Properties of the Hash Function . . . . . . 10
6.3. Handshake Messages included in the Session Hash . . . . . 10
6.4. No SSL 3.0 Support . . . . . . . . . . . . . . .. ... 1n
7. | ANA Considerations . . . . . . . . . . . . . . . . . .. .. 11
8. Acknowl edgnents . . . . . . . . . . . . . . . . . . ... .. 1
9. References . . e 4
9.1. Normative References e 4
9.2. Informative References . . . . . . . . . . . . . . . . . 12
Authors’ Addresses . . . . . . . . . . . . . . . . . . . . . . . 13
1. Introduction

In TLS [ RFC5246], every session has a "naster_secret" conputed as:
mast er _secret = PRF(pre_master_secret, "master secret"
ClientHell o.random + Server Hel | 0. randon)
[0..47];

where the "pre_nmster_secret" is the result of sonme key exchange
protocol. For exanple, when the handshake uses an RSA ci phersuite,

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 2]



Internet-Draft TLS Sessi on Hash Extension March 2015

this value is generated uniformy at random by the client, whereas
for DHE ciphersuites, it is the result of a Diffie-Hellnman key
agr eement .

As described in [TRIPLE-HS], in both the RSA and DHE key exchanges,
an active attacker can synchronize two TLS sessions so that they
share the sane "master_secret". For an RSA key exchange where the
client is unauthenticated, this is achieved as follows. Suppose a
client C connects to a server AL C does not realize that Ais
mal i ci ous and that A connects in the background to an honest server S
and conpl etes both handshakes. For sinplicity, assunme that C and S
only use RSA ciphersuites.

1. Csends a "CientHello" to A, and A forwards it to S

2. S sends a "ServerHello" to A, and A forwards it to C

3 S sends a "Certificate", containing its certificate chain, to A
A replaces it with its own certificate chain and sends it to C

4. S sends a "ServerHell oDone" to A, and A forwards it to C

5. C sends a "Cient KeyExchange" to A, containing the
"pre_master_secret", encrypted with A's public key. A decrypts
the "pre_master_secret", re-encrypts it with S s public key and
sends it on to S.

6. C sends a "Finished" to A A conputes a "Finished" for its
connection with S, and sends it to S

7. S sends a "Finished" to A A conmputes a "Finished" for its
connection with C, and sends it to C

At this point, both connections (between C and A and between A and
S) have new sessions that share the sane "pre_naster_secret"”,
"CientHello.randon, "ServerHello.randoni, as well as other session
paraneters, including the session identifier and, optionally, the
session ticket. Hence, the "master_secret" value will be equal for
the two sessions and it will be associated both at C and S with the
same session I D, even though the server identities on the two
connections are different. Recall that Conly sees A's certificate
and is unaware of A s connection with S. Mreover, the record keys on
the two connections will also be the sane.

The above scenario shows that TLS does not guarantee that the master

secrets and keys used on different connections will be different.
Even if client authentication is used, the scenario still works,

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 3]



Internet-Draft TLS Sessi on Hash Extension March 2015

except that the two sessions now differ on both client and server
identities.

A simlar scenario can be achieved when the handshake uses a DHE
ciphersuite. Note that even if the client or server does not prefer
using RSA or DHE, the attacker can force themto use it by offering
only RSA or DHE in its hell o nmessages. Handshakes usi ng ECDHE

ci phersuites are also vulnerable if they allow arbitrary explicit
curves or use curves with small subgroups. Against nore powerful
adversaries, other key exchanges, such as SRP and PSK, have al so been
shown to be vul nerabl e [ VERI FI ED- Bl NDI NG .

Once A has synchroni zed the two connections, since the keys are the
same on the two sides, it can step away and transparently forward
messages between C and S, reading and nodifying when it desires. In
the key exchange literature, such occurrences are called unknown key-
share attacks, since C and S share a secret but they both think that
their secret is shared only with A. In thenselves, these attacks do
not break integrity or confidentiality between honest parties, but
they offer a useful starting point fromwhich to nount inpersonation
attacks on C and S

Suppose Ctries to resune its session on a new connection with A A
can then resune its session with S on a new connection and forward

t he abbrevi at ed handshake nmessages unchanged between C and S. Since
t he abbrevi ated handshake only relies on the naster secret for

aut henti cation, and does not nention client or server identities,
bot h handshakes conpl ete successfully, resulting in the sane session
keys and the sane handshake log. A still knows the connection keys
and can send nessages to both C and S

Critically, on the new connection, even the handshake log is the sane
on C and S, thus defeating any man-in-the-m ddle protection schene
that relies on the uniqueness of finished nessages, such as the
secure renegotiation indication extension [RFC5746] or TLS channe

bi ndi ngs [RFC5929]. [TRI PLE-HS] describes several exploits based on
such session synchronization attacks. |In particular, it describes a
man-in-the-mddle attack that circumvents the protections of

[ RFC5746] to break client-authenticated TLS renegotiation after
session resunption. Simlar attacks apply to application-|eve

aut henti cati on nmechani sns that rely on channel bindings [ RFC5929] or
on key material exported from TLS [ RFC5705] .

The underlying protocol issue leading to these attacks is that the
TLS master secret is not guaranteed to be uni que across sessions,
since it is not context-bound to the full handshake that generated
it. If we fix this problemin the initial master secret conputation
all these attacks can be prevented. This specification introduces a

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 4]



Internet-Draft TLS Sessi on Hash Extension March 2015

TLS extension that changes the way the "nmaster_secret" value is
computed in a full handshake by including the | og of the handshake
messages, so that different sessions will, by construction, have
different naster secrets.

2. Requirenents Notation

Thi s docunment uses the same notation and term nology used in the TLS
Prot ocol specification [ RFC5246].

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "MAY", and "OPTIONAL" in this
docunment are to be interpreted as described in RFC 2119 [ RFC2119].

3. The TLS Session Hash
When a full TLS handshake takes place, we define
sessi on_hash = Hash(handshake_nessages)

wher e "handshake_messages” refers to all handshake messages sent or
received, starting at the ClientHello up to and including the

Cl i ent KeyExchange nessage, including the type and length fields of
t he handshake nessages. This is the concatenation of all the
exchanged Handshake structures, as defined in Section 7.4 of

[ RFC5246] .

For TLS 1.2, the "Hash" function is the one defined in Section 7.4.9
of [RFC5246] for the Finished nessage conputation. For all previous
versions of TLS, the "Hash" function conputes the concatenation of
MD5 and SHAL.

There is no "session_hash" for resunmed handshakes, as they do not
lead to the creation of a new session

4. The Extended Master Secret

When t he extended master secret extension is negotiated in a ful
handshake, the "master_secret” is conputed as

mast er _secret = PRF(pre_naster_secret, "extended naster secret",
sessi on_hash)
[0..47];

The extended master secret conputation differs fromthe [RFC5246] in
the foll owi ng ways:

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 5]



Internet-Draft TLS Sessi on Hash Extension March 2015

0 The "extended naster secret" |abel is used instead of "nmster
secret";

0 The "session_hash" is used instead of the "ClientHello.random and
"ServerHel | o. randoni'.

The "session_hash" depends upon a handshake | og that includes
"CientHello.random and "ServerHello.randont, in addition to

ci phersuites, key exchange information, and certificates (if any)
fromthe client and server. Consequently, the extended master secret
depends upon the choice of all these session paraneters.

This design reflects the reconmendati on that keys should be bound to
the security contexts that conpute them [sp800-108]. The technique
of mixing a hash of the key exchange nessages into master key
derivation is already used in other well-known protocols such as SSH
[ RFC4251] .

Clients and servers SHOULD NOT accept handshakes that do not use the
ext ended naster secret, especially if they rely on features like
compound aut hentication that fall into the vul nerable cases described
in Section 6.1.

5. Extension Negotiation
5.1. Extension Definition

Thi s docunent defines a new TLS extension, "extended naster_secret"
(with extension type 0x0017), which is used to signal both client and
server to use the extended naster secret conputation. The
"extension_data" field of this extension is enpty. Thus, the entire
encodi ng of the extension is 00 17 00 00.

If the client and server agree on this extension, and a ful
handshake takes place, both client and server MJUST use the extended
mast er secret derivation algorithm as defined in Section 4.

I f an abbrevi ated handshake takes place, the new connection keys are
derived as usual fromthe (extended) master secret of the origina
handshake that created the resuned session

5.2. dient and Server Behavior: Full Handshake
In the foll owing, we use "aborting the handshake" as shorthand for

term nating the handshake by sending a fatal "handshake_fail ure"
alert.

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 6]



Internet-Draft TLS Sessi on Hash Extension March 2015

In all handshakes, a client inplenmenting this docunent MJST send the
"ext ended _nmaster _secret" extension in its dientHello.

If a server inplenenting this docunent receives the
"extended_master_secret" extension, it MJST include the
"extended_master_secret" extension in its ServerHell o nessage.

If the server receives a CientHello wi thout the extension, it SHOULD
abort the handshake. If it chooses to continue, then it MJST NOT
i nclude the extension in the ServerHello.

If a client receives a ServerHello without the extension, it SHOULD
abort the handshake.

In a full handshake, if both the CientHello and ServerHell o contain
t he extension, the new session uses the extended master secret
conput ati on.

If the client or server choose to continue a full handshake wi thout
the extension, they use the | egacy master secret derivation for the
new session. |In this case, the considerations in Section 5.4 apply.

5.3. dient and Server Behavior: Abbrevi ated Handshake

The client SHOULD NOT offer an abbrevi ated handshake to resune a
sessi on that does not use an extended master secret. The client MJST
send the "extended _raster_secret” extension in its CientHello.

If a server receives a CUientHello for an abbrevi ated handshake
offering to resume a previous session, it behaves as foll ows.

o If the original session did not use an extended master secret but
the new CientHello does contain the "extended_master_secret”
extension, the server MJST abort the handshake.

o |If the new dientHell o does not contain the
"ext ended_master_secret" extension, the server SHOULD fall back to
a full handshake by sending a ServerHello that rejects the offered
session but continues with a full handshake. If it continues wth
an abbrevi at ed handshake the considerations in Section 5.4 apply.

o If the dientHello contains the extension and the server chooses
to accept the abbreviated handshake, then the server MJST i ncl ude
the "extended_master_secret" extension in its ServerHell o nessage.

If aclient receives a ServerHello that accepts an abbreviated
handshake, it behaves as foll ows.

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 7]



Internet-Draft TLS Sessi on Hash Extension March 2015

o If the original session did not use an extended master secret but
the new ServerHell o does contain the "extended nmaster secret"
extension, the client MJST abort the handshake.

o |If the new ServerHell o does not contain the
"extended_master_secret" extension, the client SHOULD abort the
handshake. If it continues with an abbrevi ated handshake the
considerations in Section 5.4 apply.

If the client and server continue the abbrevi ated handshake, they
derive the connection keys for the new session as usual fromthe
master secret of the original connection

5.4. Interoperability Considerations

To allow interoperability with | egacy clients and servers, a TLS peer
may decide to accept handshakes that use the | egacy master secret
computation. |If so, they need to differentiate between sessions that
use | egacy and extended nmaster secrets by adding a flag to the
session state.

If a client or server chooses to continue with a full handshake

wi t hout the extended naster secret extension, the new session is

vul nerable to the man-in-the-m ddl e key synchroni zati on attack
described in Section 1. Hence, the client or server MJST NOT export
any key material based on the new nmaster secret for any subsequent
application-level authentication. |In particular, it MJST disable

[ RFC5705] and any EAP protocol relying on conpound authentication

[ COVPOUND- AUTH] .

If a client or server chooses to continue an abbrevi ated handshake to
resune a session that does not use the extended master secret, then
the current connection is vulnerable to a man-in-the-m ddl e handshake
| og synchronization attack as described in Section 1. Hence, the
client or server MUST NOT use the current handshake’s "verify_ data"
for application-level authentication. |In particular, the client
shoul d di sabl e renegoti ati on and any use of the "tls-uni que" channe
bi ndi ng [ RFC5929] on the current connection

If the original session uses an extended master secret, but the
ClientHell o or ServerHello in the abbreviated handshake does not
include the extension, it MAY be safe to continue the abbreviated
handshake since it is protected fromthe man-in-the-niddle attack by
the extended master secret. This scenario may occur, for exanple,
when a server that inplenents this extension establishes a session
but the session is subsequently resuned at a different server that
does not support the extension

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 8]



Internet-Draft TLS Sessi on Hash Extension March 2015

6. Security Considerations
6.1. Triple Handshake Preconditions and | npact

One way to nount a triple handshake attack has been described in
Section 1, along with a mention of the security mechani sms that break
due to the attack; nore in-depth discussion and di agrans can be found
in [TRIPLE-HS]. Here, sone further discussion is presented about
attack preconditions and i npact.

To nount a triple handshake attack, it nmust be possible to force the
sane master secret on two different sessions. For this to happen
two preconditions nmust be net:

o The client, C, nust be willing to connect to a malicious server
A. In certain contexts, |like the web, this can be easily achieved,
since a browser can be instructed to | oad content from an
untrusted origin.

0 The pre-master secret nust be synchronized on the two sessions.
This is particularly easy to achieve with the RSA and DHE key
exchanges, but under sone conditions, ECDHE, SRP, and PSK key
exchanges can be exploited to this effect as well.

Once the naster secret is synchronized on two sessions, any security
property that relies on the uni queness of the master secret is
conmprom sed. For exanple, a TLS exporter [RFC5705] no | onger

provi des a uni que key bound to the current session

TLS session resunption also relies on the uniqueness of the naster
secret to authenticate the resuning peers. Hence, if a synchronized
session is resuned, the peers cannot be sure about each other
identity, and the attacker knows the connection keys. Cearly, a
precondition to this step of the attack is that both client and
server support session resunption (either via session identifier or
session tickets [RFC5077]).

Additionally, in a synchronized abbrevi ated handshake, the whol e
transcript is synchronized, which includes the "verify_data" val ues.
So, after an abbrevi ated handshake, channel bindings like "tls-

uni que" [RFC5929] will not identify uniquely the connection anynore.

Synchroni zation of the "verify_data" in abbrevi ated handshakes al so
underm nes the security guarantees of the renegotiation indication
ext ensi on [ RFC5746], re-enabling a prefix-injection flaw sinmlar to
the renegotiation attack [Ray09]. However, in a triple handshake
attack, the client sees the server certificate changi ng across
different full handshakes. Hence, a precondition to nount this stage

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 9]



Internet-Draft TLS Sessi on Hash Extension March 2015

of the attack is that the client accepts different certificates at
each handshake, even if their commobn nanes do not match. Before the
triple handshake attack was di scovered, this used to be w despread
behavi or, at |east anobng sone web browsers, that where hence

vul nerable to the attack.

The extended master secret extension thwarts triple handshake attacks
at their first stage, by ensuring that different sessions necessarily
end up with different naster secret values. Hence, all security
properties relying on the uniqueness of the naster secret are now
expected to hold. In particular, if a TLS session is protected by

t he extended naster secret extension, it is safe to resune it, to use
its channel bindings, and to allow for certificate changes across
renegoti ation, neaning that all certificates are controlled by the
same peer. A synbolic cryptographic protocol analysis justifying the
ext ended naster secret extension appears in [VER FlI ED- Bl NDI NG .

6.2. Cryptographic Properties of the Hash Function

The session hashes of two different sessions need to be distinct,
hence the "Hash" function used to conpute the "session_hash” needs to
be collision resistant. As such, hash functions such as MD5 or SHAl
are NOT RECOVIVENDED.

We observe that the "Hash" function used in the Finished nessage
comput ation already needs to be collision resistant, for the
renegoti ation indication extension [ RFC5746] to work: a collision on
the verify data (and hence on the hash function conputing the
handshake nessages hash) defeats the renegotiation indication
count er neasure.

The hash function used to conpute the session hash depends on the TLS
protocol version. Al current ciphersuites defined for TLS 1.2 use
SHA256 or better, and so does the session hash. For earlier versions
of the protocol, only MD)5 and SHAl can be assuned to be supported,
and this docunent does not require | egacy inplenentations to add
support for new hash functions. |In these versions, the session hash
uses the concatenation of M5 and SHA1l, as in the Finished nessage.

6. 3. Handshake Messages included in the Session Hash

The "session_hash" is intended to enconpass all relevant session

i nformation, including ciphersuite negotiation, key exchange nessages
and client and server identities. The session hash needs to be
available to compute the extended master secret before the Finished
nessages.

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 10]



Internet-Draft TLS Sessi on Hash Extension March 2015

Thi s docunment sets the "session_hash" to cover all handshake nessages
up to and including the dientKeyExchange. For existing TLS

ci phersuites, these nmessages include all the significant contents of
the new session---CertificateVerify does not change the session
content. At the same tinme, this allows the extended master secret to
be conmputed imediately after the pre-naster secret, so that

i mpl enment ati ons can shred the tenporary pre-naster secret from menory
as early as possible.

It is possible that new ci phersuites or TLS extensions may include
addi ti onal nessages between Cient KeyExchange and Fi ni shed that add

i mportant session context. |In such cases, some of the security
guarantees of this specification may no | onger apply, and new nman-in-
the-m ddl e attacks nmay be possible. For exanple, if the client and
server support the session ticket extension [RFC5077], the session
hash does not cover the new session ticket sent by the server/ Hence,
a man-in-the-nmddle may be able to cause a client to store a session
ticket that was not meant for the current session. Attacks based on
this vector are not yet known, but applications that store additiona
information in session tickets beyond those covered in the session
hash require careful analysis.

6.4. No SSL 3.0 Support

SSL 3.0 [RFC6101] is a predecessor of the TLS protocol, and it is
equal ly vulnerable to the triple handshake attacks, al ongside other
vul nerabilities stenmng fromits use of obsol ete cryptographic
constructions that are now consi dered weak.

The counterneasure described in this docunent relies on a TLS

ext ensi on and hence cannot be used with SSL 3.0. dients and servers
i mpl ementing this document SHOULD refuse SSL 3.0 handshakes. |If they
choose to support SSL 3.0, the resulting sessions MIST use the | egacy
mast er secret conputation, and the interoperability considerations of
Section 5.4 apply.

7. | ANA Consi derations
| ANA has added the extension code point 23 (0x0017), which has been
used by prototype inplenentations, for the "extended naster_secret"”
extension to the TLS ExtensionType val ues registry as specified in
TLS [ RFC5246] .

8. Acknow edgnents
The triple handshake attacks were originally discovered by Antoine

Del i gnat - Lavaud, Kart hi keyan Bhargavan, and Al fredo Pironti, and were
further devel oped by the m TLS team Cedric Fournet, Pierre-Yves

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 11]



Internet-Draft TLS Sessi on Hash Extension March 2015

Strub, Markul f Kohlweiss, Santiago Zanell a-Beguelin. Mny of the
ideas in this draft emerged from di scussions with Martin Abadi, Ben
Laurie, Nikos Mavrogi annopoul os, Manuel Pegourie-CGonnard, Eric
Rescorla, Martin Rex, Brian Smth.

9. References
9. 1. Nor mat i ve Ref erences

[ RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requi renment Levels", BCP 14, RFC 2119, March 1997.

[ RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security
(TLS) Protocol Version 1.2", RFC 5246, August 2008.

9.2. Informative References

[ RFC5746] Rescorla, E., Ray, M, D spensa, S., and N. Gskov,
"Transport Layer Security (TLS) Renegotiation Indication
Ext ensi on", RFC 5746, February 2010.

[ RFC5705] Rescorla, E., "Keying Material Exporters for Transport
Layer Security (TLS)", RFC 5705, March 2010.

[RFC5929] Altman, J., Wllians, N, and L. Zhu, "Channel Bindings
for TLS', RFC 5929, July 2010.

[ RFC4251] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH)
Protocol Architecture", RFC 4251, January 2006.

[ RFC5077] Sal owey, J., Zhou, H., Eronen, P., and H Tschofenig,
"Transport Layer Security (TLS) Session Resunption w thout
Server-Side State", RFC 5077, January 2008.

[ RFC6101] Freier, A, Karlton, P., and P. Kocher, "The Secure
Sockets Layer (SSL) Protocol Version 3.0", RFC 6101,
August 2011

[ TRI PLE- HS]
Bhar gavan, K., Delignat-Lavaud, A, Fournet, C., Pironti,
A., and P. Strub, "Triple Handshakes and Cookie Cutters:
Br eaki ng and Fi xi ng Aut henti cation over TLS", |EEE
Synmposi um on Security and Privacy (Gakland’ 14) , 2014.

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 12]



Internet-Draft TLS Sessi on Hash Extension March 2015

[ VERI FI ED- Bl NDI NG
Bhar gavan, K., Delignat-Lavaud, A., and A. Pironti,
"Verified Contributive Channel Bindings for Conpound
Aut hentication", Network and Distributed System Security
Synposi um (NDSS' 14) , 2015.

[ sp800-108]
Chen, L., "N ST Special Publication 800-108:
Recommendati on for Key Derivation Using Pseudorandom
Functi ons", 2009.

[ COVPOUND- AUTH]
Asokan, N., Valtteri, N, and K Nyberg, "Mn-in-the-
m ddl e in tunnelled authentication protocols", 2005.

[ Ray09] Ray, M, "Authentication Gap in TLS Renegotiation", 2009.
Aut hors’ Addresses

Kart hi keyan Bhar gavan
Inria Paris-Rocquencourt
23, Avenue d'ltalie
Paris 75214 CEDEX 13
France

Emai | : karthi keyan. bhargavan@nria.fr

Ant oi ne Del i gnhat - Lavaud
Inria Paris-Rocquencourt
23, Avenue d'ltalie
Paris 75214 CEDEX 13
France

Enai | : antoi ne. delignat-lavaud@nria.fr
Al fredo Pironti

Inria Paris-Rocquencourt

23, Avenue d'ltalie

Paris 75214 CEDEX 13

France

Email: alfredo.pironti @nria.fr

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 13]



Internet-Draft TLS Sessi on Hash Extension March 2015

Adam Langl ey

Googl e Inc.

1600 Amphitheatre Parkway
Mountain View, CA 94043

USA
Emai | : agl @oogl e. com
Mar sh Ray

M crosoft Corp.

1 Mcrosoft Wy
Rednond, WA 98052
USA

Emai | : maray@n crosoft.com

Bhar gavan, et al. Expi res Septenber 10, 2015 [ Page 14]



