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Abst ract

Security systems today are built on increasingly strong cryptographic
algorithms that foil pattern analysis attenpts. However, the security
of these systens is dependent on generating secret quantities for
passwor ds, cryptographic keys, and simlar quantities. The use of
pseudo-random processes to generate secret quantities can result in
pseudo-security. The sophisticated attacker of these security
systenms may find it easier to reproduce the environnment that produced
the secret quantities, searching the resulting small set of
possibilities, than to locate the quantities in the whole of the
nunber space.

Choosi ng random quantities to foil a resourceful and notivated
adversary is surprisingly difficult. This paper points out many
pitfalls in using traditional pseudo-random number generation

techni ques for choosing such quantities. It recommends the use of
truly random hardware techni ques and shows that the existing hardware
on many systens can be used for this purpose. |t provides

suggestions to aneliorate the problem when a hardware solution is not
available. And it gives exanples of how | arge such quantities need
to be for some particul ar applications.
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1. Introduction

Sof tware cryptography is coming into wider use. Systens |like
Kerberos, PEM PGP, etc. are maturing and becoming a part of the
network | andscape [PEM. These systens provide substantia
protecti on agai nst snoopi ng and spoofing. However, there is a
potential flaw. At the heart of all cryptographic systenms is the
generation of secret, unguessable (i.e., randon) nunbers.

For the present, the lack of generally available facilities for
generating such unpredictable nunmbers is an open wound in the design
of cryptographic software. For the software devel oper who wants to
build a key or password generation procedure that runs on a w de
range of hardware, the only safe strategy so far has been to force
the local installation to supply a suitable routine to generate
random nunbers. To say the least, this is an awkward, error-prone
and unpal at abl e sol ution

It is inmportant to keep in mnd that the requirement is for data that
an adversary has a very |ow probability of guessing or determning.
This will fail if pseudo-randomdata is used which only neets
traditional statistical tests for randommess or which is based on
limted range sources, such as clocks. Frequently such random
gquantities are determ nable by an adversary searchi ng through an
enbarrassingly small space of possibilities.

This informational docunent suggests techni ques for producing random
guantities that will be resistant to such attack. It recomends that
future systens include hardware random nunmber generation or provide
access to existing hardware that can be used for this purpose. It
suggests nethods for use if such hardware is not available. And it

gi ves sone estinmates of the nunber of randombits required for sanple
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applications.
2. Requirenents

Probably the nbst commonly encountered randommess requirenent today
is the user password. This is usually a sinple character string.
Qoviously, if a password can be guessed, it does not provide
security. (For re-usable passwords, it is desirable that users be
able to renenber the password. This nmay nake it advisable to use
pronounceabl e character strings or phrases conposed on ordinary
words. But this only affects the format of the password information
not the requirenent that the password be very hard to guess.)

Many ot her requirenents cone fromthe cryptographic arena.

Crypt ographi c techni ques can be used to provide a variety of services
i ncluding confidentiality and authentication. Such services are
based on quantities, traditionally called "keys", that are unknown to
and unguessabl e by an adversary.

In sone cases, such as the use of symetric encryption with the one
time pads [CRYPTO*] or the US Data Encryption Standard [DES], the
parties who wi sh to comunicate confidentially and/or with

aut hentication nust all know the same secret key. In other cases,
using what are called asymetric or "public key" cryptographic
techni ques, keys cone in pairs. One key of the pair is private and
nust be kept secret by one party, the other is public and can be
published to the world. It is conputationally infeasible to
determ ne the private key fromthe public key [ ASYMVETRI C, CRYPTOf].

The frequency and vol une of the requirenent for random quantities
differs greatly for different cryptographic systens. Using pure RSA
[ CRYPTO*], random quantities are required when the key pair is
generated, but thereafter any nunmber of nmessages can be signed

wi t hout any further need for randommess. The public key Digita
Signature Algorithmthat has been proposed by the US Nationa
Institute of Standards and Technol ogy (N ST) requires good random
nunbers for each signature. And encrypting with a one tine pad, in
principle the strongest possible encryption technique, requires a
vol ume of randomess equal to all the nmessages to be processed.

In nost of these cases, an adversary can try to deternine the
"secret" key by trial and error. (This is possible as |ong as the
key is enough snaller than the nessage that the correct key can be
uniquely identified.) The probability of an adversary succeedi ng at
this nust be nade acceptably | ow, depending on the particul ar
application. The size of the space the adversary must search is
related to the amount of key "information" present in the information
theoretic sense [ SHANNON]. This depends on the nunber of different
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secret val ues possible and the probability of each value as follows:

Bits-of-info= \ - p *log (p )
/ i 2 i

where i varies from1 to the nunmber of possible secret values and p
sub i is the probability of the value nunbered i. (Since p subi is
| ess than one, the log will be negative so each termin the sumw ||
be non-negative.)

If there are 2”n different values of equal probability, then n bits
of information are present and an adversary woul d, on the average,
have to try half of the values, or 2"(n-1) , before guessing the
secret quantity. |If the probability of different values is unequal
then there is less infornation present and fewer guesses will, on
average, be required by an adversary. In particular, any val ues that
the adversary can know are inpossible, or are of |ow probability, can
be initially ignored by an adversary, who will search through the
nore probabl e values first.

For exanple, consider a cryptographic systemthat uses 56 bit keys.

If these 56 bit keys are derived by using a fixed pseudo-random
nunber generator that is seeded with an 8 bit seed, then an adversary
needs to search through only 256 keys (by running the pseudo-random
nunber generator with every possible seed), not the 2756 keys that
may at first appear to be the case. Only 8 bits of "information" are
in these 56 bit keys.

3. Traditional Pseudo- Random Sequences

Most traditional sources of random nunmbers use determ nistic sources
of "pseudo-random nunbers. These typically start with a "seed"
gquantity and use nuneric or |logical operations to produce a sequence
of val ues.

[ KNUTH] has a cl assic exposition on pseudo-random nunbers.
Applications he nentions are simulation of natural phenonena,
sanpling, numerical analysis, testing conputer prograns, decision
nmaki ng, and ganes. None of these have the sanme characteristics as
the sort of security uses we are talking about. Only in the last two
could there be an adversary trying to find the random quantity.
However, in these cases, the adversary normally has only a single
chance to use a guessed value. |In guessing passwords or attenpting
to break an encryption schene, the adversary nornally has nany,
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perhaps unlimted, chances at guessing the correct value and should
be assuned to be aided by a conputer.

For testing the "randomess" of nunbers, Knuth suggests a variety of
nmeasures including statistical and spectral. These tests check
things like autocorrel ation between different parts of a "randont
sequence or distribution of its values. They could be nmet by a
constant stored random sequence, such as the "randoni sequence
printed in the CRC Standard Mat hematical Tables [CRC].

A typi cal pseudo-random nunber generation technique, known as a
I i near congruence pseudo-random nunber generator, is nodul ar
arithmetic where the N+1th value is calculated fromthe Nth val ue by

v =(V *a+b)(Mdec)
N+1 N

The above technique has a strong relationship to linear shift

regi ster pseudo-random nunber generators, which are well understood
cryptographically [SHIFT*]. |In such generators bits are introduced
at one end of a shift register as the Exclusive O (binary sum

wi thout carry) of bits fromselected fixed taps into the register.

For exanpl e:

+----+ +----+ +----+ +----+
| B | <<-|] B | <=-| B | <- . .. ... <-]| B | <+
| 0| | 1| | 2| | n| |
+--- -+ +--- -+ +--- -+ +--- -+ |
| | | |
| | v RN
| Vv R I > | |
V R I > | XOR
o m e e e e e e e e e e e e e e e e e e e e e o= > | |
F--- - - +
\% =((V *2) +B.xor. B... )(Md 2"n)
N+1 N 0 2

The goodness of traditional pseudo-random number generator al gorithns
is measured by statistical tests on such sequences. Carefully chosen
val ues of the initial V and a, b, and ¢ or the placenent of shift
register tap in the above sinple processes can produce excell ent
statistics.
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These sequences may be adequate in sinulations (Monte Carlo
experiments) as long as the sequence is orthogonal to the structure
of the space being explored. Even there, subtle patterns may cause
probl ems. However, such sequences are clearly bad for use in
security applications. They are fully predictable if the initia
state is known. Depending on the formof the pseudo-random nunber
generator, the sequence may be determ nable from observation of a
short portion of the sequence [CRYPTO*, STERN]. For exanple, wth
the generators above, one can deternine V(n+l) given know edge of
V(n). In fact, it has been shown that with these techni ques, even if
only one bit of the pseudo-random values is rel eased, the seed can be
det erm ned from short sequences.

Not only have linear congruent generators been broken, but techni ques
are now known for breaking all polynom al congruent generators
[ KRAWCZYK] .

4. Unpredictability

Randomess in the traditional sense described in section 3 is NOT the
same as the unpredictability required for security use.

For exanple, use of a wi dely avail abl e constant sequence, such as
that fromthe CRC tables, is very weak agai nst an adversary. Once
they learn of or guess it, they can easily break all security, future
and past, based on the sequence [CRC]. Yet the statistical
properties of these tables are good.

The foll owi ng sections describe the limtations of sone randommess
generation techni ques and sources.

4.1 Problens with O ocks and Serial Nunbers

Conput er clocks, or simlar operating systemor hardware val ues,
provide significantly fewer real bits of unpredictability than m ght
appear fromtheir specifications.

Tests have been done on cl ocks on nunerous systens and it was found
that their behavior can vary wi dely and in unexpected ways. One
versi on of an operating systemrunning on one set of hardware may
actually provide, say, mcrosecond resolution in a clock while a

di fferent configuration of the "sane" system may al ways provide the
sanme |l ower bits and only count in the upper bits at nuch | ower
resolution. This nmeans that successive reads on the cl ock may
produce identical values even if enough tine has passed that the
val ue "shoul d" change based on the nomi nal clock resolution. There
are al so cases where frequently reading a clock can produce
artificial sequential values because of extra code that checks for
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the cl ock bei ng unchanged between two reads and increases it by one!
Desi gni ng portabl e application code to generate unpredictable nunbers
based on such systemclocks is particularly challenging because the
system desi gner does not always know the properties of the system

cl ocks that the code will execute on

Use of a hardware serial nunber such as an Ethernet address nay al so
provi de fewer bits of uni queness than one woul d guess. Such
gquantities are usually heavily structured and subfields may have only
alimted range of possible values or values easily guessabl e based
on approxi mate date of manufacture or other data. For exanple, it is
likely that nmost of the Ethernet cards installed on Digital Equipnent
Cor poration (DEC) hardware within DEC were manufactured by DEC
itself, which significantly linits the range of built in addresses.

Probl ems such as those descri bed above related to clocks and seria
nunbers make code to produce unpredictable quantities difficult if

the code is to be ported across a variety of conputer platforns and
syst ens.

4.2 Timng and Content of External Events

It is possible to nmeasure the timng and content of nouse novenent,
key strokes, and simlar user events. This is a reasonable source of
unguessabl e data with some qualifications. On sone nachines, inputs
such as key strokes are buffered. Even though the user’s inter-
keystroke tim ng may have sufficient variation and unpredictability,
there might not be an easy way to access that variation. Another
problemis that no standard nethod exists to sanple timng details.
This makes it hard to build standard software intended for
distribution to a | arge range of nachi nes based on this technique.

The ampunt of nouse novenent or the keys actually hit are usually
easier to access than timngs but may yield | ess unpredictability as
the user may provide highly repetitive input.

O her external events, such as network packet arrival tines, can al so
be used with care. In particular, the possibility of manipul ation of
such times by an adversary nust be considered.

4.3 The Fallacy of Conpl ex Manipul ation

One strategy which may give a m sl eadi ng appearance of
unpredictability is to take a very conplex algorithm (or an excell ent
traditional pseudo-random nunmber generator with good statistica
properties) and cal cul ate a cryptographic key by starting with the
current value of a computer systemclock as the seed. An adversary
who knew roughly when the generator was started would have a

East | ake, Crocker & Schiller [ Page 8]



RFC 1750 Randommess Reconmendations for Security Decenmber 1994

relatively small nunber of seed values to test as they woul d know

i kely values of the systemclock. Large nunbers of pseudo-random
bits could be generated but the search space an adversary woul d need
to check could be quite small

Thus very strong and/or conpl ex mani pul ati on of data will not help if
the adversary can |learn what the manipulation is and there is not
enough unpredictability in the starting seed value. Even if they can
not |learn what the manipulation is, they may be able to use the
[imted nunber of results stemming froma linited nunber of seed

val ues to defeat security.

Anot her serious strategy error is to assunme that a very conpl ex
pseudo-random nunber generation algorithmw || produce strong random
nunbers when there has been no theory behind or analysis of the
algorithm There is a excellent exanple of this fallacy right near
the beginning of chapter 3 in [KNUTH where the author describes a
conplex algorithm It was intended that the machi ne | anguage program
corresponding to the algorithmwould be so conplicated that a person
trying to read the code wi thout coments woul dn’t know what the
program was doing. Unfortunately, actual use of this algorithm
showed that it alnobst i mediately converged to a single repeated

val ue in one case and a small cycle of values in another case.

Not only does conpl ex mani pul ation not help you if you have a limted
range of seeds but blindly chosen conpl ex mani pul ati on can destroy
the randommess in a good seed!

4.4 The Fallacy of Selection froma Large Dat abase

Anot her strategy that can give a m sl eadi ng appearance of
unpredictability is selection of a quantity randomy from a dat abase
and assume that its strength is related to the total nunmber of bits
in the database. For exanple, typical USENET servers as of this date
process over 35 megabytes of information per day. Assume a random
guantity was selected by fetching 32 bytes of data froma random
starting point in this data. This does not yield 32*8 = 256 bhits
wort h of unguessability. Even after allowi ng that nmuch of the data

i s human | anguage and probably has nmore like 2 or 3 bits of

i nformati on per byte, it doesn't yield 32*2.5 = 80 bits of
unguessability. For an adversary with access to the same 35
nmegabytes the unguessability rests only on the starting point of the
sel ection. That is, at best, about 25 bits of unguessability in this
case.

The sane argument applies to selecting sequences fromthe data on a

CD ROM or Audio CD recording or any other |large public database. |If
the adversary has access to the sane database, this "selection froma
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| arge vol une of data" step buys very little. However, if a selection
can be nade fromdata to which the adversary has no access, such as
system buffers on an active multi-user system it may be of sone
hel p.

5. Hardware for Randommess

I's there any hope for strong portable randommess in the future?
There m ght be. Al that’'s needed is a physical source of
unpr edi ct abl e nunbers.

A thermal noise or radioactive decay source and a fast, free-running
oscillator would do the trick directly [@FFORD]. This is atrivia
amount of hardware, and could easily be included as a standard part
of a conputer systemis architecture. Furthernore, any systemwth a
spinning disk or the like has an adequate source of randomess
[DAVIS]. Al that’s needed is the comon perception anbng comnputer
vendors that this small additional hardware and the software to
access it is necessary and useful.

5.1 Vol ume Required

How rmuch unpredictability is needed? Is it possible to quantify the
requi renent in, say, nunber of randombits per second?

The answer is not very much is needed. For DES, the key is 56 bits
and, as we show in an exanple in Section 8, even the highest security
systemis unlikely to require a keying material of over 200 bits. |If
a series of keys are needed, it can be generated froma strong random
seed using a cryptographically strong sequence as explained in
Section 6.3. A few hundred random bits generated once a day woul d be
enough using such techniques. Even if the randombits are generated
as slowy as one per second and it is not possible to overlap the
generation process, it should be tolerable in high security
applications to wait 200 seconds occasionally.

These nunbers are trivial to achieve. It could be done by a person
repeatedly tossing a coin. Al nost any hardware process is likely to
be much faster.

5.2 Sensitivity to Skew

I's there any specific requirenent on the shape of the distribution of
the random nunbers? The good news is the distribution need not be
uniform Al that is needed is a conservative estimte of how non-
uniformit is to bound performance. Two sinple techniques to de-skew
the bit stream are given bel ow and stronger techni ques are mentioned
in Section 6.1.2 bel ow.
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5.2.1 Using Stream Parity to De- Skew

Consi der taking a sufficiently long string of bits and map the string
to "zero" or "one". The mapping will not yield a perfectly uniform
di stribution, but it can be as close as desired. One mapping that
serves the purpose is to take the parity of the string. This has the
advantages that it is robust across all degrees of skew up to the
esti mated maxi mum skew and is absolutely trivial to inplement in

har dwar e

The foll owi ng anal ysis gives the nunber of bits that nust be sanpl ed:

Suppose the ratio of ones to zeros is 0.5 +e : 0.5 - e, where e is
between 0 and 0.5 and is a neasure of the "eccentricity" of the
distribution. Consider the distribution of the parity function of N
bit sanmples. The probabilities that the parity will be one or zero
will be the sumof the odd or even terms in the binom al expansion of
(p + g9”"N, where p =0.5+ e, the probability of a one, and q = 0.5 -
e, the probability of a zero.

These sums can be conmputed easily as

N N
v2*((p+qg) +(p-49) )

N N
v2*((p+qg) -(p-9) ).

(Which one corresponds to the probability the parity will be 1
depends on whether N is odd or even.)

and

Since p+q=1andp- g = 2e, these expressions reduce to

N
/2 * [1 + (2e) ]
and
N
172 * [1- (2e) ].
Neit her of these will ever be exactly 0.5 unless e is zero, but we
can bring themarbitrarily close to 0.5. If we want the
probabilities to be within sone delta d of 0.5, i.e. then

N
( 0.5+ (05* (2) )) < 0.5 +d.
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Solving for Nyields N> log(2d)/log(2e). (Note that 2e is |less than
1, soits log is negative. Division by a negative nunber reverses
the sense of an inequality.)

The following table gives the Iength of the string which nust be
sanpl ed for various degrees of skew in order to cone within 0.001 of
a 50/50 distribution.

e R e +
| Prob(1) | e | N |
SR Fomm e Fomm - +
| 0.5 | 0.00 | 1
| 0.6 | 0.10 | 4
| 0.7 | 0.20 | 7 |
| 0.8 | 0.30 | 13
| 0.9 | 0.40 | 28
| 0.95 | 0.45 | 59
| 0.99 | 0.49 | 308
ommmee - ommmem e Hommmm o +

The last entry shows that even if the distribution is skewed 99%in
favor of ones, the parity of a string of 308 sanples will be within
0.001 of a 50/50 distribution

5.2.2 Using Transition Mappings to De-Skew

Anot her technique, originally due to von Neumann [ VON NEUMANN], is to
exam ne a bit streamas a sequence of non-overl apping pairs. You
could then discard any 00 or 11 pairs found, interpret 01 as a 0 and
10 as a 1. Assune the probability of a 1 is 0.5+e and the
probability of a 0 is 0.5-e where e is the eccentricity of the source
and described in the previous section. Then the probability of each
pair is as follows:

S R, o e e e e e e e e e e e e e e e e e e e m o +
| pair | probability

Fomm o o m m e e e e e e e e e e e e e e e eeeemooan +
| 00 | (0.5 - e)n2 = 0.25 - e + e"2

| 01 | (0.5- e)*(0.5 +e) = 0.25 - en2

| 10 | (0.5 + e)*(0.5 - ¢e) = 0.25 - en2

| 11 | (0.5 + e)"2 = 0.25 + e + en2

S R, T +

This technique will conpletely elimnate any bias but at the expense
of taking an indeterm nate nunmber of input bits for any particular
desired nunber of output bits. The probability of any particul ar
pair being discarded is 0.5 + 2e”2 so the expected nunmber of input
bits to produce X output bits is X/ (0.25 - e"2).
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Thi s techni que assunes that the bits are froma stream where each bit
has the sane probability of being a O or 1 as any other bit in the
stream and that bits are not correlated, i.e., that the bits are

i dentical independent distributions. |If alternate bits were fromtwo
correl ated sources, for exanple, the above anal ysis breaks down.

The above techni que al so provides another illustration of how a
sinple statistical analysis can mslead if one is not always on the

| ookout for patterns that could be exploited by an adversary. |If the
algorithmwere nmis-read slightly so that overlappi ng successive bits
pairs were used instead of non-overlapping pairs, the statistica

anal ysis given is the sanme; however, instead of provided an unbi ased
uncorrel ated series of random1's and 0's, it instead produces a
totally predictable sequence of exactly alternating 1's and 0's.

5.2.3 Using FFT to De- Skew

When real world data consists of strongly biased or correlated bits,
it may still contain useful amounts of randommess. This randomess
can be extracted through use of the discrete Fourier transformor its
optim zed variant, the FFT.

Using the Fourier transformof the data, strong correlations can be
di scarded. |If adequate data is processed and remmi ning correl ati ons
decay, spectral |ines approaching statistical independence and
normal |y distributed randommess can be produced [ BRI LLI NGER] .

5.2.4 Using Conpression to De-Skew

Reversi bl e conpressi on techni ques al so provide a crude nethod of de-
skewi ng a skewed bit stream This follows directly fromthe
definition of reversible conpression and the forrmula in Section 2
above for the anobunt of information in a sequence. Since the
conpression is reversible, the sane anount of information nust be
present in the shorter output than was present in the |onger input.
By the Shannon information equation, this is only possible if, on
average, the probabilities of the different shorter sequences are
nore uniformy distributed than were the probabilities of the |onger
sequences. Thus the shorter sequences are de-skewed relative to the
i nput .

However, many conpression techni ques add a somewhat predicatable
preface to their output streamand nmay insert such a sequence again
periodically in their output or otherw se introduce subtle patterns
of their own. They should be considered only a rough technique
conpared with those described above or in Section 6.1.2. At a

m ni mum the begi nning of the conmpressed sequence shoul d be ski pped
and only later bits used for applications requiring random bits.
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5.3 Exi sting Hardware Can Be Used For Randomess

As described bel ow, many conputers cone with hardware that can, with
care, be used to generate truly random quantities.

5.3.1 Using Existing Sound/Video | nput

I ncreasingly conputers are being built with inputs that digitize sone
real world anal og source, such as sound froma nicrophone or video
input froma canera. Under appropriate circunstances, such input can
provi de reasonably high quality randombits. The "input" froma
sound digitizer with no source plugged in or a canera with the |ens
cap on, if the system has enough gain to detect anything, is
essentially thermal noise.

For exanple, on a SPARCstation, one can read fromthe /dev/audio
device with nothing plugged into the mcrophone jack. Such data is
essentially random noi se although it should not be trusted wi thout
sonme checking in case of hardware failure. It will, in any case
need to be de-skewed as described el sewhere.

Conbining this with conpression to de-skew one can, in UN Xese,
generate a huge anount of medium quality random data by doi ng

cat /dev/audio | conmpress - >randombits-file
5.3.2 Using Existing Disk Drives

Di sk drives have small random fluctuations in their rotational speed
due to chaotic air turbulence [DAVIS]. By adding |low | evel disk seek
time instrunentation to a system a series of nmeasurenments can be
obtai ned that include this randommess. Such data is usually highly
correl ated so that significant processing is needed, including FFT
(see section 5.2.3). Neverthel ess experinentati on has shown that,

wi th such processing, disk drives easily produce 100 bits a mnute or
nore of excellent random dat a.

Partly offsetting this need for processing is the fact that disk
drive failure will normally be rapidly noticed. Thus, problenms with
this nmethod of random nunber generation due to hardware failure are
very unlikely.

6. Reconmended Non-Hardware Strategy
What is the best overall strategy for neeting the requirenent for
unguessabl e random nunbers in the absence of a reliable hardware

source? It is to obtain randominput froma |arge nunber of
uncorrel ated sources and to mx themwith a strong mxing function
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Such a function will preserve the randommess present in any of the
sources even if other quantities being conbined are fixed or easily
guessable. This may be advi sable even with a good hardware source as
hardware can also fail, though this should be wei ghed agai nst any
increase in the chance of overall failure due to added software

conpl exity.

6.1 M xing Functions

A strong mxing function is one which combines two or nore inputs and
produces an out put where each output bit is a different conplex non-
linear function of all the input bits. On average, changi ng any
input bit will change about half the output bits. But because the
relationship is conplex and non-linear, no particular output bit is
guaranteed to change when any particular input bit is changed.

Consi der the problem of converting a streamof bits that is skewed
towards O or 1 to a shorter streamwhich is nore random as discussed
in Section 5.2 above. This is sinply another case where a strong

m xi ng function is desired, mxing the input bits to produce a
smal | er nunber of output bits. The technique given in Section 5.2.1
of using the parity of a number of bits is sinply the result of
successively Exclusive O’ing themwhich is examned as a trivia

m xi ng function i mediately below. Use of stronger m xing functions
to extract nore of the randomess in a stream of skewed bits is

exam ned in Section 6.1.2.

6.1.1 A Trivial Mxing Function

A trivial exanple for single bit inputs is the Exclusive O function
which is equivalent to addition without carry, as showin the table
below. This is a degenerate case in which the one output bit always
changes for a change in either input bit. But, despite its

simplicity, it will still provide a useful illustration

SR SR Fomm e m e +

| input 1 | input 2 | output
. . S R +

I 0 I 0 I 0 I

I 0 I 1 I 1 I

I 1 I 0 I 1 I

I 1 I 1 I 0 I

S S S Ry +

If inputs 1 and 2 are uncorrelated and conbined in this fashion then
the output will be an even better (|l ess skewed) random bit than the
inputs. |If we assume an "eccentricity" e as defined in Section 5.2
above, then the output eccentricity relates to the input eccentricity
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as foll ows:

e =2*e * e
out put i nput 1 i nput 2

Since e is never greater than 1/2, the eccentricity is always

i mproved except in the case where at |east one input is a totally
skewed constant. This is illustrated in the follow ng table where
the top and left side values are the two input eccentricities and the
entries are the output eccentricity:

. . . . . . . +
| e | 000 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50
Foee oo Foee oo Foee oo Foee oo Foee oo Foee oo Foee oo +
| 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00
| 0.10 | 0.00 | 0.02 | 0.04 | 0.06 | 0.08 | 0.10
| 0.20 | 0.00 | 0.04 | 0.08 | 0.12 | 0.16 | 0.20
| 0.30 | 0.00 | 0.06 | 0.12 | 0.18 | 0.24 | 0.30
| 0.40 | 0.00 | 0.08 | 0.16 | 0.24 | 0.32 | 0.40
| 0.50 | 0.00 | 0.10 | 0.20 | 0.30 | 0.40 | 0.50
N N N N N N N +

However, keep in mnd that the above cal cul ati ons assunme that the
inputs are not correlated. |If the inputs were, say, the parity of
the nunber of mnutes frommdnight on two clocks accurate to a few
seconds, then each m ght appear randomif sanpled at randomintervals
much | onger than a minute. Yet if they were both sanpled and
combined with xor, the result would be zero nost of the tine.

6.1.2 Stronger M xing Functions

The US Government Data Encryption Standard [DES] is an exanple of a
strong mxing function for nultiple bit quantities. It takes up to
120 bits of input (64 bits of "data" and 56 bits of "key") and
produces 64 bits of output each of which is dependent on a conpl ex
non-linear function of all input bits. Qher strong encryption
functions with this characteristic can also be used by considering
themto mx all of their key and data input bits.

Anot her good famly of mxing functions are the "message digest" or
hashi ng functions such as The US Governnent Secure Hash Standard
[SHS] and the MD2, M4, NMD5 [MD2, MD4, MD5] series. These functions
all take an arbitrary amount of input and produce an output m xing

all the input bits. The MD* series produce 128 bits of output and SHS
produces 160 bits.
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Al t hough the nessage digest functions are designed for variable
amounts of input, DES and ot her encryption functions can al so be used
to conbi ne any nunber of inputs. |If 64 bits of output is adequate,
the inputs can be packed into a 64 bit data quantity and successive
56 bit keys, padding with zeros if needed, which are then used to
successively encrypt using DES in El ectroni c Codebook Mode [ DES
MODES]. |If nore than 64 bits of output are needed, use nore conpl ex
m xi ng. For exanple, if inputs are packed into three quantities, A,
B, and C, use DES to encrypt Awith B as a key and then with C as a
key to produce the 1st part of the output, then encrypt B with C and
then A for nore output and, if necessary, encrypt Cwith A and then B
for yet nore output. Still nore output can be produced by reversing
the order of the keys given above to stretch things. The sane can be
done with the hash functions by hashing various subsets of the input
data to produce multiple outputs. But keep in mnd that it is

i mpossible to get nore bits of "randommess" out than are put in.

An exanpl e of using a strong m xing function would be to reconsider
the case of a string of 308 bits each of which is biased 99% t owards
zero. The parity technique given in Section 5.2.1 above reduced this
to one bit with only a 1/1000 deviance frombeing equally likely a
zero or one. But, applying the equation for information given in
Section 2, this 308 bit sequence has 5 bits of information in it.
Thus hashing it with SHS or MD5 and taking the bottom5 bits of the
result would yield 5 unbi ased random bits as opposed to the single
bit given by calculating the parity of the string.

6.1.3 Diffie-Hellman as a M xi ng Functi on

Diffie-Hell man exponential key exchange is a technique that yields a
shared secret between two parties that can be nade conputationally
infeasible for a third party to deternmine even if they can observe
all the nmessages between the two communi cating parties. This shared
secret is a mxture of initial quantities generated by each of them
[DH . If these initial quantities are random then the shared
secret contains the conbined randomess of them both, assum ng they
are uncorrel at ed.

6.1.4 Using a Mxing Function to Stretch Random Bits

VWiile it is not necessary for a mixing function to produce the sane
or fewer bits than its inputs, mxing bits cannot "stretch" the
amount of random unpredictability present in the inputs. Thus four
inputs of 32 bits each where there is 12 bits worth of

unpredi catability (such as 4,096 equally probable values) in each

i nput cannot produce nore than 48 bits worth of unpredictable output.
The output can be expanded to hundreds or thousands of bits by, for
exanpl e, mxing with successive integers, but the clever adversary’'s
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search space is still 2748 possibilities. Furthernore, nixing to
fewer bits than are input will tend to strengthen the randomess of
the out put the way using Exclusive O to produce one bit fromtwo did
above.

The last table in Section 6.1.1 shows that nixing a randombit with a

constant bit with Exclusive O will produce a randombit. Wile this
is true, it does not provide a way to "stretch”" one randombit into
nore than one. |If, for exanple, a randombit is mxed with a 0 and
then with a 1, this produces a two bit sequence but it will always be
either 01 or 10. Since there are only two possible values, there is
still only the one bit of original randomess.

6.1.5 O her Factors in Choosing a Mxing Function

For local use, DES has the advantages that it has been wi dely tested
for flaws, is w dely docunented, and is widely inplenented with
hardware and software inplenentations available all over the world

i ncl udi ng source code avail abl e by anonynous FTP. The SHS and M>*
fam |y are younger al gorithnms which have been | ess tested but there
is no particular reason to believe they are flawed. Both MD5 and SHS
were derived fromthe earlier MM algorithm They all have source
code avail abl e by anonynous FTP [SHS, MD2, MD4, ND5].

DES and SHS have been vouched for the the US National Security Agency
(NSA) on the basis of criteria that primarily remain secret. Wile
this is the cause of nuch specul ati on and doubt, investigation of DES
over the years has indicated that NSA invol verent in nodifications to
its design, which originated with IBM was primarily to strengthen
it. No conceal ed or special weakness has been found in DES. It is

al nost certain that the NSA nodification to MX to produce the SHS
simlarly strengthened the al gorithm possibly against threats not

yet known in the public cryptographic comunity.

DES, SHS, MM, and MD5 are royalty free for all purposes. M2 has
been freely licensed only for non-profit use in connection with
Privacy Enhanced Mail [PEM. Between the MD* algorithns, sone people
believe that, as with "Col dil ocks and the Three Bears", MD2 is strong
but too slow, MM is fast but too weak, and MD5 is just right.

Anot her advantage of the MD* or simlar hashing algorithnms over
encryption algorithms is that they are not subject to the sane
regul ati ons inposed by the US Governnent prohibiting the unlicensed
export or inmport of encryption/decryption software and hardware. The
same should be true of DES rigged to produce an irreversible hash
code but nobst DES packages are oriented to reversible encryption
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6. 2 Non- Hardware Sources of Randommess

The best source of input for mxing would be a hardware randonmess
such as disk drive timng affected by air turbul ence, audi o input
with thermal noise, or radioactive decay. However, if that is not
avai l abl e there are other possibilities. These include system

cl ocks, system or input/output buffers, user/system hardware/ network
serial nunbers and/or addresses and tim ng, and user input.
Unfortunately, any of these sources can produce linited or
predi cat abl e val ues under sone circunstances.

Sone of the sources |isted above would be quite strong on multi-user
systens where, in essence, each user of the systemis a source of
randonmess. However, on a snall single user system such as a
typical IBM PC or Apple Macintosh, it might be possible for an
adversary to assenble a simlar configuration. This could give the
adversary inputs to the mxing process that were sufficiently
correlated to those used originally as to nmake exhaustive search
practical .

The use of multiple randominputs with a strong mixing function is
recormended and can overcone weakness in any particular input. For
exanple, the timng and content of requested "randonm’ user keystrokes
can yi el d hundreds of random bits but conservative assunptions need
to be made. For exanple, assunming a few bits of randomess if the

i nter-keystroke interval is unique in the sequence up to that point
and a simlar assunption if the key hit is unique but assum ng that
no bits of randommess are present in the initial key value or if the
timng or key value duplicate previous values. The results of m xing
these timngs and characters typed could be further conbined with

cl ock val ues and other inputs.

This strategy nay make practical portable code to produce good random
nunbers for security even if sone of the inputs are very weak on sone
of the target systenms. However, it may still fail against a high
grade attack on small single user systens, especially if the
adversary has ever been able to observe the generation process in the
past. A hardware based random source is still preferable.

6.3 Cryptographically Strong Sequences

In cases where a series of random quantities nust be generated, an

adversary may | earn sone values in the sequence. |n general, they
shoul d not be able to predict other values fromthe ones that they
know.
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The correct technique is to start with a strong random seed, take
cryptographically strong steps fromthat seed [ CRYPTO2, CRYPTO3], and
do not reveal the conplete state of the generator in the sequence
elements. |If each value in the sequence can be calculated in a fixed
way fromthe previous value, then when any value is conprom sed, al
future values can be determ ned. This would be the case, for

exanple, if each value were a constant function of the previously
used val ues, even if the function were a very strong, non-invertible
message di gest function

It should be noted that if your technique for generating a sequence
of key values is fast enough, it can trivially be used as the basis
for a confidentiality system |If two parties use the sanme sequence
generating technique and start with the same seed nmaterial, they wll
generate identical sequences. These could, for exanple, be xor’'ed at
one end with data being send, encrypting it, and xor’ed with this
data as received, decrypting it due to the reversible properties of
the xor operation.

6.3.1 Traditional Strong Sequences

A traditional way to achieve a strong sequence has been to have the
val ues be produced by hashing the quantities produced by
concatenating the seed with successive integers or the like and then
mask the val ues obtained so as to Iimt the anmbunt of generator state
avail able to the adversary.

It may al so be possible to use an "encryption" algorithmwith a
random key and seed value to encrypt and feedback sone or all of the
out put encrypted value into the value to be encrypted for the next
iteration. Appropriate feedback techniques will usually be
recommended with the encryption algorithm An exanple is shown bel ow
where shifting and masking are used to conbi ne the cypher output

f eedback. This type of feedback is recomrended by the US Government
in connection with DES [ DES MODES] .
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Note that if a shift of one is used, this is the same as the shift
regi ster techni que described in Section 3 above but with the al
i nportant difference that the feedback is determ ned by a conpl ex
non-linear function of all bits rather than a sinple |linear or
pol ynomi al conbi nati on of output froma few bit position taps.

It has been shown by Donald W Davies that this sort of shifted
partial output feedback significantly weakens an al gorithm conpared
will feeding all of the output bits back as input. In particular

for DES, repeated encrypting a full 64 bit quantity will give an
expected repeat in about 2763 iterations. Feeding back anything | ess
than 64 (and nore than 0) bits will give an expected repeat in

bet ween 2**31 and 2**32 iterations!

To predict values of a sequence from ot hers when the sequence was
generated by these techniques is equivalent to breaking the
cryptosystemor inverting the "non-invertible" hashing involved with
only partial information available. The less information reveal ed
each iteration, the harder it will be for an adversary to predict the
sequence. Thus it is best to use only one bit fromeach value. It
has been shown that in sone cases this nakes it inpossible to break a
system even when the cryptographic systemis invertible and can be
broken if all of each generated val ue was reveal ed.

6. 3.2 The Bl um Bl um Shub Sequence Gener at or

Currently the generator which has the strongest public proof of
strength is called the Bl um Bl um Shub generator after its inventors
[BBS]. It is also very sinple and is based on quadratic residues.
It’s only disadvantage is that is is conputationally intensive
conpared with the traditional techniques give in 6.3.1 above. This
is not a serious draw back if it is used for nmpoderately infrequent
pur poses, such as generating session keys.
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Sinply choose two | arge prinme nunbers, say p and g, which both have
the property that you get a remminder of 3 if you divide them by 4.
Let n = p * g Then you choose a random nunber x relatively prinme to
n. The initial seed for the generator and the nethod for cal cul ating
subsequent val ues are then

2
( x )(Md n)

(%]
1

2
(s )(Mdn
i +1 i

(%]
1

You nust be careful to use only a few bits fromthe bottom of each s.
It is always safe to use only the | owest order bit. |If you use no
nore than the

log (log (s ))
2 2 i

| ow order bits, then predicting any additional bits froma sequence
generated in this manner is provable as hard as factoring n. As |long
as the initial x is secret, you can even nmake n public if you want.

An intersting characteristic of this generator is that you can
directly calculate any of the s values. In particular

i
((2 )(Md ((p-1)*(qg-1))))
s =( s ) (Mod n)
i 0

This means that in applications where many keys are generated in this
fashion, it is not necessary to save themall. Each key can be

ef fectively indexed and recovered fromthat small index and the
initial s and n.

7. Key Ceneration Standards
Several public standards are now in place for the generation of keys.

Two of these are described below. Both use DES but any equally
strong or stronger m xing function could be substituted.
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7.1 US DoD Recomendati ons for Password Generation

The United States Departnent of Defense has specific recommendations
for password generation [DoD]. They suggest using the US Data
Encryption Standard [DES] in Qutput Feedback Mdde [ DES MODES] as
fol | ows:

use an initialization vector determ ned from

the system cl ock,

system | D

user 1D, and

date and tine;
use a key determ ned from

systeminterrupt registers,

system status registers, and

system counters; and,
as plain text, use an external randonmly generated 64 bit
guantity such as 8 characters typed in by a system
admi ni strator.

The password can then be calculated fromthe 64 bit "cipher text"
generated in 64-bit Qutput Feedback Mbde. As nany bits as are needed
can be taken fromthese 64 bits and expanded into a pronounceabl e
word, phrase, or other format if a hunman bei ng needs to renenber the
passwor d.

7.2 X9.17 Key Ceneration

The Anmerican National Standards Institute has specified a nmethod for
generating a sequence of keys as foll ows:

s istheinitial 64 bit seed
0

g is the sequence of generated 64 bit key quantities
n

k is a random key reserved for generating this key sequence

t is the tine at which a key is generated to as fine a resolution
as is available (up to 64 bits).

DES ( K, Q) is the DES encryption of quantity Qwi th key K
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g =DES ( k, DES ( k, t ) .xor. s )
n n

S =DES ( k, DES ( k, t ) .xor. g )
n+1 n

If g subnis to be used as a DES key, then every eighth bit should
be adjusted for parity for that use but the entire 64 bit unnodified
g should be used in calculating the next s.

8. Exanpl es of Randommess Required

Bel ow are two exanpl es show ng rough cal cul ati ons of needed
randommess for security. The first is for noderate security
passwords while the second assunes a need for a very high security
crypt ographi c key.

8.1 Password Generation

Assune that user passwords change once a year and it is desired that
the probability that an adversary coul d guess the password for a
particul ar account be |less than one in a thousand. Further assune
that sending a password to the systemis the only way to try a
password. Then the crucial question is how often an adversary can
try possibilities. Assune that delays have been introduced into a
system so that, at nobst, an adversary can make one password try every
si x seconds. That’'s 600 per hour or about 15,000 per day or about
5,000,000 tries in a year. Assuming any sort of nmonitoring, it is
unl i kely someone could actually try continuously for a year. In
fact, even if log files are only checked nonthly, 500,000 tries is
nore plausible before the attack is noticed and steps taken to change
passwords and nmeke it harder to try nore passwords.

To have a one in a thousand chance of guessing the password in
500,000 tries inplies a universe of at |east 500,000,000 passwords or
about 2729. Thus 29 bits of randommess are needed. This can probably
be achi eved using the US DoD recomended i nputs for password
generation as it has 8 inputs which probably average over 5 bits of
randommess each (see section 7.1). Using a list of 1000 words, the
password coul d be expressed as a three word phrase (1, 000, 000, 000
possibilities) or, using case insensitive letters and digits, six
woul d suffice ((26+10)76 = 2,176, 782,336 possibilities).

For a higher security password, the nunber of bits required goes up
To decrease the probability by 1,000 requires increasing the universe
of passwords by the same factor which adds about 10 bits. Thus to
have only a one in a mllion chance of a password being guessed under
the above scenario would require 39 bits of randomess and a password
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that was a four word phrase froma 1000 word |ist or eight
letters/digits. To go to a one in 1079 chance, 49 bits of randommess
are needed inplying a five word phrase or ten letter/digit password.

In a real system of course, there are also other factors. For
exanpl e, the larger and harder to renenber passwords are, the nore
likely users are to wite themdown resulting in an additional risk
of conprom se

8.2 A Very High Security Cryptographic Key

Assune that a very high security key is needed for symetric
encryption / decryption between two parties. Assune an adversary can
observe comuni cati ons and knows the al gorithm being used. Wthin
the field of random possibilities, the adversary can try key val ues
in hopes of finding the one in use. Assune further that brute force
trial of keys is the best the adversary can do.

8.2.1 Effort per Key Tria

How rmuch effort will it take to try each key? For very high security
applications it is best to assune a | ow value of effort. Even if it
woul d clearly take tens of thousands of conputer cycles or nore to
try a single key, there nay be sone pattern that enabl es huge bl ocks
of key values to be tested with much less effort per key. Thus it is
probably best to assune no nore than a couple hundred cycl es per key.
(There is no clear |ower bound on this as conputers operate in
parall el on a nunmber of bits and a poor encryption algorithmcould

al  ow many keys or even groups of keys to be tested in parallel
However, we need to assunme sone val ue and can hope that a reasonably
strong al gorithm has been chosen for our hypothetical high security
task.)

If the adversary can command a highly parallel processor or a |large
networ k of work stations, 2*10710 cycl es per second is probably a

m ni mum assunption for availability today. Looking forward just a
coupl e years, there should be at |east an order of magnitude

i mprovenent. Thus assum ng 1079 keys coul d be checked per second or
3.6*107"11 per hour or 6*10713 per week or 2.4*10"14 per nonth is
reasonable. This inplies a need for a mnimum of 51 bits of
randommess in keys to be sure they cannot be found in a nonth. Even
then it is possible that, a few years fromnow, a highly determ ned
and resourceful adversary could break the key in 2 weeks (on average
they need try only half the keys).
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8.2.2 Meet in the Mddle Attacks

I f chosen or known plain text and the resulting encrypted text are
available, a "nmeet in the mddle" attack is possible if the structure
of the encryption algorithmallows it. (In a known plain text

attack, the adversary knows all or part of the nessages being
encrypted, possibly sone standard header or trailer fields. In a
chosen plain text attack, the adversary can force sonme chosen plain
text to be encrypted, possibly by "leaking" an exciting text that
woul d then be sent by the adversary over an encrypted channel .)

An oversinplified explanation of the neet in the mddle attack is as
foll ows: the adversary can hal f-encrypt the known or chosen plain
text with all possible first hal f-keys, sort the output, then half-
decrypt the encoded text with all the second half-keys. |If a match
is found, the full key can be assenbled fromthe hal ves and used to
decrypt other parts of the nessage or other messages. At its best,
this type of attack can hal ve the exponent of the work required by
the adversary while adding a | arge but roughly constant factor of
effort. To be assured of safety against this, a doubling of the
anmount of randommess in the key to a mininmumof 102 bits is required.

The neet in the mddle attack assumes that the cryptographic

al gorithm can be deconposed in this way but we can not rule that out
wi t hout a deep know edge of the algorithm Even if a basic algorithm
is not subject to a neet in the nmddle attack, an attenpt to produce
a stronger algorithmby applying the basic algorithmtw ce (or two
different algorithnms sequentially) with different keys may gain | ess
added security than woul d be expected. Such a conposite algorithm
woul d be subject to a neet in the mddle attack

Enor mous resources nmay be required to nmount a neet in the mddle
attack but they are probably within the range of the nationa
security services of a major nation. Essentially all nations spy on
ot her nations governnent traffic and several nations are believed to
spy on conmercial traffic for econonm c advant age.

8.2.3 O her Considerations

Si nce we have not even considered the possibilities of specia

pur pose code breaking hardware or just how nmuch of a safety margin we
want beyond our assunptions above, probably a good mininumfor a very
hi gh security cryptographic key is 128 bits of randommess which
inmplies a mininmumkey length of 128 bits. |If the two parties agree
on a key by Diffie-Hell man exchange [D-H], then in principle only
hal f of this randommess woul d have to be supplied by each party.
However, there is probably sone correlati on between their random
inputs so it is probably best to assume that each party needs to
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10.

provide at |east 96 bits worth of randommess for very high security
if Diffie-Hellman is used.

Thi s anpbunt of randommess is beyond the limt of that in the inputs
recommended by the US DoD for password generation and could require
user typing timng, hardware random nunber generation, or other
sour ces.

It should be noted that key length cal cul ati ons such at those above
are controversial and depend on various assunptions about the
cryptographic algorithnms in use. |In some cases, a professional with
a deep know edge of code breaking techni ques and of the strength of
the algorithmin use could be satisfied with I ess than half of the
key size derived above.

Concl usi on

Generation of unguessabl e "random' secret quantities for security use
is an essential but difficult task.

We have shown that hardware techni ques to produce such randomess
woul d be relatively sinmple. In particular, the volume and quality
woul d not need to be high and existing conputer hardware, such as

di sk drives, can be used. Conputational techniques are available to
process |l ow quality random quantities frommultiple sources or a

| arger quantity of such |low quality input fromone source and produce
a smaller quantity of higher quality, |less predictable key naterial
In the absence of hardware sources of randommess, a variety of user
and software sources can frequently be used instead with care;
however, nost nodern systens al ready have hardware, such as disk
drives or audio input, that could be used to produce high quality
randommess.

Once a sufficient quantity of high quality seed key material (a few
hundred bits) is available, strong computational techniques are
avai |l abl e to produce cryptographically strong sequences of

unpredi catabl e quantities fromthis seed nateri al

Security Consi derations
The entirety of this docunent concerns techni ques and recomendati ons

for generating unguessable "randon quantities for use as passwords,
cryptographi c keys, and simlar security uses.
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