Net wor k Wor ki ng Group J. Linn
Request for Comments: 1964 OpenVi si on Technol ogi es
Cat egory: Standards Track June 1996

The Kerberos Version 5 GSS-API Mechani sm
Status of this Menp

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
Oficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenmo is unlimted.

ABSTRACT

Thi s specification defines protocols, procedures, and conventions to
be enpl oyed by peers inplenenting the Generic Security Service
Application ProgramlInterface (as specified in RFCs 1508 and 1509)
when using Kerberos Version 5 technol ogy (as specified in RFC 1510).

ACKNOALEDGVENTS

Much of the material in this nmenp is based on worki ng docunments
drafted by John Way of Digital Equipment Corporation and on

di scussions, inplementation activities, and interoperability testing
i nvol ving Marc Horowitz, Ted Ts'o, and John Way. Particular thanks
are due to each of these individuals for their contributions towards
devel opnent and availability of GSS-API support within the Kerberos
Version 5 code base.

1. Token Fornmts

Thi s section discusses protocol -visible characteristics of the GSS-
APl mechanismto be inplenmented atop Kerberos V5 security technol ogy
per RFC- 1508 and RFC-1510; it defines elements of protocol for
interoperability and is independent of |anguage bindi ngs per RFC
1509.

Tokens transferred between GSS-APlI peers (for security context
managenent and per-nessage protection purposes) are defined. The
data el ements exchanged between a GSS- APl endpoi nt inpl ementation and
the Kerberos KDC are not specific to GSS-APlI usage and are therefore
defined within RFC 1510 rather than within this specification

Li nn St andards Track [Page 1]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

To support ongoi ng experinentation, testing, and evol ution of the
specification, the Kerberos V5 GSS-API nmechanismas defined in this
and any successor nmenops will be identified with the foll owi ng Object
Identifier, as defined in RFC- 1510, until the specification is
advanced to the level of Proposed Standard RFC

{iso(1), org(3), dod(5), internet(1l), security(5), kerberosv5(2)}

Upon advancerent to the | evel of Proposed Standard RFC, the Kerberos
V5 GSS- APl nechanismwi |l be identified by an Oohject Identifier
havi ng t he val ue:

{iso(1) nenber-body(2) United States(840) mt(113554) infosys(1)
gssapi (2) krb5(2)}

1.1. Context Establishnment Tokens

Per RFC- 1508, Appendix B, the initial context establishnment token
will be enclosed within fram ng as foll ows:

Initial ContextToken ::=
[APPLI CATI ON O] I MPLICI T SEQUENCE {
t hi sMech MechType
-- MechType i s OBJECT | DENTI FI ER
-- representing "Kerberos V5"
i nner Cont ext Token ANY DEFI NED BY t hi sMech
-- contents nechani sm specific;
-- ASN. 1 usage wi thin innerContextToken
-- is not required

}

The i nner Cont ext Token of the initial context token will consist of a
Kerberos V5 KRB_AP_REQ nessage, preceded by a two-byte token-id
(TOK_ID field, which shall contain the value 01 00.

The above GSS-API frami ng shall be applied to all tokens emtted by
the Kerberos V5 GSS-API nechani sm including KRB_AP_REP, KRB _ERROR
context-del eti on, and per-nessage tokens, not just to the initia
token in a context establishment sequence. While not required by
RFC- 1508, this enables inplenentations to perform enhanced error-
checki ng. The inner Context Token field of context establishment tokens
for the Kerberos V5 GSS-API nmechanismw || contain a Kerberos nessage
(KRB_AP_REQ KRB AP REP or KRB _ERROR), preceded by a 2-byte TOK ID
field containing 01 00 for KRB_AP_REQ messages, 02 00 for KRB_AP_REP
nessages and 03 00 for KRB _ERROR nessages.

Li nn St andards Track [Page 2]

RFC 1964 Ker beros Version 5 GSS- API June 1996
1.1.1. Initial Token
Rel evant KRB_AP_REQ syntax (from RFC-1510) is as follows:
AP- REQ :: = [APPLI CATI ON 14] SEQUENCE ({
pvnho [0] | NTEGER, -- indicates Version 5
neg-type [1] | NTECER, -- indicates KRB_AP_REQ
ap-options[2] APQOpt i ons,
ticket[3] Ti cket ,
aut henti cat or [4] Encrypt edDat a
}
APOptions ::= BIT STRI NG {
reserved (0),
use-sessi on-key (1),
mut ual -requi red (2)
}
Ticket ::= [APPLI CATI ON 1] SEQUENCE {
tkt-vno [0] | NTEGER, -- indicates Version 5
real my1] Real m
shane [2] Pri nci pal Name,
enc-part [3] Encr ypt edDat a
}
-- Encrypted part of ticket
EncTi cket Part ::= [APPLI CATI ON 3] SEQUENCE {
fl ags[0] Ti cket Fl ags,
key[1] Encrypti onKey,
creal n 2] Real m
cnane[3] Princi pal Nane,
transited[4] Transi t edEncodi ng,
aut hti me[5] Ker ber osTi ne,
starttime[6] Ker ber osTi ne OPTI ONAL,
endti me[7] Ker ber osTi ne,
renewtill[8] Ker ber osTi me OPTI ONAL,
caddr [9] Host Addr esses OPTI ONAL,
aut hori zation-data[10] Authorizati onData OPTI ONAL
}
-- Unencrypted authenti cator
Aut henticator ::= [APPLI CATI ON 2] SEQUENCE {
aut henti cat or - vno[0] | NTEGER,
creal ni 1] Real m
chame[2] Pri nci pal Name,
cksuni 3] Checksum OPTI ONAL,
cusec| 4] | NTEGER,
ctinme[5] Ker ber osTi ne,
Li nn St andards Track [Page 3]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

subkey][6] Encrypti onKey OPTI ONAL
seq- nunber [7] | NTEGER OPTI ONAL
aut hori zati on- dat a[8] Aut hori zati onDat a OPTI ONAL
}
For purposes of this specification, the authenticator shall include

the optional sequence nunber, and the checksumfield shall be used to
convey channel binding, service flags, and optional del egation

i nformati on. The checksumw Il have a type of 0x8003 (a val ue being
regi stered within the Kerberos protocol specification), and a val ue
field of at |least 24 bytes in length. The Iength of the value field
i s extended beyond 24 bytes if and only if an optional facility to
carry a Kerberos-defined KRB CRED nessage for del egation purposes is
supported by an inplenmentation and active on a context. Wen

del egation is active, a TGTI with its FORNMRDABLE flag set will be
transferred within the KRB_CRED nessage.

The checksum value field s format is as foll ows:

Byt e Nane Descri ption

0..3 Lgth Nunber of bytes in Bnd field;
Currently contains hex 10 00 00 00
(16, represented in little-endian form

4..19 Bnd MD5 hash of channel bindings, taken over all non-nul
conponents of bindings, in order of declaration
Integer fields within channel bindings are represented
inlittle-endian order for the purposes of the M5
cal cul ati on.

20..23 Flags Bit vector of context-establishnent flags,
wi th val ues consistent with RFC 1509, p. 41:

GSS_C_DELEG FLAG 1
GSS_C_MJTUAL_FLAG 2
GSS_C_REPLAY_FLAG 4
GSS_C_SEQUENCE_FLAG 8
GSS_C_CONF_FLAG 16
GSS_C_I NTEG FLAG 32

The resulting bit vector is encoded into bytes 20..23
inlittle-endian form
24..25 DigOpt The Del egation Option identifier (=1) [optional]
26..27 Digth The I ength of the Deleg field. [optional]
28..n Del eg A KRB_CRED nessage (n = Digth + 29) [optional]

In conputing the contents of the "Bnd" field, the followi ng detailed
poi nts apply:
(1) Each integer field shall be formatted into four bytes, using

littl e-endian byte ordering, for purposes of M) hash
conput ati on.

Li nn St andards Track [Page 4]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

(2) Al input length fields within gss_buffer _desc el enents of a
gss_channel _bi ndi ngs_struct, even those which are zero-val ued,
shal |l be included in the hash cal cul ation; the value el enents of
gss_buffer_desc el ements shall be dereferenced, and the
resulting data shall be included within the hash conmputation
only for the case of gss_buffer _desc el enents having non-zero

| ength specifiers.

(3) If the caller passes the value GSS_C NO BI NDI NGS i nstead of
a valid channel bindings structure, the Bnd field shall be set
to 16 zero-val ued bytes.

In the initial Kerberos V5 GSS-API nechani smtoken (KRB_AP_REQ t oken)
frominitiator to target, the GSS C DELEG FLAG GSS C MJTUAL FLAG
GSS_C REPLAY_FLAG and GSS_C SEQUENCE FLAG val ues shall each be set
as the logical AND of the initiator’s corresponding request flag to
GSS Init_sec_context() and a Bool ean indi cator of whether that
optional service is available to GSS Init_sec_context()’'s caller
GSS C CONF_FLAG and GSS _C I NTEG FLAG for which no correspondi ng
context-level input indicator flags to GSS Init_sec_context() exist,
shal | each be set to indicate whether their respective per-nessage
protection services are available for use on the context being

est abl i shed.

When i nput source address channel binding values are provided by a
caller (i.e., unless the input argunent is GSS_C _NO BI NDI NGS or the
source address specifier value within the input structure is

GSS C NULL_ADDRTYPE), and the correspondi ng token received fromthe
context’s peer bears address restrictions, it is recommended that an
i npl enentati on of the Kerberos V5 GSS-API nechani sm shoul d check that
the source address as provided by the caller matches that in the
recei ved token, and should return the GSS_S BAD BI NDI NGS naj or _stat us
value if a msmatch is detected. Note: discussion is ongoing about
the strength of recommendation to be nade in this area, and on the

ci rcunst ances under which such a recomendati on shoul d be applicabl e;
i npl enentors are therefore advised that changes on this matter may be
i ncluded in subsequent versions of this specification

1.1.2. Response Tokens

A context establishnment sequence based on the Kerberos V5 nechani sm
wi Il performone-way authentication (w thout confirmation or any
return token fromtarget to initiator in response to the initiator’s
KRB_AP_REQ if the nmutual _req bit is not set in the application’s
call to GSS Init_sec_context(). Applications requiring confirmation
that their authentication was successful should request mutua

aut hentication, resulting in a "rmutual -required” indication within
KRB _AP_REQ APoptions and the setting of the nutual _req bit in the

Li nn St andards Track [Page 5]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

flags field of the authenticator checksum |In response to such a
request, the context target will reply to the initiator with a token
containing either a KRB_AP_REP or KRB_ERROR, conpleting the mnutual
cont ext establishnent exchange.

Rel evant KRB_AP_REP syntax is as foll ows:

AP- REP :: = [APPLI CATI ON 15] SEQUENCE ({
pvno [0] | NTECGER, -- represents Kerberos V5
nsg-type [1] | NTEGER, -- represents KRB_AP_REP
enc-part [2] Encr ypt edDat a

}

EncAPRepPart ::= [APPLI CATI ON 27] SEQUENCE ({
ctime [0] Ker ber osTi ne,
cusec [1] | NTEGER,
subkey [2] Encrypti onKey OPTI ONAL,

seqg- nunber [3] | NTEGER OPTI ONAL
}

The optional seqg-nunber element within the AP-REP's EncAPRepPart
shal I be incl uded.

The syntax of KRB ERROR is as foll ows:

KRB- ERROR ::= [APPLI CATI ON 30] SEQUENCE {
pvno[0] I NTEGER,
nsg-type[1] | NTEGER,
ctime[2] Ker ber osTi ne OPTI ONAL,
cusec| 3] | NTEGER OPTI ONAL,
stine[4] Ker ber osTi ne,
susec| 5] | NTEGER,
error-code[6] | NTEGER,
creal n{ 7] Real m OPTI ONAL,
cnane| 8] Princi pal Name OPTI ONAL,
real nf 9] Realm -- Correct realm
snane[10] Princi pal Name, -- Correct nane
e-text[11] General String OPTI ONAL,
e-dat a[12] OCTET STRI NG OPTI ONAL

}

Val ues to be transferred in the error-code field of a KRB- ERROR
nessage are defined in [RFC-1510], not in this specification.

Li nn St andards Track [Page 6]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

1.2. Per-Message and Context Del etion Tokens

Three cl asses of tokens are defined in this section: "MC' tokens,
emtted by calls to GSS_ GetM C() (formerly GSS _Sign()) and consuned
by calls to GSS VerifyMC() (formerly GSS Verify()), "Wap" tokens,
emtted by calls to GSS Wap() (fornerly GSS Seal ()) and consuned by
calls to GSS Unwrap() (formerly GSS Unseal ()), and context del etion
tokens, emtted by calls to GSS Del ete _sec_context() and consuned by
calls to GSS_Process_context _token(). Note: References to GSS-API
per-message routines in the remai nder of this specification will be
based on those routines’ newer recomended names rather than those
nanmes’ predecessors.

Several variants of cryptographic keys are used in generation and
processi ng of per-nessage tokens:

(1) context key: uses Kerberos session key (or subkey, if
present in authenticator emtted by context initiator) directly

(2) confidentiality key: forms variant of context key by
excl usi ve-OR with the hexadeci mal constant f Of Of Of Of Of Of Of O.

(3) MD2.5 seed key: fornms variant of context key by reversing
the bytes of the context key (i.e. if the original key is the
8- byte sequence {aa, bb, cc, dd, ee, ff, gg, hh}, the seed key
will be {hh, gg, ff, ee, dd, cc, bb, aa}).

1.2.1. Per-message Tokens - MC

Use of the GSS GetM C() call yields a token, separate fromthe user
dat a being protected, which can be used to verify the integrity of
that data as received. The token has the follow ng format:

Byte no Nane Descri ption
0..1 TOK ID Identification field.
Tokens emitted by GSS GetM C() contain
the hex value 01 01 in this field.
2..3 SG_ALG Integrity algorithmindicator.
00 00 - DES MAC MD5
01 00 - MD2.5
02 00 - DES MAC

4..7 Filler Contains ff ff ff ff
8..15 SND_SEQ Sequence nunber fi el d.
16. .23 SGN_CKSUM Checksum of "t o-be-signed data",

cal cul ated according to algorithm
specified in SGN _ALG fi el d.

Li nn St andards Track [Page 7]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

GSS- APl t okens nust be encapsul ated within the higher-Ilevel protoco
by the application; no enbedded | ength field is necessary.

1.2.1.1. Checksum

Checksum cal cul ati on procedure (common to all algorithns): Checksums
are cal culated over the data field, logically prepended by the first
8 bytes of the plaintext packet header. The resulting val ue binds
the data to the packet type and signature algorithmidentifier
fields.

DES MAC MD5 al gorithm The checksumis forned by conputing an MD5

[RFC-1321] hash over the plaintext data, and then conputing a DES-CBC
MAC on the 16-byte MD5 result. A standard 64-bit DES-CBC MAC i s
conput ed per [FIPS-PUB-113], enploying the context key and a zero |V.
The 8-byte result is stored in the SGN_CKSUM fi el d.

MD2.5 al gorithm The checksumis forned by first DES-CBC encrypting a
16-byte zero-block, using a zero IV and a key forned by reversing the
bytes of the context key (i.e. if the original key is the 8-byte
sequence {aa, bb, cc, dd, ee, ff, gg, hh}, the checksumkey wll be
{hh, gg, ff, ee, dd, cc, bb, aa}). The resulting 16-byte value is

| ogically prepended to the to-be-signed data. A standard M5
checksumis cal cul ated over the conbined data, and the first 8 hytes
of the result are stored in the SGN CKSUM field. Note 1: we refer to
this algorithminformally as "MD2.5" to connote the fact that it uses
hal f of the 128 bits generated by MD5; use of only a subset of the
MD5 bits is intended to protect against the prospect that data coul d
be postfixed to an existing nmessage with correspondi ng nodifications
bei ng nade to the checksum Note 2: This algorithmis fairly nove
and has received nore limted evaluation than that to which other
integrity algorithnms have been subjected. An initial, limted

eval uation indicates that it may be significantly weaker than DES MAC
MD5.

DES- MAC al gorithm A standard 64-bit DES-CBC MAC i s conputed on the
pl ai ntext data per [FIPS-PUB-113], enploying the context key and a
zero |V. Padding procedures to acconpdate plaintext data | engths

whi ch may not be integral nultiples of 8 bytes are defined in [FIPS-
PUB-113]. The result is an 8-byte value, which is stored in the
SGN_CKSUM field. Support for this algorithmmy not be present in
all inplenentations.

1.2.1.2. Sequence Nunber
Sequence nunber field: The 8 byte plaintext sequence number field is

fornmed fromthe sender’s four-byte sequence nunber as follows. If
the four bytes of the sender’s sequence nunber are naned s0, sl1, s2

Li nn St andards Track [Page 8]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

and s3 (fromleast to nost significant), the plaintext sequence
nunber field is the 8 byte sequence: (sO, sl1, s2, s3, di, di, di

di), where 'di’ is the direction-indicator (Hex O - sender is the
context initiator, Hex FF - sender is the context acceptor). The
field is then DES-CBC encrypted using the context key and an 1V
fornmed fromthe first 8 bytes of the previously cal cul ated SGN CKSUM
field. After sending a GSS Get M C() or GSS Wap() token, the sender’s
sequence nunber is incremented by one.

The receiver of the token will first verify the SGN CKSUM field. If
valid, the sequence nunber field may be decrypted and conpared to the
expect ed sequence nunber. The repetition of the (effectively 1-bit)
direction indicator within the sequence nunber field provides
redundancy so that the receiver may verify that the decryption
succeeded.

Since the checksum conmputation is used as an IV to the sequence
nunber decryption, attenpts to splice a checksum and sequence numnber
fromdifferent messages will be detected. The direction indicator
will detect packets that have been naliciously reflected.

The sequence number provides a basis for detection of replayed
tokens. Replay detection can be perfornmed using state information
retai ned on received sequence nunbers, interpreted in conjunction
with the security context on which they arrive.

Provi si on of per-message replay and out-of -sequence detection
services is optional for inplenentations of the Kerberos V5 GSS- API
mechani sm Further, it is reconmended that inplenentations of the
Ker beros V5 GSS- APl nechani sm which offer these services shoul d honor
a caller’'s request that the services be disabled on a context.
Specifically, if replay det req flag is input FALSE, replay det state
shoul d be returned FALSE and the GSS_DUPLI CATE_TCKEN and

GSS OLD TOKEN stati should not be indicated as a result of duplicate
det ecti on when tokens are processed; if sequence_req_flag is input
FALSE, sequence_state should be returned FALSE and

GSS_DUPLI CATE_TOKEN, GSS_OLD TOKEN, and GSS_UNSEQ TOKEN stati shoul d
not be indicated as a result of out-of-sequence detection when tokens
are processed.

1.2.2. Per-message Tokens - Wap

Use of the GSS Wap() call yields a token which encapsul ates the

i nput user data (optionally encrypted) along with associ ated
integrity check quantities. The token emtted by GSS Wap() consists
of an integrity header whose format is identical to that emtted by
GSS GetM C() (except that the TOK ID field contains the value 02 01),
foll owed by a body portion that contains either the plaintext data

Li nn St andards Track [Page 9]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

(if SEAL_ALG = ff ff) or encrypted data for any other supported val ue
of SEAL_ALG Currently, only SEAL ALG = 00 00 is supported, and
nmeans that DES-CBC encryption is being used to protect the data.

The GSS Wap() token has the follow ng format:

Byte no Nane Descri ption
0..1 TOK I D Identification field.
Tokens emitted by GSS Wap() contain
the hex value 02 01 in this field.
2..3 SGN_ALG Checksum al gorithm i ndi cator.
00 00 - DES MAC MD5
01 00 - MD2.5
02 00 - DES MAC

4..5 SEAL_ALG ff ff - none
00 00 - DES
6..7 Filler Contains ff ff
8..15 SND_SEQ Encrypt ed sequence nunber field.
16. .23 SGN_CKSUM Checksum of pl ai ntext padded dat a,

cal cul ated according to algorithm
specified in SGN_ALG field.
24. .| ast Dat a encrypted or plaintext padded data

GSS- APl t okens nust be encapsul ated within the higher-Ilevel protocol
by the application; no enbedded | ength field is necessary.

1.2.2.1. Checksum

Checksum cal cul ati on procedure (common to all algorithns): Checksumns
are cal cul ated over the plaintext padded data field, logically
prepended by the first 8 bytes of the plaintext packet header. The
resulting signature binds the data to the packet type, protocol
version, and signature algorithmidentifier fields.

DES MAC MD5 al gorithm The checksumis fornmed by conputing an MD5
hash over the plaintext padded data, and then conputing a DES-CBC MAC
on the 16-byte MD5 result. A standard 64-bit DES-CBC MAC is conputed
per [FIPS-PUB-113], enploying the context key and a zero |IV. The 8-
byte result is stored in the SGN_CKSUM fi el d.

MD2.5 al gorithm The checksumis forned by first DES-CBC encrypting a
16-byte zero-block, using a zero IV and a key forned by reversing the
bytes of the context key (i.e., if the original key is the 8-byte
sequence {aa, bb, cc, dd, ee, ff, gg, hh}, the checksumkey wll be
{hh, gg, ff, ee, dd, cc, bb, aa}). The resulting 16-byte value is
logically pre-pended to the "to-be-signed data". A standard M5
checksumis cal cul ated over the combined data, and the first 8 bytes
of the result are stored in the SG\ CKSUM fi el d.

Li nn St andards Track [Page 10]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

DES- MAC al gorithm A standard 64-bit DES-CBC MAC i s conputed on the
pl ai nt ext padded data per [FIPS-PUB-113], enploying the context key
and a zero |V. The plaintext padded data is already assured to be an
integral multiple of 8 bytes; no additional padding is required or
applied in order to acconplish MAC cal culation. The result is an 8-
byte value, which is stored in the SGN CKSUM field. Support for this
gorithmmay not be present in all inplenmentations.

1.2.2.2. Sequence Nunber

Sequence nunber field: The 8 byte plaintext sequence nunber field is
formed fromthe sender’s four-byte sequence nunber as follows. |If
the four bytes of the sender’s sequence nunber are naned s0, sl1, s2
and s3 (fromleast to nost significant), the plaintext sequence
nunber field is the 8 byte sequence: (sO, s1, s2, s3, di, di, di

di), where "di’ is the direction-indicator (Hex O - sender is the
context initiator, Hex FF - sender is the context acceptor).

The field is then DES-CBC encrypted using the context key and an |V
formed fromthe first 8 bytes of the SEAL_CKSUM fi el d.

After sending a GSS _GetM C() or GSS Wap() token, the sender’s
sequence nunbers are increnmented by one.

1.2.2.3. Padding

Dat a paddi ng: Before encryption and/or signature cal cul ation,

pl ai ntext data is padded to the next highest multiple of 8 bytes, by
appendi ng between 1 and 8 bytes, the value of each such byte being
the total nunber of pad bytes. For exanple, given data of |ength 20
bytes, four pad bytes will be appended, and each byte will contain
the hex value 04. An 8-byte random confounder is prepended to the
data, and signatures are cal cul ated over the resulting padded

pl ai nt ext .

After padding, the data is encrypted according to the algorithm
specified in the SEAL_ALG field. For SEAL_ALG=DES (the only non-null
algorithmcurrently supported), the data is encrypted using DES-CBC,
with an IV of zero. The key used is derived fromthe established
context key by XOR-ing the context key with the hexadeci mal constant
f Of Of Of Of Of Of Of 0.

1.2.3. Context deletion token
The token emtted by GSS Del ete_sec_context() is based on the packet

format for tokens emtted by GSS GetM C(). The context-deletion
token has the follow ng format:

Li nn St andards Track [Page 11]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

Byte no Nane Descri ption
0..1 TOK I D Identification field.
Tokens emitted by
GSS Del ete_sec_context() contain
the hex value 01 02 in this field.
2..3 SGN_ALG Integrity algorithmindicator
00 00 - DES MAC MD5
01 00 - MD2.5
02 00 - DES MAC

4..7 Filler Contains ff ff ff ff
8..15 SND_SEQ Sequence nunber fi el d.
16. .23 SGN_CKSUM Checksum of "t o-be-signed data"

cal cul ated according to algorithm
specified in SGN ALG field

SGN_ALG and SND SEQ wi |l | be cal cul ated as for tokens emtted by

GSS GetM C(). The SGN CKSUM wi Il be calculated as for tokens emtted
by GSS GetM C(), except that the user-data conponent of the "to-be-
signed" data will be a zero-length string.

2. Nanme Types and Cbject ldentifiers

Thi s section discusses the nane types which may be passed as input to
the Kerberos V5 GSS-APlI nechanisnis GSS Inport _nanme() call, and their
associ ated identifier values. It defines interface elenents in
support of portability, and assunes use of C | anguage bi ndi ngs per
RFC-1509. In addition to specifying OD values for nane type
identifiers, synbolic names are included and recomrended to GSS- API

i mpl enentors in the interests of convenience to callers. It is
understood that not all inplenmentations of the Kerberos V5 GSS-API
nmechani sm need support all name types in this list, and that
additional name forms will likely be added to this list over tine.
Further, the definitions of some or all name types may later migrate
to other, mechani smindependent, specifications. The occurrence of a
nane type in this specification is specifically not intended to
suggest that the type nay be supported only by an inplenentation of
the Kerberos V5 nechani sm In particular, the occurrence of the
string "_KRB5 " in the synbolic name strings constitutes a neans to
unanbi guously regi ster the name strings, avoiding collision with

ot her docunents; it is not meant to limt the name types’ usage or
applicability.

For purposes of clarification to GSS-API inplenentors, this section’s
di scussi on of some nanme forms descri bes means through which those
forns can be supported with existing Kerberos technol ogy. These

di scussions are not intended to preclude alternative inplenmentation
strategies for support of the nane fornms w thin Kerberos mechani snms
or nmechani snms based on other technol ogies. To enhance application

Li nn St andards Track [Page 12]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

portability, inplenentors of mechani sns are encouraged to support
nane forns as defined in this section, even if their mechani sns are
i ndependent of Kerberos V5.

2.1. Mandatory Nane Forns

Thi s section discusses nane forns which are to be supported by al
conformant inplementations of the Kerberos V5 GSS-API nechani sm

2.1.1. Kerberos Principal Nane Form

This name formshall be represented by the Ohject Identifier {iso(l)
nmenber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
krb5(2) krb5 nane(1l)}. The recommended synbolic nanme for this type
i's "GSS_KRB5_NT_PRI NCl PAL_NAME'

This name type corresponds to the single-string representation of a
Kerberos nanme. (Wthin the MT Kerberos V5 inplenentation, such
nanes are parseable with the krb5 parse name() function.) The

el ements included within this name representation are as foll ows,
proceedi ng fromthe beginning of the string:

(1) One or nore principal nane conponents; if nore than one
princi pal name conmponent is included, the conponents are
separated by ‘/‘. Arbitrary octets nmay be included wthin
princi pal nane components, with the follow ng constraints and
speci al consi derations:

(1a) Any occurrence of the characters ‘@ or ‘/' within a
nanme conponent nust be inmredi ately preceded by the ‘\°’
quoting character, to prevent interpretation as a conponent
or real m separator.

(1b) The ASCII new ine, tab, backspace, and null characters
may occur directly within the component or may be
represented, respectively, by ‘\n‘, “\t‘, “\b‘', or “\0'.

(1c) If the “* quoting character occurs outside the contexts
described in (l1a) and (1b) above, the followi ng character is
interpreted literally. As a special case, this allows the
doubl ed representation ‘\\‘ to represent a single occurrence
of the quoting character.

(1d) An occurrence of the ‘\‘ quoting character as the | ast
character of a conponent is illegal

Li nn St andards Track [Page 13]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

(2) Optionally, a ‘@ character, signifying that a real mnane

i medi ately follows. If no realmnanme elenment is included, the
local realmnane is assunmed. The ‘/* |, ‘:‘, and null characters
may not occur within a real mnane; the ‘@, newine, tab, and
backspace characters may be included using the quoting

conventions described in (1la), (1b), and (1c) above.
2.1.2. Host-Based Service Nane Form

Thi s name form has been incorporated at the mechani smi ndependent
GSS- APl | evel as of GSS-APlI, Version 2. This subsection retains the
oj ect ldentifier and synbolic nane assignnents previously nade at
the Kerberos V5 GSS-APlI nechani sm |l evel, and adopts the definition as
pronmpted to the nechani smindependent |evel.

This name formshall be represented by the Object Identifier {iso(l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1l) service_nane(4)}. The previously recomrended synbolic
nane for this type is "GSS _KRB5 NT_HOSTBASED SERVI CE NAME'. The
currently preferred synbolic nane for this type is

" GSS_C_NT_HOSTBASED SERVI CE".

This name type is used to represent services associated w th host
conputers. This name formis constructed using two el enents,
"service" and "hostnanme", as foll ows:

servi ce@ost nane

VWen a reference to a nane of this type is resolved, the "hostname"
is canonicalized by attenpting a DNS | ookup and using the fully-
qualified domain name which is returned, or by using the "hostnane"
as provided if the DNS | ookup fails. The canonicalization operation
al so maps the host’s nane into | ower-case characters.

The "hostnane" el enment may be omitted. If no "@ separator is

i ncluded, the entire nane is interpreted as the service specifier
with the "hostnane" defaulted to the canonicalized nane of the |oca
host .

Val ues for the "service" element will be registered with the | ANA.
2.1.3. Exported Name bject Form for Kerberos V5 Mechani sm

Support for this name formis not required for GSS-V1

i mpl enentations, but will be required for use in conjunction with the

GSS_Export _name() call planned for GSS-APlI Version 2. Use of this

nane formw Il be signified by a "GSS-API Exported Name Cbject” O D
val ue which will be defined at the nmechani smindependent |evel for

Li nn St andards Track [Page 14]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

GSS- APl Version 2.

Thi s name type represents a sel f-describing object, whose fram ng
structure will be defined at the mechani smindependent |evel for

GSS- APl Version 2. \Wen generated by the Kerberos V5 nechanism the
Mechanism O D within the exportable name shall be that of the

Ker beros V5 nmechanism The name conponent within the exportabl e nane
shall be a contiguous string with structure as defined for the

Ker beros Princi pal Nanme Form

In order to achieve a distingui shed encodi ng for compari son purposes,
the follow ng additional constraints are inposed on the export
operation:

(1) all occurrences of the characters ‘@, ‘/‘, and ‘\' within
princi pal conmponents or real mnames shall be quoted with an
i medi atel y-preceding ‘\".

(2) all occurrences of the null, backspace, tab, or new ine
characters within principal conponents or realmnanmes will be
represented, respectively, with “\0', “\b*, “\t‘, or ‘“\n".

(3) the “* quoting character shall not be emtted within an
exported nane except to acconpdate cases (1) and (2).

2.2. Optional Name Forns

Thi s section discusses additional name forms which nay optionally be
supported by inplenmentations of the Kerberos V5 GSS-API nechani sm

It is recognized that sone of the name forns cited here are derived
fromUN X(tn) operating systemplatforns; sone listed fornms nmay be
irrelevant to non-UNI X platfornms, and definition of additional fornmns
correspondi ng to such platfornms may al so be appropriate. It is also
recogni zed that OS-specific functions outside GSS-APl are likely to
exist in order to performtranslations anong these forns, and that
GSS- APl i npl ement ations supporting these forns may thensel ves be

| ayered atop such OS-specific functions. Inclusion of this support
within GSS-API inplenentations is intended as a convenience to
applications.

2.2.1. User Nanme Form
This name formshall be represented by the Object Identifier {iso(l)
menber - body(2) United States(840) nit(113554) infosys(1l) gssapi(2)
generic(1) user_name(1)}. The recomended synmbolic nane for this
type is "GSS_KRB5_NT_USER NAME".

This name type is used to indicate a named user on a |ocal system

Li nn St andards Track [Page 15]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

Its interpretation is OS-specific. This name formis constructed as:
user name

Assum ng that users’ principal nanes are the sane as their |oca
operating system nanes, an inplenmentation of GSS | nport_ nanme() based
on Kerberos V5 technol ogy can process nanes of this form by
postfixing an "@ sign and the nane of the local realm

2.2.2. Machine U D Form

This name formshall be represented by the Ohject Identifier {iso(l)
nmenber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1l) machine_uid nane(2)}. The recommended synbolic nanme for
this type is "GSS_KRB5_NT_MACHI NE_U D_NAME"

This name type is used to indicate a nunmeric user identifier
corresponding to a user on a local system Its interpretationis
OCS-specific. The gss_buffer_desc representing a nane of this type
should contain a locally-significant uid_t, represented in host byte
order. The GSS | nport_nane() operation resolves this uid into a
username, which is then treated as the User Nanme Form

2.2.3. String UD Form

This name formshall be represented by the Object Identifier {iso(l)
menber - body(2) United States(840) mit(113554) infosys(1) gssapi(2)
generic(1l) string_uid _name(3)}. The reconmended synbolic name for
this type is "GSS_KRB5_NT_STRI NG Ul D_NAME".

This name type is used to indicate a string of digits representing
the nuneric user identifier of a user on a local system |Its
interpretation is OS-specific. This nanme type is similar to the
Machi ne U D Form except that the buffer contains a string
representing the uid_t.

3. Credential s Managenent

The Kerberos V5 protocol uses different credentials (in the GSSAP
sense) for initiating and accepting security contexts. Norma
clients receive a ticket-granting ticket (TGI) and an associ at ed
session key at "login" time; the pair of a TGI and its correspondi ng
session key forns a credential which is suitable for initiating
security contexts. A ticket-granting ticket, its session key, and
any other (ticket, key) pairs obtained through use of the ticket-
granting-ticket, are typically stored in a Kerberos V5 credentials
cache, sonetimes known as a ticket file.

Li nn St andards Track [Page 16]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

The encryption key used by the Kerberos server to seal tickets for a
particul ar application service forns the credentials suitable for
accepting security contexts. These service keys are typically stored
in a Kerberos V5 key table, or srvtab file. 1In addition to their use
as accepting credentials, these service keys may al so be used to
obtain initiating credentials for their service principal

The Kerberos V5 nechanism s credential handle may contain references
to either or both types of credentials. It is a local matter how the
Kerberos V5 mechani sminplementation finds the appropriate Kerberos
V5 credentials cache or key table.

However, when the Kerberos V5 nmechanismattenpts to obtain initiating
credentials for a service principal which are not available in a
credentials cache, and the key for that service principal is

avail able in a Kerberos V5 key table, the mechani sm shoul d use the
service key to obtain initiating credentials for that service. This
shoul d be acconplished by requesting a ticket-granting-ticket from
the Kerberos Key Distribution Center (KDC), and decrypting the KDC s
reply using the service key.

4. Paraneter Definitions

This section defines parameter val ues used by the Kerberos V5 GSS- APl
nmechanism It defines interface elenents in support of portability,
and assunmes use of C | anguage bi ndi ngs per RFC 1509.

4.1. Mnor Status Codes

Thi s section reconmends comon synbolic names for mnor_status val ues
to be returned by the Kerberos V5 GSS-APlI nechanism Use of these
definitions will enabl e i ndependent inplenentors to enhance
application portability across different inplenentations of the
mechani smdefined in this specification. (ln all cases,

i mpl enent ati ons of GSS Display_status() will enable callers to
convert minor_status indicators to text representations.) Each

i mpl enentati on shoul d make avail abl e, through include files or other
nmeans, a facility to translate these synbolic nanes into the concrete
val ues which a particul ar GSS-API inplenentation uses to represent
the mnor_status values specified in this section.

It is recognized that this list may grow over tine, and that the need
for additional mnor_status codes specific to particular

i mpl ementations may arise. It is reconmended, however, that

i mpl ement ati ons should return a mnor_status value as defined on a
mechani smwi de basis within this section when that code is accurately
representative of reportable status rather than using a separate

i mpl enent ati on-defined code.

Li nn St andards Track [Page 17]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

4.1.1. Non-Kerberos-specific codes

GSS_KRB5_S G BAD SERVI CE_NAME

/[* "No @in SERVI CE- NAME nane string" */
GSS_KRB5_S G BAD_STRI NG U D

/* "STRI NG U D- NAME contai ns nondigits" */
GSS_KRB5_S G _NOUSER

/[* "U D does not resolve to usernane" */
GSS_KRB5_S G VALI DATE_FAI LED

/* "Validation error" */
GSS_KRB5_S G BUFFER ALLOCC

/[* "Couldn’t allocate gss buffer t data" */
GSS_KRB5_S G BAD MSG CTX

/* "Message context invalid" */
GSS_KRB5_S G WRONG S| ZE

[* "Buffer is the wong size" */
GSS_KRB5_S G BAD USAGE

/* "Credential usage type is unknown" */
GSS_KRB5_S_G_UNKNOMN_QOP

/* "Unknown quality of protection specified" */

4.1.2. Kerberos-specific-codes

GSS_KRB5_S_KG_CCACHE_NOVATCH

/* "Principal in credential cache does not match desired nane" */
GSS_KRB5_S KG KEYTAB_NOVATCH

/[* "No principal in keytab matches desired nane" */
GSS_KRB5_S KG TGT_M SSI NG

[* "Credential cache has no TGI" */
GSS_KRB5_S_KG_NO_SUBKEY

/* "Authenticator has no subkey" */
GSS_KRB5_S KG CONTEXT_ESTABLI SHED

[* "Context is already fully established" */
GSS_KRB5_S KG BAD SI GN_TYPE

/* "Unknown signature type in token" */
GSS_KRB5_S _KG BAD_LENGTH

/* "lInvalid field length in token" */
GSS_KRB5_S KG_CTX_| NCOWPLETE

[* "Attenpt to use inconplete security context" */

4.2. Quality of Protection Val ues

This section defines Quality of Protection (QOP) values to be used
with the Kerberos V5 GSS-APlI nechanismas input to GSS Wap() and
GSS GetM C() routines in order to select anong alternate integrity
and confidentiality algorithns. Additional QOP val ues nay be added in
future versions of this specification. Non-overlapping bit positions
are and will be enployed in order that both integrity and

Li nn St andards Track [Page 18]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

confidentiality QOP nay be selected within a single paraneter, via
i nclusive-OR of the specified integrity and confidentiality val ues.

4.2.1. Integrity Al gorithns

The following Quality of Protection (QOP) values are currently
defined for the Kerberos V5 GSS-API nechani sm and are used to sel ect
anong alternate integrity checking al gorithns.

GSS_KRB5_| NTEG C_QOP_MD5 (nurmeric val ue: 1)
/[* Integrity using partial NMD5 ("MD2.5") of plaintext */

GSS _KRB5 | NTEG C QOP_DES M5 (nuneric val ue: 2)
/* Integrity using DES MAC of MD5 of plaintext */

GSS_KRB5_ | NTEG C QOP_DES NMAC (nurmeric val ue: 3)
[* Integrity using DES MAC of plaintext */

4.2.2. Confidentiality Al gorithms

Only one confidentiality QOP value is currently defined for the
Ker beros V5 GSS- APl mechani sm

GSS_KRB5_ CONF_C QOP_DES (nuneric val ue: 0)
/* Confidentiality with DES */

Note: confidentiality QOP should be indicated only by GSS-API calls
capabl e of providing confidentiality services. If non-zero
confidentiality QOP values are defined in future to represent
different algorithns, therefore, the bit positions containing those
val ues shoul d be cl eared before being returned by inplenentations of
GSS _GetM C() and GSS VerifyM C().

4.3. Buffer Sizes

Al inplementations of this specification shall be capabl e of
accepting buffers of at least 16 Kbytes as input to GSS GetM C(),
GSS VerifyM C(), and GSS Wap(), and shall be capabl e of accepting
the out put _t oken generated by GSS Wap() for a 16 Kbyte input buffer
as input to GSS Unwrap(). Support for larger buffer sizes is optional
but reconmended.

Li nn St andards Track [Page 19]

RFC 1964 Ker ber os Versi on 5 GSS- API June 1996

5. Security Considerations
Security issues are discussed throughout this neno.

6. References
[RFC-1321]: Rivest, R, "The MD5 Message-Di gest Algorithm', RFC
1321, April 1992.

[RFC-1508]: Linn, J., "Generic Security Service Application Program
Interface", RFC 1508, Septenber 1993.

[RFC-1509]: Way, J., "Generic Security Service Application Program
Interface: C- bindings", RFC 1509, Septenber 1993.

[RFC- 1510]: Kohl, J., and C. Neuman, "The Kerberos Network
Aut hentication Service (V5)", RFC 1510, Septenber 1993.

[FI PS- PUB-113]: National Bureau of Standards, Federal |nfornation
Processing Standard 113, "Conputer Data Authentication", My 1985.

AUTHOR S ADDRESS
John Linn
OpenVi si on Technol ogi es
One Main St
Canbridge, MA 02142 USA

Phone: +1 617.374. 2245
EMai | : John. Li nn@v. com

Li nn St andards Track [Page 20]

