Net wor k Wor ki ng Group J. Linn
Request for Comments: 2078 OpenVi si on Technol ogi es
Cat egory: Standards Track January 1997
Obsol etes: 1508

Generic Security Service Application ProgramlInterface, Version 2
Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.

Abst ract

The Generic Security Service Application ProgramlInterface (GSS-API),
as defined in RFC 1508, provides security services to callers in a
generic fashion, supportable with a range of underlying nechani sns
and technol ogi es and hence all owi ng source-level portability of
applications to different environnents. This specification defines
GSS- APl services and primtives at a |l evel independent of underlying
mechani sm and progranm ng | anguage environnment, and is to be

conpl emrented by other, related specifications:

docunent s defining specific paraneter bindings for particular
| anguage environnents

docunent s defining token formats, protocols, and procedures to be
i mpl enented in order to realize GSS-APlI services atop particul ar
security nmechani sns

This meno revi ses RFC- 1508, nmking specific, increnental changes in
response to inplenmentation experience and |iaison requests. It is

i ntended, therefore, that this menmp or a successor version thereto
wi Il become the basis for subsequent progression of the GSS-API
specification on the standards track

Tabl e of Contents

1: GSS-APlI Characteristics and Concepts............c.o ... 3
1.1 GSS- APl CoNStrUCES. ..ot e e e e e e e e 6
1.1.1: Credential s.. 6
1.1.1.1: Credential Constructs and Concepts...................... 6
1.1.1.2: Credential Managenment............. ... 7
1.1.1.3: Default Credential Resolution........................... 8

Li nn St andards Track [Page 1]

RFC 2078 GSS- API January 1997

1. A, 2 TOKENS. o 9
1.1.3 Security ContextS. 10
1.1.4: Mechani sm TYPeS. . ..ot 11
1.1.5 NaM NG, . o 12
1.1.6 Channel BindiNgS. 14
1.2: GSS-APlI Features and ISSUES. i, 15
1.2.1 Status Reporting. 15
1.2.2: Per-Message Security Service Availability................. 17
1.2.3: Per-Message Replay Detection and Sequencing............... 18
1.2.4: Quality of Protection........., 20
1.2.5: Anonymity SUPPOrt. ... 21
1.2.6: Initialization. e 22
1.2.7: Per-Message Protection During Context Establishment....... 22
1.2.8: Inplenentation Robustness.......... 23
2: Interface DesSCriptions. 23
2.1: Credential managenent calls........ 25
2.1.1: GSS Acquire_cred call..... 26
2.1.2: GSS Release cred call....... i, 28
2.1.3: GSSInquire cred call....... 29
2.1.4: GSS_Add_cred call....... .. 31
2.1.5: GSS_Inquire_cred_by mech call......... 33
2.2: Context-level calls.... 34
2.2.1: GSS Init_sec_context call...... i 34
2.2.2: GSS_Accept_sec_context call 40
2.2.3: GSS Delete sec_context call.......... 44
2.2.4: GSS_Process_context_token call.......... 46
2.2.5: GSS Context_tinme call....... 47
2.2.6: GSS Inquire_context call....... 47
2.2.7: GSS Wap_size limt call..... 49
2.2.8: GSS Export_sec_context call........... 50
2.2.9: GSS Inport_sec_context call.......... 52
2.3: Per-nmessage Cal | S, oot 53
2.3.1: GSS GetMC call... ... 54
2.3.2: GSS VerifyMC call..... 55
2.3.3: GSS Wap call ... 56
2.3.4: GSS Unwrap call........ e e 58
2.4: Support calls. 59
2.4.1: GSS Display_status call....... 60
2.4.2: GSS_Ind|cate_nEchs call ... 60
2.4.3: GSS Conmpare_name call........ 61
2.4.4: GSS Display_name call........ 62
2.4.5: GSS Inport name call........ 63
2.4.6: GSS Release nanme call......... 64
2.4.7: GSS_Release_buffer call....... 65
2.4.8: GSS_ Release_ODset call......... 65
2.4.9: GSS Create_enpty ODset call........ 66
2.4.10: GSS Add O D set _nenber call............ 67
2.4.11: GSS Test_ O Dset nenmber call............ 67

Li nn St andards Track [Page 2]

RFC 2078 GSS- API January 1997

2.4.12: GSS Release O D call........ i, 68
2.4.13: GSS_ AOD to_str call..... ... 68
2.4.14: GSS_ Str_to_ADcall..... ... 69
2.4.15: GSS Inquire_names_for_nmech call......... 69
2.4.16: GSS Inquire_nechs_for_name call......... 70
2.4.17: GSS Canonicalize name call........... 71
2.4.18: GSS Export _name call........ 72
2.4.19: GSS Duplicate name call....... i 73
3: Data Structure Definitions for GSS-V2 Usage................... 73
3.1: Mechani sm | ndependent Token Format.......................... 74
3.2: Mechani sm | ndependent Exported Nane Cbject Format........... 77
4: Name Type Definitions......... 77
4.1: Host-Based Service Nanme Form............... ... 77
4.2 User Name FOIrm e e e e e e 78
4.3: Machine UID FOrm e 78
4.4: String UD Form 79
5: Mechani sm Specific Example Scenarios............. 79
5.1: Kerberos V5, single-TGl.y 79
5.2: Kerberos V5, double-TGT. 80
5.3: X. 509 Authentication Framework............., 81
6: Security Considerations. i 82
7: Related ActiVvities. e 82
Appendi x A: Mechani sm Design Constraints......................... 83
Appendi x B: Compatibility with GSS-V1............................ 83

1: GSS-APlI Characteristics and Concepts

GSS- APl operates in the follow ng paradigm A typical GSS-API caller
is itself a comunications protocol, calling on GSS-API in order to
protect its communications with authentication, integrity, and/or
confidentiality security services. A GSS-API caller accepts tokens
provided to it by its local GSS-API inplenentation and transfers the
tokens to a peer on a renpte systenm that peer passes the received
tokens to its local GSS-API inplementation for processing. The
security services available through GSS-API in this fashion are

i mpl enent abl e (and have been i npl enented) over a range of underlying
nechani sns based on secret-key and public-key cryptographic

t echnol ogi es.

The GSS- APl separates the operations of initializing a security

cont ext between peers, achieving peer entity authentication (This
security service definition, and other definitions used in this
docunent, corresponds to that provided in International Standard | SO
7498-2-1988(E), Security Architecture.) (GSS Init_sec_context() and
GSS _Accept _sec_context() calls), fromthe operations of providing
per-message data origin authentication and data integrity protection
(GSS GetM(C() and GSS VerifyM(C() «calls) for messages subsequently
transferred in conjunction with that context. Wen establishing a

Li nn St andards Track [Page 3]

RFC 2078 GSS- API January 1997

security context, the GSS-APlI enables a context initiator to
optionally permt its credentials to be del egated, neaning that the
context acceptor nmay initiate further security contexts on behal f of
the initiating caller. Per-nmessage GSS Wap() and GSS Unwap() calls
provide the data origin authentication and data integrity services
which GSS GetM C() and GSS VerifyMC() offer, and al so support

sel ection of confidentiality services as a caller option. Additiona
calls provide supportive functions to the GSS-API’'s users.

The foll owi ng paragraphs provide an exanple illustrating the
dat af | ows i nvolved in use of the GSS-API by a client and server in a
nmechani sm i ndependent fashion, establishing a security context and
transferring a protected nessage. The exanpl e assunes that credentia
acqui sition has already been conpleted. The exanple assunes that the
under | yi ng aut hentication technol ogy is capable of authenticating a
client to a server using elenents carried within a single token, and
of authenticating the server to the client (mutual authentication)
with a single returned token; this assunption holds for presently-
docunent ed CAT nechani sns but is not necessarily true for other

crypt ographi c technol ogi es and associ at ed protocol s.

The client calls GSS Init_sec_context() to establish a security
context to the server identified by targ_nane, and elects to set the
nmutual _req_flag so that mutual authentication is perforned in the
course of context establishnment. GSS Init_sec_context() returns an
out put _token to be passed to the server, and indicates

GSS_S CONTI NUE_NEEDED st atus pendi ng conpl eti on of the mnutual

aut henti cati on sequence. Had rmutual req_flag not been set, the
initial call to GSS Init_sec_context() would have returned

GSS S COWPLETE status. The client sends the output token to the
server.

The server passes the received token as the input_token paraneter to
GSS _Accept _sec_context(). GSS Accept_sec_context indicates

GSS_ S COWPLETE status, provides the client’s authenticated identity
in the src_nane result, and provides an output_token to be passed to
the client. The server sends the output_token to the client.

The client passes the received token as the input_token paraneter to
a successor call to GSS Init_sec_context(), which processes data
included in the token in order to achi eve nutual authentication from
the client’s viewpoint. This call to GSS Init_sec_context() returns
GSS S COWPLETE status, indicating successful nmutual authentication
and the conpl etion of context establishnent for this exanple.

The client generates a data message and passes it to GSS Wap().

GSS Wap() perforns data origin authentication, data integrity, and
(optionally) confidentiality processing on the nmessage and

Li nn St andards Track [Page 4]

RFC 2078 GSS- API January 1997

encapsul ates the result into output_nessage, indicating
GSS S COWPLETE status. The client sends the output nessage to the
server.

The server passes the received nessage to GSS Unwrap(). GSS Unw ap()
inverts the encapsul ati on performed by GSS Wap(), deciphers the
nessage if the optional confidentiality feature was applied, and

val idates the data origin authentication and data integrity checking
guantities. GSS Unwap() indicates successful validation by
returning GSS_S COVPLETE status along with the resultant

out put _nessage.

For purposes of this exanple, we assune that the server knows by

out - of -band neans that this context will have no further use after
one protected nmessage is transferred fromclient to server. Gven
this prem se, the server now calls GSS Delete_sec_context() to flush
context-level information. Optionally, the server-side application
may provide a token buffer to GSS Del ete_sec_context(), to receive a
context _token to be transferred to the client in order to request
that client-side context-1level information be del eted.

If a context_token is transferred, the client passes the

context _token to GSS_Process_context _token(), which returns

GSS S COWPLETE status after deleting context-level information at the
client system

The GSS- APl design assunmes and addresses several basic goal s,
i ncl udi ng:

Mechani sm i ndependence: The GSS-API defines an interface to
cryptographically inplenented strong authentication and ot her
security services at a generic |level which is independent of
particul ar underlying mechani snms. For exanple, GSS-API-provided
services can be inplemented by secret-key technol ogies (e.g.

Ker beros) or public-key approaches (e.g., X 509).

Prot ocol environnment independence: The GSS-API is independent of
the conmuni cati ons protocol suites with which it is enployed,
permitting use in a broad range of protocol environments. In
appropriate environments, an intermediate inplementation "veneer"
which is oriented to a particul ar comunication protocol (e.g.
Renote Procedure Call (RPC)) may be interposed between
applications which call that protocol and the GSS-API, thereby

i nvoki ng GSS-API facilities in conjunction with that protocol’s
comuni cati ons invocations.

Prot ocol associ ation independence: The GSS-API’s security context
construct is independent of comruni cations protocol association

Li nn St andards Track [Page 5]

RFC 2078 GSS- API January 1997

constructs. This characteristic allows a single GSS-API

i npl enentation to be utilized by a variety of invoking protoco
nodul es on behal f of those nodul es’ calling applications. GSS-API
services can also be invoked directly by applications, wholly

i ndependent of protocol associations.

Suitability to a range of inplenentation placenents: GSS-API
clients are not constrained to reside within any Trusted Conputing
Base (TCB) perineter defined on a system where the GSS-API is

i mpl enent ed; security services are specified in a manner suitable
to both intra-TCB and extra-TCB cal |l ers.

1.1: GSS-API Constructs

This section describes the basic el ements conprising the GSS-API.
1.1.1: Credentials
1.1.1.1: Credential Constructs and Concepts

Credentials provide the prerequisites which permit GSS-APlI peers to
establish security contexts with each other. A caller may designate
that the credential elenments which are to be applied for context
initiation or acceptance be selected by default. Alternately, those
GSS- APl callers which need to nmake explicit selection of particular
credentials structures nay make references to those credentials

t hrough GSS- API - provi ded credential handles ("cred_handles"). In all
cases, callers’ credential references are indirect, medi ated by GSS-
APl inplementations and not requiring callers to access the selected
credential el enents.

A single credential structure may be used to initiate outbound
contexts and to accept inbound contexts. Callers needing to operate
in only one of these nbdes may designate this fact when credentials
are acquired for use, allow ng underlying mechanisnms to optimze
their processing and storage requirements. The credential el enents
defined by a particular nmechanismmmay contain nultiple cryptographic
keys, e.g., to enable authentication and nmessage encryption to be
performed with different algorithmns.

A GSS- APl credential structure may contain multiple credentia

el enents, each containing nmechani smspecific information for a
particul ar underlying nmechani sm (mech_type), but the set of el enents
within a given credential structure represent a comon entity. A
credential structure's contents will vary depending on the set of
mech_t ypes supported by a particul ar GSS-API inplementation. Each
credential elerment identifies the data needed by its mechanismin
order to establish contexts on behalf of a particular principal, and

Li nn St andards Track [Page 6]

RFC 2078 GSS- API January 1997

may contain separate credential references for use in context
initiation and context acceptance. Miltiple credential elenents
within a given credential having overl appi ng conbi nati ons of
mechani sm usage node, and validity period are not permtted.

Commonly, a single mech_type will be used for all security contexts
established by a particular initiator to a particular target. A ngjor
notivation for supporting credential sets representing multiple
mech_types is to allowinitiators on systens which are equi pped to
handle multiple types to initiate contexts to targets on other
systenms whi ch can acconmodate only a subset of the set supported at
the initiator’s system

1.1.1.2: Credential Mnagenent

It is the responsibility of underlying system specific nechani sns and
OS functions below the GSS-API to ensure that the ability to acquire
and use credentials associated with a given identity is constrai ned
to appropriate processes within a system This responsibility should
be taken seriously by inplenentors, as the ability for an entity to
utilize a principal’s credentials is equivalent to the entity’s
ability to successfully assert that principal’s identity.

Once a set of GSS-API credentials is established, the transferability
of that credentials set to other processes or anal ogous constructs
within a systemis a local matter, not defined by the GSS-API. An
exanpl e 1 ocal policy woul d be one in which any credentials received
as a result of login to a given user account, or of del egation of
rights to that account, are accessible by, or transferable to,
processes runni ng under that account.

The credential establishnent process (particularly when perfornmed on
behal f of users rather than server processes) is likely to require
access to passwords or other quantities which should be protected

| ocal ly and exposed for the shortest tine possible. As a result, it
will often be appropriate for prelimnary credential establishnment to
be performed t hrough | ocal neans at user login tine, with the
result(s) cached for subsequent reference. These prelimnary
credentials would be set aside (in a systemspecific fashion) for
subsequent use, either:

to be accessed by an invocation of the GSS-API GSS Acquire_cred()
call, returning an explicit handle to reference that credentia

to conprise default credential elenents to be installed, and to be

used when default credential behavior is requested on behalf of a
process

Li nn St andards Track [Page 7]

RFC 2078 GSS- API January 1997

1.1.1.3: Default Credential Resolution

The gss_init_sec_context and gss_accept_sec_context routines allow
the value GSS_C NO CREDENTIAL to be specified as their credentia
handl e parameter. This special credential-handle indicates a desire
by the application to act as a default principal. Wile individua
GSS- APl inplenmentations are free to determ ne such default behavior
as appropriate to the nechanism the follow ng default behavi or by
these routines is recomended for portability:

GSS I nit_sec_context:

(i) If there is only a single principal capable of initiating
security contexts that the application is authorized to act on
behal f of, then that principal shall be used, otherw se

(ii) If the platform maintains a concept of a default network-
identity, and if the application is authorized to act on behal f of
that identity for the purpose of initiating security contexts,
then the principal corresponding to that identity shall be used,
ot herw se

(iii) If the platform maintains a concept of a default |oca
identity, and provides a neans to map local identities into
network-identities, and if the application is authorized to act on
behal f of the network-identity inmage of the default local identity
for the purpose of initiating security contexts, then the
principal corresponding to that identity shall be used, otherw se

(iv) A user-configurable default identity should be used.
GSS_Accept _sec_cont ext:

(i) If there is only a single authorized principal identity
capabl e of accepting security contexts, then that principal shal
be used, otherw se

(ii) If the mechanismcan deternmine the identity of the target
princi pal by exam ning the context-establishnent token, and if the
accepting application is authorized to act as that principal for
the purpose of accepting security contexts, then that principa
identity shall be used, otherw se

(iii) If the mechani sm supports context acceptance by any
principal, and nmutual authentication was not requested, any
principal that the application is authorized to accept security
contexts under may be used, otherw se

Li nn St andards Track [Page 8]

RFC 2078 GSS- API January 1997

(iv) A user-configurable default identity shall be used.

The purpose of the above rules is to allow security contexts to be
established by both initiator and acceptor using the default behavior
wher ever possible. Applications requesting default behavior are
likely to be nore portabl e across nechani sns and platforns than ones
that use GSS Acquire cred to request a specific identity.

1.1.2: Tokens

Tokens are data el enents transferred between GSS-API callers, and are
divided into two cl asses. Context-level tokens are exchanged in order
to establish and manage a security context between peers. Per-nessage
tokens relate to an established context and are exchanged to provide
protective security services (i.e., data origin authentication
integrity, and optional confidentiality) for correspondi ng data
nmessages.

The first context-level token obtained fromGSS Init_sec_context() is
required to indicate at its very beginning a globally-interpretable
mechanismidentifier, i.e., an OCbject Identifier (O D) of the
security nmechanism The remaining part of this token as well as the
whol e content of all other tokens are specific to the particul ar
under | yi ng mechani sm used to support the GSS-API. Section 3 of this
docunent provides, for designers of GSS-APlI support nechani sns, the
description of the header of the first context-level token which is
then foll owed by nechani smspecific information.

Tokens’ contents are opaque fromthe viewpoint of GSS-API callers.
They are generated within the GSS-API inplenentation at an end
system provided to a GSS-API caller to be transferred to the peer
GSS- APl caller at a renpte end system and processed by the GSS-API
i mpl enentation at that renote end system Tokens nay be output by
GSS- APl calls (and should be transferred to GSS- APl peers) whether or
not the calls’ status indicators indicate successful conpletion
Token transfer may take place in an in-band nmanner, integrated into
the same protocol streamused by the GSS-APlI callers for other data
transfers, or in an out-of-band nmanner across a logically separate
channel

Different GSS-API tokens are used for different purposes (e.qg.
context initiation, context acceptance, protected nessage data on an
establ i shed context), and it is the responsibility of a GSS-API
caller receiving tokens to distinguish their types, associate them
wi th correspondi ng security contexts, and pass themto appropriate
GSS- APl processing routines. Depending on the caller protoco
environnent, this distinction my be acconplished in several ways.

Li nn St andards Track [Page 9]

RFC 2078 GSS- API January 1997

The foll owing exanples illustrate nmeans through which tokens’ types
may be di stingui shed:

- inmplicit tagging based on state information (e.g., all tokens on
a new associ ation are considered to be context establishnent
tokens until context establishnment is conpleted, at which point

all tokens are considered to be wapped data objects for that

cont ext),

- explicit tagging at the caller protocol |evel,
- a hybrid of these approaches.

Conmonl y, the encapsul ated data within a token includes interna
mechani sm speci fic tagging i nformati on, enabling nechanismleve
processi ng nmodul es to distinguish tokens used within the nechani sm
for different purposes. Such internal nmechanismlevel tagging is
recomended to nechani sm desi gners, and enabl es nmechani sns to

det erm ne whether a caller has passed a particul ar token for
processing by an i nappropriate GSS-API routine.

Devel opnment of GSS-API support prinitives based on a particul ar
under | yi ng cryptographic technique and protocol (i.e., conformant to
a specific GSS-API nmechani smdefinition) does not necessarily inmply
that GSS-API callers using that GSS-API nmechanismw ||l be able to

i nteroperate with peers invoking the sane techni que and protoco
outsi de the GSS-API paradigm or with peers inplenmenting a different
GSS- APl mechani sm based on the sane underlying technol ogy. The
format of GSS- APl tokens defined in conjunction with a particul ar
nmechani sm and the techniques used to integrate those tokens into
callers’ protocols, nay not be interoperable with the tokens used by
non- GSS- APl cal l ers of the same underlying technique.

1.1.3: Security Contexts

Security contexts are established between peers, using credentials
established locally in conjunction with each peer or received by
peers via delegation. Miltiple contexts may exist sinultaneously
between a pair of peers, using the same or different sets of
credential s. Coexistence of nultiple contexts using different
credentials allows graceful rollover when credentials expire.
Distinction anong nultiple contexts based on the sanme credentials
serves applications by distinguishing different nessage streans in a
security sense

The GSS-API is independent of underlying protocols and addressing

structure, and depends on its callers to transport GSS-API-provided
data elements. As a result of these factors, it is a caller

Li nn St andards Track [Page 10]

RFC 2078 GSS- API January 1997

1

1

responsibility to parse conmuni cat ed nessages, separating GSS-API -
rel ated data elements fromcaller-provided data. The GSS-API is

i ndependent of connection vs. connectionless orientation of the
under | yi ng conmuni cati ons service.

No correl ati on between security context and comruni cati ons protoco
association is dictated. (The optional channel binding facility,

di scussed in Section 1.1.6 of this docunent, represents an

i ntentional exception to this rule, supporting additional protection
features within GSS-APlI supporting mechani sms.) This separation
allows the GSS-API to be used in a wi de range of communi cations
environnents, and also sinplifies the calling sequences of the

i ndividual calls. In many cases (depending on underlying security
protocol, associated mechanism and availability of cached
information), the state information required for context setup can be
sent concurrently with initial signed user data, w thout interposing
addi ti onal message exchanges.

4: Mechani sm Types

In order to successfully establish a security context with a target
peer, it is necessary to identify an appropriate underlying nechani sm
type (mech_type) which both initiator and target peers support. The
definition of a nmechani sm enbodi es not only the use of a particul ar
cryptographic technology (or a hybrid or choice anbng alternative
crypt ographi c technol ogi es), but also definition of the syntax and
semantics of data el enent exchanges which that mechanismw |l enpl oy
in order to support security services.

It is recomended that callers initiating contexts specify the
"default" mech_type value, allow ng systemspecific functions within
or invoked by the GSS-API inplenentation to select the appropriate
mech_type, but callers may direct that a particular nech_type be
enpl oyed when necessary.

The neans for identifying a shared nech_type to establish a security
context with a peer will vary in different environments and
ci rcunst ances; exanples include (but are not limted to):

use of a fixed nech_type, defined by configuration, within an
envi ronnent

syntactic convention on a target-specific basis, through
exam nation of a target’'s nane

| ookup of a target’s nane in a nam ng service or other database in
order to identify mech_types supported by that target

Li nn St andards Track [Page 11]

RFC 2078 GSS- API January 1997

explicit negotiation between GSS-API callers in advance of
security context setup

VWhen transferred between GSS- APl peers, mech_type specifiers (per
Section 3, represented as bject ldentifiers (O Ds)) serve to qualify
the interpretation of associated tokens. (The structure and encodi ng
of Cbject ldentifiers is defined in |ISQOIEC 8824, "Specification of
Abstract Syntax Notation One (ASN. 1)" and in |1SQO | EC 8825,
"Specification of Basic Encoding Rules for Abstract Syntax Notation
One (ASN.1)".) Use of hierarchically structured O Ds serves to

precl ude anbi guous interpretation of mech_type specifiers. The OD
representing the DASS MechType, for exanple, is 1.3.12.2.1011.7.5,
and that of the Kerberos V5 mechani sm once advanced to the |evel of
Proposed Standard, will be 1.2.840.113554.1.2. 2.

1.1.5: Nam ng

The GSS- APl avoi ds prescribing nam ng structures, treating the nanes
whi ch are transferred across the interface in order to initiate and
accept security contexts as opaque objects. This approach supports
the GSS-API’s goal of inplenmentability atop a range of underlying
security nechani sns, recognizing the fact that different mechani sms
process and aut henticate names which are presented in different
forns. CGeneralized services offering translation functions anong
arbitrary sets of nam ng environments are outside the scope of the
GSS- APl ; availability and use of |ocal conversion functions to
transl ate anong the naming formats supported within a given end
systemis antici pated.

Different classes of nane representations are used in conjunction
with different GSS-API paraneters:

- Internal form (denoted in this docurment by | NTERNAL NANME)
opaque to callers and defined by individual GSS-API

i mpl enent ati ons. GSS- APl inpl enentations supporting multiple
nanespace types nmust maintain internal tags to di sanbi guate the
interpretation of particular nanes. A Mechanism Name (M\) is a
speci al case of | NTERNAL NAME, guaranteed to contain el enents
corresponding to one and only one mechanism calls which are
guaranteed to enmit MNs or which require MNs as input are so
identified within this specification

- Contiguous string ("flat") form (denoted in this docunent by
OCTET STRING); acconpanied by O D tags identifying the nanespace
to which they correspond. Depending on tag value, flat nanes my
or may not be printable strings for direct acceptance from and
presentation to users. Tagging of flat nanes all ows GSS-API
cal l ers and underlying GSS-API nechani sns to di sanbi guate nane

Li nn St andards Track [Page 12]

RFC 2078 GSS- API January 1997

types and to determ ne whether an associated nane’s type is one
whi ch they are capable of processing, avoiding aliasing problens
which could result fromnisinterpreting a name of one type as a
nanme of another type.

- The GSS- APl Exported Nane Ohject, a special case of flat nane
designated by a reserved O D value, carries a canonicalized form
of a nane suitable for binary conparisons.

In addition to providing means for nanes to be tagged with types,
this specification defines primtives to support a |evel of nam ng
envi ronnent independence for certain calling applications. To provide
basi ¢ services oriented towards the requirenments of callers which
need not thenselves interpret the internal syntax and semantics of
nanes, GSS-APl calls for name comparison (GSS_Conpare_nane()),
human-r eadabl e di splay (GSS _Display_name()), input conversion
(GSS_Import_nane()), internal name deal |l ocati on (GSS_Rel ease_nane()),
and internal nane duplication (GSS Duplicate _name()) functions are
defined. (It is anticipated that these proposed GSS-API calls will be
i mpl enented in nmany end systens based on systemspecific nane
mani pul ati on primtives already extant within those end systens;
inclusion within the GSS-API is intended to offer GSS-APlI callers a
portabl e means to perform specific operations, supportive of

aut horization and audit requirenments, on authenticated nanes.)

GSS I nmport _nanme() inplenmentations can, where appropriate, support
nore than one printable syntax corresponding to a given nanespace
(e.g., alternative printable representations for X 500 Di stinguished
Nanes), allowing flexibility for their callers to sel ect anmpbng
alternative representations. GSS Display_nanme() inplenentations
output a printable syntax selected as appropriate to their
operational environments; this selection is a local matter. Callers
desiring portability across alternative printable syntaxes shoul d
refrain frominpl enenting conpari sons based on printable name forns
and shoul d instead use the GSS _Conpare_nane() call to determ ne
whet her or not one internal-format nane matches anot her

The GSS _Canonical i ze_nanme() and GSS Export _nane() calls enable
callers to acquire and process Exported Nanme Cbjects, canonicalized
and translated in accordance with the procedures of a particul ar
GSS- APl mechani sm Exported Name Objects can, in turn, be input to
GSS I nmport _name(), yielding equivalent MNs. These facilities are
desi gned specifically to enable efficient storage and conpari son of
nanes (e.g., for use in access control lists).

Li nn St andards Track [Page 13]

RFC 2078 GSS- API January 1997
The followi ng diagramillustrates the intended datafl ow anong nane-
rel ated GSS- APl processing routines.

GSS- APl library defaults

|
|
\Y text, for
a

text -------------- > internal _nane (IN) ----------- > display only
i mport _name() / di spl ay_nane()
/
/
/
accept _sec_context () /
| /
| /
| /[canonical i ze_nane()
| /
| /
| /
| /
| /
| |
\Y; \Y; oo
si ngl e mechani sm i mport _name() exported nane: flat
i nternal _nanme (MN) bi nary "bl ob" usabl e

—————————————————————— > for access contro
export_nane()

1.1.6: Channel Bindings

The GSS- APl accommodat es the concept of caller-provided channe

bi ndi ng ("chan_binding") information. Channel bindings are used to
strengthen the quality with which peer entity authentication is
provi ded during context establishment, by Iimting the scope within
whi ch an intercepted context establishment token can be reused by an
attacker. Specifically, they enable GSS-APlI callers to bind the
establ i shnent of a security context to relevant characteristics
(e.g., addresses, transformed representations of encryption keys) of
t he underlyi ng conmuni cati ons channel, of protection nechani sns
applied to that communi cati ons channel, and to application-specific
dat a.

The caller initiating a security context nmust deternine the
appropriate channel binding values to provide as input to the

GSS Init_sec_context() call, and consistent val ues nust be provided
to GSS_Accept_sec_context() by the context’s target, in order for
both peers’ GSS-API nechanisns to validate that received tokens
possess correct channel-related characteristics. Use or non-use of

Li nn St andards Track [Page 14]

RFC 2078 GSS- API January 1997

the GSS- APl channel binding facility is a caller option. GSS-API
mechani sns can operate in an environnent where NULL channel bindings
are presented; nechani sminplenentors are encouraged, but not

requi red, to nake use of caller-provided channel binding data within
their mechani snms. Callers should not assunme that underlying

nmechani sns provide confidentiality protection for channel binding

i nformation.

When non- NULL channel bindings are provided by callers, certain
mechani sns can offer enhanced security value by interpreting the

bi ndi ngs’ content (rather than sinply representing those bindings, or
integrity check val ues conmputed on them within tokens) and wl|
therefore depend on presentation of specific data in a defined
format. To this end, agreenents anmong nmechani sminplenmentors are
defining conventional interpretations for the contents of channe

bi ndi ng arguments, including address specifiers (with content
dependent on conmuni cati ons protocol environment) for context
initiators and acceptors. (These conventions are being incorporated
in GSS-API nmechani sm specifications and into the GSS-API C | anguage
bi ndi ngs specification.) In order for GSS-APl callers to be portable
across nultiple mechani sms and achi eve the full security
functionality which each mechani smcan provide, it is strongly
recommended that GSS- APl call ers provide channel bindi ngs consi stent
wi th these conventions and those of the networking environnent in
whi ch they operate

1. 2: GSS- APl Features and | ssues

Thi s section describes aspects of GSS-API operations, of the security
services which the GSS-API provides, and provides comentary on
desi gn i ssues.

1.2.1: Status Reporting

Each GSS-API call provides two status return val ues. Major_status
val ues provide a nechani smi ndependent indication of call status
(e.g., GSS_S COWPLETE, GSS_S FAI LURE, GSS_S CONTI NUE_NEEDED),
sufficient to drive normal control flowwthin the caller in a
generic fashion. Table 1 summarizes the defined major_status return
codes in tabul ar fashion.

Li nn St andards Track [Page 15]

Tabl e 1: GSS- API

Li nn

RFC 2078

FATAL ERROR CODES

GSS_S_BAD_BI NDI NGS
GSS_S_BAD_MECH
GSS_S_BAD_NAME
GSS_S_BAD_NAMETYPE
GSS_S_BAD_STATUS
GSS_S_BAD SI G
GSS_S_CONTEXT_EXPI RED
GSS_S_CREDENTI ALS_EXPI RED
GSS_S_DEFECTI VE_CREDENTI AL
GSS_S_DEFECTI VE_TOKEN
GSS_S_FAI LURE

GSS_S_NO_CONTEXT
GSS_S_NO_CRED
GSS_S_BAD Q0P
GSS_S_UNAUTHORI ZED
GSS_S_UNAVAI LABLE
GSS_S_DUPLI CATE_ELEMENT
GSS_S_NAVE_NOT_MN

| NFORVATORY STATUS CODES

GSS_S_COMPLETE
GSS_S_CONTI NUE_NEEDED

GSS_S_DUPLI CATE_TOKEN
GSS_S _OLD TOKEN
GSS_S_UNSEQ TOKEN

GSS_S_GAP_TOKEN

GSS- API

January 1997

Maj or Status Codes

channel binding m smatch
unsupport ed nmechani sm request ed
i nval id nane provi ded
nane of unsupported type provided
invalid input status selector
token had invalid integrity check
specified security context expired
expired credential s detected
def ective credential detected
def ecti ve token detected
failure, unspecified at GSS-API
| eve
no valid security context specified
no valid credentials provided
unsupported QOP val ue
operation unaut hori zed
operation unavail abl e
duplicate credential element requested
nane contains multi-nmechani smel enents

normal conpl etion
continuation call to routine
required

dupl i cat e per-nessage token
det ect ed

ti med- out per-nessage token
det ected

reordered (early) per-nmessage token
det ect ed

ski pped predecessor token(s)
det ect ed

M nor _status provides nore detailed status information which may
i nclude status codes specific to the underlying security nmechani sm
M nor _status values are not specified in this document.

GSS_S CONTI NUE_NEEDED maj or _status returns, and optional nessage
outputs, are provided in GSS Init_sec_context() and

GSS_Accept _sec_context ()

calls so that different nechani sns’

enpl oyment of different nunmbers of nessages within their
aut henti cati on sequences need not be reflected in separate code paths

within calling applications.

St andards Track

I nst ead, such cases are accommpdat ed

[Page 16]

RFC 2078 GSS- API January 1997

wi th sequences of continuation calls to GSS Init_sec_context() and
GSS Accept _sec_context(). The sane nmechanismis used to encapsul ate
nmut ual authentication within the GSS-API’'s context initiation calls.

For mech_types which require interactions with third-party servers in
order to establish a security context, GSS-API context establishnent
calls may bl ock pending conpletion of such third-party interactions.

On the other hand, no GSS-APlI calls pend on serialized interactions
with GSS-APl peer entities. As a result, local GSS-APlI status
returns cannot reflect unpredictable or asynchronous exceptions
occurring at renote peers, and reflection of such status information
is a caller responsibility outside the GSS-API.

1.2.2: Per-Message Security Service Availability

VWhen a context is established, two flags are returned to indicate the
set of per-nessage protection security services which will be
avail abl e on the context:

the integ_avail flag indicates whether per-nmessage integrity and
data origin authentication services are avail abl e

the conf _avail flag indicates whether per-nessage confidentiality
services are available, and will never be returned TRUE unl ess the
integ_avail flag is also returned TRUE

GSS- APl callers desiring per-nmessage security services should
check the values of these flags at context establishment tine, and
nmust be aware that a returned FALSE val ue for integ avail neans
that invocation of GSS GetM C() or GSS Wap() prinmtives on the
associ ated context will apply no cryptographic protection to user
dat a nmessages.

The GSS- APl per-nmessage integrity and data origin authentication
services provide assurance to a receiving caller that protection was
applied to a nessage by the caller’s peer on the security context,
corresponding to the entity naned at context initiation. The GSS-API
per-message confidentiality service provides assurance to a sending
caller that the nmessage’s content is protected from access by
entities other than the context’s nanmed peer

Li nn St andards Track [Page 17]

RFC 2078 GSS- API January 1997

The GSS- APl per-nessage protection service printives, as the
category nanme inplies, are oriented to operation at the granularity
of protocol data units. They perform cryptographic operations on the
data units, transfer cryptographic control information in tokens,
and, in the case of GSS Wap(), encapsul ate the protected data unit.
As such, these primtives are not oriented to efficient data
protection for stream paradi gmprotocols (e.g., Telnet) if

crypt ography must be applied on an octet-by-octet basis.

1.2.3: Per-Message Replay Detection and Sequenci ng

Certain underlying mech_types offer support for replay detection
and/ or sequenci ng of nessages transferred on the contexts they
support. These optionally-sel ectable protection features are distinct
fromreplay detection and sequencing features applied to the context
establ i shnent operation itself; the presence or absence of context-

| evel replay or sequencing features is wholly a function of the
underlying nmech_type’'s capabilities, and is not selected or onmitted
as a caller option.

The caller initiating a context provides flags (replay_det_req_flag
and sequence_req_flag) to specify whether the use of per-nessage
repl ay detection and sequencing features is desired on the context
bei ng established. The GSS-API inplenentation at the initiator system
can determ ne whether these features are supported (and whet her they
are optionally selectable) as a function of mech_type, w thout need
for bilateral negotiation with the target. Wen enabl ed, these
features provide recipients with indicators as a result of GSS-API
processi ng of incom ng nessages, identifying whether those nmessages
were detected as duplicates or out-of-sequence. Detection of such
events does not prevent a suspect nessage from being provided to a
reci pient; the appropriate course of action on a suspect nessage is a
matter of caller policy.

The semantics of the replay detection and sequenci ng services applied
to received nessages, as visible across the interface which the GSS-
APl provides to its clients, are as foll ows:

When replay_det _state is TRUE, the possible major_status returns for
wel | -fornmed and correctly signed nmessages are as foll ows:

1. GSS S COWPLETE indicates that the message was within the w ndow
(of time or sequence space) allow ng replay events to be detected,
and that the nessage was not a replay of a previously-processed
nmessage within that w ndow.

Li nn St andards Track [Page 18]

RFC 2078 GSS- API January 1997

2. GSS_ S DUPLI CATE_TOKEN i ndicates that the cryptographic
checkval ue on the received nmessage was correct, but that the
nessage was recognized as a duplicate of a previously-processed
nmessage.

3. GSS S OLD TCKEN indicates that the cryptographic checkval ue on
the received nessage was correct, but that the nessage is too old
to be checked for duplication

When sequence_state is TRUE, the possible najor_status returns for
wel | -fornmed and correctly signed nmessages are as foll ows:

Li nn

1. GSS_S COWPLETE indicates that the message was within the w ndow
(of time or sequence space) allow ng replay events to be detected,
that the nmessage was not a replay of a previously-processed
nmessage within that wi ndow, and that no predecessor sequenced
nmessages are nmissing relative to the | ast received nessage (if

any) processed on the context with a correct cryptographic
checkval ue.

2. GSS_S DUPLI CATE_TOKEN indicates that the integrity check val ue
on the received nmessage was correct, but that the nessage was
recogni zed as a duplicate of a previously-processed nessage.

3. GSS S OLD TCKEN indicates that the integrity check value on the
recei ved nmessage was correct, but that the token is too old to be
checked for duplication.

4. GSS_S UNSEQ TOKEN i ndi cates that the cryptographic checkval ue
on the received nessage was correct, but that it is earlier in a
sequenced streamthan a nessage al ready processed on the context.
[Not e: Mechanisns can be architected to provide a stricter form of
sequenci ng service, delivering particular nmessages to recipients
only after all predecessor nessages in an ordered stream have been
delivered. This type of support is inconpatible with the GSS-API
paradi gmin which recipients receive all nessages, whether in
order or not, and provide them (one at a tinme, wthout intra-GSS
APl nmessage buffering) to GSS-API routines for validation. GSS-
APl facilities provide supportive functions, aiding clients to
achi eve strict nessage streamintegrity in an efficient manner in
conjunction wi th sequencing provisions in conmunications
protocols, but the GSS-API does not offer this |evel of nessage
streamintegrity service by itself.]

St andards Track [Page 19]

RFC 2078 GSS- API January 1997

5. GSS_ S GAP_TCKEN indi cates that the cryptographic checkval ue on
the received nessage was correct, but that one or nore predecessor
sequenced nmessages have not been successfully processed rel ative
to the last received nessage (if any) processed on the context
with a correct cryptographic checkval ue.

As the nessage streamintegrity features (especially sequencing) may
interfere with certain applications’ intended comunications

par adi gns, and since support for such features is likely to be
resource intensive, it is highly recomrended that nech_types
supporting these features allow themto be activated sel ectively on
initiator request when a context is established. A context initiator
and target are provided with correspondi ng indicators

(replay_det state and sequence_state), signifying whether these
features are active on a given context.

An exanpl e nech_type supporting per-nmessage replay detection could
(when replay_det state is TRUE) inplenent the feature as follows: The
under | yi ng mechani smwoul d insert tinestanps in data el enents out put
by GSS GetM C() and GSS Wap(), and would rmaintain (within a time-
limted window) a cache (qualified by originator-recipient pair)
identifying received data el enents processed by GSS VerifyM C() and
GSS Unwap(). When this feature is active, exception status returns
(GSS_S DUPLI CATE_TOKEN, GSS_S OLD TOKEN) wi || be provi ded when

GSS VerifyMC() or GSS Unwap() is presented with a message which is
either a detected duplicate of a prior nmessage or which is too old to
val i dat e agai nst a cache of recently received nmessages.

1.2.4: Quality of Protection

Sone mech_types provide their users with fine granularity contro

over the neans used to provide per-nessage protection, allow ng
callers to trade off security processing overhead dynam cal |l y agai nst
the protection requirements of particular nessages. A per-nessage
qual ity-of -protecti on parameter (anal ogous to quality-of-service, or
Q0S) selects anpbng different QOP options supported by that nechani sm
On context establishnent for a multi-QOP nech_type, context-I|eve
data provides the prerequisite data for a range of protection
qualities.

It is expected that the majority of callers will not wish to exert
explicit nmechani smspecific QOP control and will therefore request
sel ection of a default QOP. Definitions of, and choices anpbng, non-
default QOP val ues are nechani smspecific, and no ordered sequences
of QOP val ues can be assuned equival ent across di fferent mechani smns.
Meani ngf ul use of non-default QOP val ues demands that callers be
famliar with the QOP definitions of an underlying mechani sm or
nmechani sns, and is therefore a non-portable construct. The

Li nn St andards Track [Page 20]

RFC 2078 GSS- API January 1997

GSS S BAD QOP mmj or_status value is defined in order to indicate that
a provided QOP value is unsupported for a security context, nopst

i kely because that value is unrecogni zed by the underlying
nmechani sm

1.2.5: Anonymity Support

In certain situations or environnents, an application my wish to
aut henticate a peer and/or protect comunications using GSS-API per-
nmessage services without revealing its ow identity. For exanple,
consi der an application which provides read access to a research

dat abase, and which permts queries by arbitrary requestors. A
client of such a service mght wish to authenticate the service, to
establish trust in the information received fromit, but m ght not
wish to disclose its identity to the service for privacy reasons.

In ordinary GSS-APlI usage, a context initiator’s identity is made
avai l abl e to the context acceptor as part of the context
establ i shnent process. To provide for anonymty support, a facility
(input anon_req flag to GSS Init_sec_context()) is provided through
whi ch context initiators may request that their identity not be
provided to the context acceptor. Mechanisns are not required to
honor this request, but a caller will be informed (via returned
anon_state indicator fromGSS Init_sec_context()) whether or not the
request is honored. Note that authentication as the anonynous

princi pal does not necessarily inply that credentials are not
required in order to establish a context.

The following Object Identifier value is provided as a neans to

i dentify anonynous nanes, and can be conpared against in order to
determ ne, in a nmechani smindependent fashion, whether a nane refers
to an anonynous princi pal :

{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nanetypes),
3(gss- anonynous- namne) }

The recomended synbolic nane corresponding to this definition is
GSS_C_NT_ANONYMOUS

Four possibl e conbinations of anon_state and mutual _state are
possible, with the follow ng results:

anon_state == FALSE, nutual state == FALSE: initiator
aut henticated to target.

anon_state == FALSE, nmutual state == TRUE: initiator authenticated
to target, target authenticated to initiator.

Li nn St andards Track [Page 21]

RFC 2078 GSS- API January 1997

anon_state == TRUE, nutual state == FALSE: initiator authenticated
as anonynous principal to target.

anon_state == TRUE, nutual state == TRUE: initiator authenticated
as anonynous principal to target, target authenticated to
initiator.

1.2.6: Initialization

No initialization calls (i.e., calls which must be invoked prior to
i nvocation of other facilities in the interface) are defined in GSS-
APl . As an inplication of this fact, GSS-API inplenentations nust
thensel ves be self-initializing.

1.2.7: Per-Message Protection During Context Establishment

A facility is defined in GSS-V2 to enable protection and buffering of
dat a nessages for later transfer while a security context’s
establishnent is in GSS_S CONTI NUE_NEEDED status, to be used in cases
where the caller side already possesses the necessary session key to
enabl e this processing. Specifically, a new state Bool ean, called
prot_ready_state, is added to the set of information returned by

GSS Init_sec_context(), GSS Accept_sec_context(), and

GSS I nquire_context().

For context establishnment calls, this state Boolean is valid and

i nterpretabl e when the associ ated nmajor_status is either

GSS_S CONTI NUE_NEEDED, or GSS S COWPLETE. Callers of GSS-APlI (both
initiators and acceptors) can assune that per-nessage protection (via
GSS Wap(), GSS Unwrap(), GSS GetM C() and GSS VerifyMC()) is
avai l abl e and ready for use if either: prot_ready state == TRUE, or
maj or _status == GSS_S COWPLETE, though nutual authentication (if
request ed) cannot be guaranteed until GSS S COVWPLETE is returned.

This achieves full, transparent backward conpatibility for GSS-API V1
call ers, who need not even know of the existence of prot_ready_state,
and who will get the expected behavior from GSS S COWLETE, but who
will not be able to use per-nessage protection before GSS S COVWLETE
i s returned.

It is not a requirenent that GSS-V2 nmechani snms ever return TRUE

prot _ready state before conpletion of context establishnment (indeed,
sone nmechani sms will not evol ve usabl e message protection keys,
especially at the context acceptor, before context establishment is
conplete). It is expected but not required that GSS-V2 nechani sns
will return TRUE prot_ready_state upon conpl etion of context
establishnent if they support per-nmessage protection at all (however
GSS- V2 applications should not assunme that TRUE prot_ready state will

Li nn St andards Track [Page 22]

RFC 2078 GSS- API January 1997

al ways be returned together with the GSS S COWLETE nmgj or _st at us,
since GSS-V2 inplenentations may continue to support GSS-V1 mechani sm
code, which will never return TRUE prot_ready_state).

VWhen prot_ready_state is returned TRUE, nechani sns shall also set
those context service indicator flags (deleg state, nutual _state,
repl ay_det _state, sequence_state, anon_state, trans_state,

conf _avail, integ_avail) which represent facilities confirned, at
that tinme, to be available on the context being established. In
situations where prot_ready_state is returned before GSS_S COWPLETE,
it is possible that additional facilities may be confirned and
subsequently indicated when GSS S COVWPLETE i s returned.

1.2.8: Inplenentati on Robustness

Thi s section recommends aspects of GSS-API inpl enentati on behavior in
the interests of overall robustness.

If a token is presented for processing on a GSS-APlI security context
and that token is deternmned to be invalid for that context, the
context’s state should not be disrupted for purposes of processing
subsequent valid tokens.

Certain local conditions at a GSS-API inplenentation (e.g.

unavail ability of nenory) nay preclude, tenporarily or pernmanently,
the successful processing of tokens on a GSS-API security context,
typically generating GSS_ S FAI LURE maj or_status returns along with
| ocal ly-significant mnor_status. For robust operation under such
conditions, the follow ng recomendati ons are nade:

Failing calls should free any nmenory they allocate, so that
callers may retry w thout causing further |oss of resources.

Failure of an individual call on an established context should not
precl ude subsequent calls from succeedi ng on the sanme context.

Whenever possible, it should be possible for

GSS Del ete _sec_context() calls to be successfully processed even
if other calls cannot succeed, thereby enabling context-rel ated
resources to be rel eased.

2: Interface Descriptions

This section describes the GSS-API’'s service interface, dividing the
set of calls offered into four groups. Credential nanagenent calls
are related to the acquisition and rel ease of credentials by
principals. Context-level calls are related to the managenent of
security contexts between principals. Per-nessage calls are related

Li nn St andards Track [Page 23]

RFC 2078 GSS- API January 1997

to the protection of individual nessages on established security

contexts. Support calls provide ancillary functions useful to GSS-API

callers. Table 2 groups and summari zes the calls in tabular fashion
Table 2: GSS-API Calls

CREDENTI AL MANAGEMENT

GSS_Acquire_cred acquire credentials for use

GSS_Rel ease_cred rel ease credentials after use

GSS Inquire_cred di splay i nformation about
credential s

GSS_Add_cred construct credentials increnentally

GSS Inquire_cred by nech di spl ay per-nechani smcredentia

i nf ormati on

CONTEXT- LEVEL CALLS

GSS Init_sec_context initiate outbound security context

GSS Accept _sec_cont ext accept inbound security context

GSS Del et e_sec_cont ext flush context when no | onger needed

GSS _Process_cont ext _token process received control token on
cont ext

GSS Context _tine indicate validity tinme remaining on

cont ext

GSS I nqui re_cont ext di splay i nformati on about context

GSS Wap_size limt determ ne GSS Wap token size limt

GSS_Export_sec_cont ext transfer context to other process

GSS | mport _sec_cont ext i mport transferred context

PER- MESSAGE CALLS

GSS GetM C apply integrity check, receive as
t oken separate from nessage

GSS VerifyMC validate integrity check token
al ong with nessage

GSS Wap sign, optionally encrypt,
encapsul ate

GSS_Unwr ap decapsul ate, decrypt if needed,

validate integrity check

Li nn St andards Track [Page 24]

RFC 2078

SUPPORT CALLS
GSS _Di spl ay_status
GSS_| ndi cate_nechs

GSS_Conpar e_nane
GSS _Di spl ay_nane
GSS_| nport _name

GSS_Rel ease_nane

GSS_Rel ease_buffer

GSS Rel ease_ O D

GSS_Rel ease_O D _set

GSS Create_enpty_O D _set
GSS_Add_A D _set _nenber

GSS Test O D set _nenber
GSS O D to_str

GSS Str_to_AD

GSS_I nqui re_nanes_f or _mech

GSS I nqui re_nechs_for_name
GSS_Canoni cal i ze_nane

GSS_Export _name
GSS Dupl i cat e_name

GSS- API

transl ate status codes to printable
form

i ndi cate mech_types supported on

| ocal system

conpare two nanmes for equality
translate nanme to printable form
convert printable name to

normal i zed form

free storage of normalized-form
name

free storage of printable nane
free storage of O D object

free storage of O D set object
create enpty O D set

add nenmber to A D set

test if ODis nmenber of AOD set
display O D as string

construct O D fromstring

i ndi cate name types supported by
mechani sm

i ndi cat es nechani sns supporting nane
type

transl ate nane to per-nmechani smform
external i ze per-mechani sm name

dupl i cat e nane obj ect

January 1997

2.1: Credential nanagenent calls

These GSS-API calls provide functions related to the nanagenent of
credentials. Their characterization with regard to whether or not
they may bl ock pendi ng exchanges with other network entities (e.qg.,
directories or authentication servers) depends in part on OS-specific
(extra-GSS-APl) issues, so is not specified in this docunent.

The GSS Acquire _cred() call is defined within the GSS-API in support
of application portability, with a particular orientation towards
support of portable server applications. It is recognized that (for
certain systems and nechani sns) credentials for interactive users may
be managed differently fromcredentials for server processes; in such
environnents, it is the GSS-APlI inplenentation’s responsibility to

di stingui sh these cases and the procedures for nmaking this
distinction are a local matter. The GSS_Rel ease_cred() cal
a nmeans for callers to indicate to the GSS-APlI that use of a
credentials structure is no longer required. The GSS | nquire_cred()

provi des

call allows callers to deternmi ne information about a credentials
structure. The GSS _Add cred() call enables callers to append
Li nn St andards Track [Page 25]

RFC 2078 GSS- API January 1997

el ements to an existing credential structure, allowing iterative
construction of a multi-mechanismcredential. The
GSS_I nquire_cred_by_mech() call enables callers to extract per-
mechani sm i nformati on describing a credentials structure.

2.1.1: GSS Acquire_cred cal
| nput s:

o desired_name | NTERNAL NAME, -NULL requests |ocally-determ ned
def aul t

o lifetine_req |NTEGER, -in seconds; 0 requests default

o desired_mechs SET OF OBJECT | DENTI FI ER, -enpty set requests
system sel ected default

0 cred_usage | NTEGER -0=I NI TI ATE- AND- ACCEPT, 1=I N TI ATE- O\LY,
2=ACCEPT- ONLY

CQut put s:

0o major_status | NTEGER,

o mnor_status | NTEGER

o0 output_cred_handl e CREDENTI AL HANDLE
o actual _nmechs SET OF OBJECT | DENTI FI ER

o lifetinme_rec INTEGER -in seconds, or reserved val ue for
| NDEFI NI TE

Return maj or _status codes:

0o GSS S COWLETE indicates that requested credentials were
successfully established, for the duration indicated in
lifetime_rec, suitable for the usage requested in cred_usage,
for the set of mech_types indicated in actual _mechs, and that
those credentials can be referenced for subsequent use with
the handl e returned in output_cred_handl e.

o GSS S BAD MECH indicates that a nech_type unsupported by the

GSS- APl i npl enmentation type was requested, causing the
credential establishment operation to fail

Li nn St andards Track [Page 26]

RFC 2078 GSS- API January 1997

0 GSS S BAD NAMETYPE indicates that the provided desired nane is
uninterpretable or of a type unsupported by the applicable
underlyi ng GSS- APl nmechani snm(s), so no credentials could be
establ i shed for the acconpanyi ng desired_narne.

0 GSS S BAD NAME indicates that the provided desired nane is
i nconsistent in terns of internally-incorporated type specifier
i nformati on, so no credentials could be established for the
acconpanyi ng desired_nane.

0 GSS S FAILURE indicates that credential establishment failed
for reasons unspecified at the GSS-API |evel, including |ack
of authorization to establish and use credentials associated
with the identity named in the input desired_nane argunent.

GSS Acquire_cred() is used to acquire credentials so that a
principal can (as a function of the input cred_usage paraneter)
initiate and/or accept security contexts under the identity
represented by the desired_name i nput argunment. On successfu

conpl etion, the returned output cred handle result provides a handle
for subsequent references to the acquired credentials. Typically,
singl e-user client processes requesting that default credentia
behavi or be applied for context establishnent purposes will have no
need to invoke this call

A caller may provide the value NULL for desired_nane, signifying a
request for credentials corresponding to a principal identity

sel ected by default for the caller. The procedures used by GSS-API
i mpl enentations to select the appropriate principal identity in
response to such a request are local matters. It is possible that
nmul tiple pre-established credentials may exist for the sane principa
identity (for example, as a result of rmultiple user |ogin sessions)
when GSS_Acquire_cred() is called; the means used in such cases to
sel ect a specific credential are local matters. The input
lifetime_req argunment to GSS Acquire_cred() may provide usefu
information for | ocal GSS-API inplenmentations to enploy in nmaking
this disanbiguation in a manner which will best satisfy a caller’s
i ntent.

The lifetime_rec result indicates the length of time for which the

acquired credentials will be valid, as an offset fromthe present. A
mechani smmay return a reserved value indicating INDEFINITE i f no
constraints on credential lifetinme are inposed. A caller of

GSS Acquire_cred() can request a length of tine for which acquired
credentials are to be valid (lifetine_req argument), beginning at the
present, or can request credentials with a default validity interval.
(Requests for postdated credentials are not supported within the

GSS- APl .) Certain mechanisns and i npl enentations may bind in

Li nn St andards Track [Page 27]

RFC 2078 GSS- API January 1997

credential validity period specifiers at a point prelinnary to

i nvocation of the GSS Acquire cred() call (e.g., in conjunction with
user login procedures). As a result, callers requesting non-default
values for lifetime_req nust recogni ze that such requests cannot

al ways be honored and nust be prepared to acconmpdate the use of
returned credentials with different Iifetimes as indicated in
lifetime_rec.

The caller of GSS Acquire_cred() can explicitly specify a set of
mech_types which are to be acconmpdated in the returned credentials
(desired_nechs argunent), or can request credentials for a system
defined default set of mech _types. Selection of the systemspecified
default set is recommended in the interests of application
portability. The actual mechs return value may be interrogated by the
caller to determine the set of nechanisns with which the returned
credential s may be used.

2.1.2: GSS Rel ease cred cal

I nput :

o cred_handl e CREDENTI AL HANDLE - NULL specifies that
the credential elenents used when default credential behavior
is requested be rel eased.

Qut put s:

0 major_status | NTEGER

0 mnor_status | NTEGER

Return maj or _status codes:

0 GSS S COWLETE indicates that the credentials referenced by the
i nput cred_handl e were rel eased for purposes of subsequent
access by the caller. The effect on other processes which may
be aut hori zed shared access to such credentials is a |oca
matter.

0 GSS S NO CRED indicates that no rel ease operation was
performed, either because the input cred_handl e was invalid or

because the caller | acks authorization to access the
referenced credential s.

0 GSS S FAILURE indicates that the rel ease operation failed for
reasons unspecified at the GSS-API |evel.

Li nn St andards Track [Page 28]

RFC 2078 GSS- API January 1997

Provides a neans for a caller to explicitly request that credentials
be rel eased when their use is no longer required. Note that system
specific credential managenment functions are also likely to exist,
for exanple to assure that credentials shared anbng processes are
properly del eted when all affected processes termnate, even if no
explicit release requests are issued by those processes. Gven the
fact that multiple callers are not precluded from gai ni ng authori zed
access to the sanme credentials, invocation of GSS Rel ease _cred()
cannot be assuned to delete a particular set of credentials on a
system w de basis.

2.1.3: GSS Inquire _cred cal

I nput :

o cred_handl e CREDENTI AL HANDLE - NULL specifies that the
credential elenments used when default credential behavior is
requested are to be queried

Qut put s:

0 major_status | NTEGER

0 mnor_status | NTEGER

0 cred_nane | NTERNAL NAME

o lifetine_rec INTEGER -in seconds, or reserved value for
| NDEFI NI TE

0 cred_usage | NTEGER, -0=I N TI ATE- AND- ACCEPT, 1=I N TI ATE- O\LY,
2=ACCEPT- ONLY

o nech_set SET OF OBJECT | DENTI FI ER
Return maj or _status codes:

0 GSS S COWLETE indicates that the credentials referenced by the
i nput cred_handl e argument were valid, and that the output
cred_nane, lifetine_rec, and cred_usage val ues represent,
respectively, the credentials’ associated principal nane,
remaining lifetime, suitable usage nodes, and supported
nmechani sm t ypes.

0 GSS S NO CRED indicates that no information could be returned
about the referenced credentials, either because the input
cred_handl e was invalid or because the caller |acks
aut horization to access the referenced credential s.

Li nn St andards Track [Page 29]

RFC 2078 GSS- API January 1997

o GSS S DEFECTI VE_CREDENTI AL indicates that the referenced
credentials are invalid.

0 GSS S CREDENTI ALS EXPI RED i ndi cates that the referenced
credenti al s have expired.

0 GSS S FAILURE indicates that the operation failed for
reasons unspecified at the GSS-API |evel.

The GSS Inquire_cred() call is defined primarily for the use of those
cal l ers which request use of default credential behavior rather than
acquiring credentials explicitly with GSS Acquire cred(). It enables

callers to determne a credential structure’'s associated principa
name, remaining validity period, usability for security context
initiation and/ or acceptance, and supported nechani sns.

For a multi-mechanismcredential, the returned "lifetine" specifier

i ndicates the shortest lifetinme of any of the mechanisns’ elenents in
the credential (for either context initiation or acceptance

pur poses) .

GSS Inquire_cred() should indicate I N TlI ATE- AND- ACCEPT f or
"cred_usage" if both of the foll owi ng conditions hold:

(1) there exists in the credential an el enent which all ows context
initiation using some mechani sm

(2) there exists in the credential an el enent which all ows context
accept ance usi ng sonme nechanism (all owably, but not necessarily,
one of the sanme nechani sm(s) qualifying for (1)).

If condition (1) holds but not condition (2), GSS Inquire cred()
shoul d indicate I NI TI ATE-ONLY for "cred_usage". |If condition (2)
hol ds but not condition (1), GSS Inquire_cred() should indicate
ACCEPT- ONLY for "cred_usage".

Callers requiring finer disanbiguation anmong avail abl e conbi nati ons
of lifetimes, usage nodes, and nechani sns should call the

GSS Inquire_cred_by nech() routine, passing that routine one of the
mech O Ds returned by GSS Inquire_cred().

Li nn St andards Track [Page 30]

RFC 2078 GSS- API January 1997

2.1.4: GSS _Add _cred cal
[nputs:

o input_cred_handl e CREDENTI AL HANDLE - handl e to credentia
structure created with prior GSS Acquire_cred() or
GSS Add_cred() call, or NULL to append el enments to the set
whi ch are applied for the caller when default credentia
behavi or is specified.

o desired_name | NTERNAL NAME - NULL requests |ocally-determ ned

def aul t
o initiator_tine_req INTEGER - in seconds; O requests default
o acceptor_time_req | NTEGER - in seconds; O requests default

o desired _mech OBJECT | DENTI FI ER

0 cred_usage | NTEGER - O=I NI TI ATE- AND- ACCEPT, 1=I NI Tl ATE- O\LY,
2=ACCEPT- ONLY

Cut put s:

o nmmjor_status | NTEGER,

o mnor_status | NTEGER

o output_cred_handl e CREDENTI AL HANDLE, - NULL to request that
credential elenments be added "in place" to the credentia
structure identified by input_cred _handl e, non-NULL pointer

to request that a new credential structure and handl e be created.

o actual _mechs SET OF OBJECT | DENTI FI ER

o initiator_tine_ rec INTEGER - in seconds, or reserved val ue for
| NDEFI NI TE

o0 acceptor_tinme_rec |INTEGER - in seconds, or reserved val ue for
| NDEFI NI TE

0 cred_usage | NTEGER, -0=I N TI ATE- AND- ACCEPT, 1=I N TI ATE- O\LY,
2=ACCEPT- ONLY

o mech_set SET OF OBJECT IDENTIFIER -- full set of nechanisns
supported by resulting credenti al

Li nn St andards Track [Page 31]

RFC 2078 GSS- API January 1997

Return maj or _status codes:

o0 GSS S COWLETE indicates that the credentials referenced by
the i nput_cred_handl e argunent were valid, and that the
resulting credential from GSS_Add_cred() is valid for the
durations indicated in initiator_tinme_rec and acceptor_tine_rec,
suitable for the usage requested in cred_usage, and for the
mechani sns i ndi cated i n actual _nechs.

0 GSS S DUPLI CATE_ELEMENT indicates that the input desired_mnech
speci fied a nmechani smfor which the referenced credentia
al ready contained a credential elenment with overl appi ng
cred_usage and validity tinme specifiers.

0 GSS S BAD MECH indicates that the input desired_nech specified
a nmechani sm unsupported by the GSS-API inplenentation, causing
the GSS _Add_cred() operation to fail

o0 GSS S BAD NAMETYPE indicates that the provided desired _nane
is uninterpretable or of a type unsupported by the applicable
under | yi ng GSS- APl mechani sm(s), so the GSS_Add_cred() operation
could not be performed for that name.

0 GSS S BAD NAME indicates that the provided desired nane is
i nconsistent in terns of internally-incorporated type specifier
i nformati on, so the GSS Add cred() operation could not be
performed for that nane.

0 GSS S NO CRED indicates that the input_cred_handl e referenced
invalid or inaccessible credentials.

0 GSS S FAILURE indicates that the operation failed for
reasons unspecified at the GSS-API |evel, including | ack of
aut horization to establish or use credentials representing
the requested identity.

GSS Add_cred() enables callers to construct credentials iteratively
by addi ng credential elements in successive operations, correspondi ng
to different nechanisns. This offers particular value in nmulti-
mechani sm envi ronments, as the nmjor_status and m nor_status val ues
returned on each iteration are individually visible and can therefore
be interpreted unanbi guously on a per-nmechani sm basi s.

The sane input desired_nane, or default reference, should be used on

all GSS_Acquire_cred() and GSS_Add_cred() calls corresponding to a
particul ar credenti al

Li nn St andards Track [Page 32]

RFC 2078 GSS- API January 1997

2. 1. GSS Inquire_cred by nech cal

[nputs:

o cred_handl e CREDENTI AL HANDLE -- NULL specifies that the
credential elenments used when default credential behavior is
requested are to be queried

o mech_type OBJECT I DENTIFIER -- specific mechanism for
whi ch credentials are being queried

Qut put s:

o nmmjor_status | NTEGER,

0o mnor_status | NTEGER

o cred_name | NTERNAL NAME, -- guaranteed to be MN

o lifetime_rec_initiate INTEGER -- in seconds, or reserved val ue for
| NDEFI NI TE

o lifetinme_rec_accept INTEGER -- in seconds, or reserved val ue for
| NDEFI NI TE

0 cred _usage | NTEGER, -0=IN TI ATE- AND- ACCEPT, 1=I NI TI ATE- O\LY,

2=ACCEPT- ONLY

Return maj or _status codes:

o

Li nn

GSS S COWPLETE indicates that the credentials referenced by the

i nput cred_handl e argunent were valid, that the nmechani sm

i ndi cated by the input nech_type was represented with el enents
within those credentials, and that the output cred_nane,
lifetime_rec_initiate, lifetime_rec_accept, and cred_usage val ues
represent, respectively, the credentials’ associated principa
nane, remaining lifetinmes, and suitabl e usage nodes.

GSS_S NO CRED indicates that no information could be returned
about the referenced credentials, either because the input
cred_handl e was invalid or because the caller |acks

aut hori zation to access the referenced credential s.

GSS_S DEFECTI VE_CREDENTI AL indicates that the referenced
credentials are invalid.

GSS_S CREDENTI ALS EXPI RED i ndicates that the referenced
credenti al s have expired.

St andards Track [Page 33]

RFC 2078 GSS- API January 1997

0o GSS S BAD MECH indicates that the referenced credentials do not
contain elements for the requested nechani sm

0 GSS S FAILURE indicates that the operation failed for reasons
unspecified at the GSS-API |evel.

The GSS Inquire_cred by nmech() call enables callers in multi-
nmechani sm environments to acquire specific data about avail abl e

conbi nati ons of lifetinmes, usage nodes, and nechanisns within a
credential structure. The lifetinme rec_initiate result indicates the
available lifetime for context initiation purposes; the
lifetinme_rec_accept result indicates the available lifetine for

cont ext acceptance purposes.

2.2: Context-level calls

This group of calls is devoted to the establishment and management of
security contexts between peers. A context’s initiator calls

GSS Init_sec_context(), resulting in generation of a token which the
caller passes to the target. At the target, that token is passed to
GSS _Accept _sec_context(). Depending on the underlying mech_type and
speci fied options, additional token exchanges may be performed in the
course of context establishment; such exchanges are acconmpdat ed by
GSS_ S CONTI NUE_NEEDED status returns fromGSS Init_sec_context() and
GSS Accept _sec_context ().

Ei ther party to an established context nmay invoke

GSS Del ete_sec_context() to flush context information when a context
is no |longer required. GSS Process_context_token() is used to
process received tokens carrying context-level control information.
GSS Context tinme() allows a caller to determine the length of tine
for which an established context will remain valid.

GSS Inquire_context() returns status information describing context
characteristics. GSS Wap_size |limt() allows a caller to determne
the size of a token which will be generated by a GSS W ap()
operation. GSS Export_sec_context() and GSS |Inport_sec_context()
enabl e transfer of active contexts between processes on an end
system

2.2.1: GSS Init_sec_context cal
| nput s:

o claimant_cred_handl e CREDENTI AL HANDLE, -NULL specifies "use
defaul t"

0 input_context_handl e CONTEXT HANDLE, -0 specifies "none assigned
yet"

Li nn St andards Track [Page 34]

RFC 2078 GSS- API January 1997

o targ_name | NTERNAL NAME,

o mech_type OBJECT | DENTI FI ER, -NULL paraneter specifies "use
defaul t"

o deleg req_flag BOOLEAN,

o mutual _req flag BOOLEAN,

o replay_det_req_flag BOOLEAN,

o sequence_req_flag BOOLEAN,

o anon_req_flag BOOLEAN,

o lifetime_req |INTEGER -0 specifies default lifetine
o chan_bi ndi ngs OCTET STRI NG,

0 input_token OCTET STRI NG NULL or token received fromtarget
CQut put s:

o nmmjor_status | NTEGER,

o mnor_status | NTEGER,

0 output_context_handl e CONTEXT HANDLE,

o nech_type OBJECT | DENTI FI ER, -actual mechani sm al ways
i ndi cated, never NULL

0 output_token OCTET STRING -NULL or token to pass to context
t ar get

o del eg _state BOOLEAN,

o rmutual state BOOLEAN,

o replay_det_state BOOLEAN,
0 sequence_state BOOLEAN,

0 anon_state BOOLEAN,

o trans_state BOOLEAN,

o prot_ready state BOOLEAN, -- see Section 1.2.7

Li nn St andards Track [Page 35]

RFC 2078 GSS- API January 1997

o conf_avail BOOLEAN
o integ _avail BOOLEAN,

o lifetime_rec INTEGER - in seconds, or reserved val ue for
| NDEFI NI TE

This call may bl ock pending network interactions for those nmech_types
i n which an authentication server or other network entity nust be
consul ted on behalf of a context initiator in order to generate an
out put _token suitable for presentation to a specified target.

Return maj or _status codes:

o0 GSS S COWLETE indicates that context-level information was
successfully initialized, and that the returned output_token
will provide sufficient information for the target to perform
per - message processing on the new y-established context.

0 GSS S CONTI NUE _NEEDED indicates that control information in the
returned output_token nmust be sent to the target, and that a
reply must be received and passed as the input_token argunent
to a continuation call to GSS Init_sec_context(), before
per - message processing can be perforned in conjunction wth
this context.

0 GSS_S DEFECTI VE_TOKEN i ndi cates that consistency checks
performed on the input_token failed, preventing further
processi ng from being perforned based on that token

o GSS S DEFECTI VE_CREDENTI AL i ndi cates that consistency checks
performed on the credential structure referenced by
cl ai mant _cred_handl e fail ed, preventing further processing from
bei ng performed using that credential structure.

0 GSS S BAD SIGindicates that the received input _token
contains an incorrect integrity check, so context setup cannot
be acconpli shed.

0 GSS S NO CRED indicates that no context was established,
ei t her because the input cred_handl e was invalid, because the
referenced credentials are valid for context acceptor use
only, or because the caller l|acks authorization to access the
referenced credential s.

0 GSS S CREDENTI ALS EXPI RED i ndi cates that the credentials

provi ded through the input clainmant_cred_handl e argunent are no
| onger valid, so context establishment cannot be conpl et ed.

Li nn St andards Track [Page 36]

RFC 2078 GSS- API January 1997

0 GSS S BAD BINDINGS indicates that a m smatch between the
cal l er-provi ded chan_bi ndings and those extracted fromthe
i nput _t oken was detected, signifying a security-rel evant
event and preventing context establishnent. (This result wll
be returned by GSS I nit_sec_context only for contexts where
nutual state is TRUE.)

0 GSS S OLD TOKEN indicates that the input_token is too old to
be checked for integrity. This is a fatal error during context
establ i shnent .

0 GSS S DUPLI CATE TOKEN indicates that the input token has a
correct integrity check, but is a duplicate of a token already
processed. This is a fatal error during context establishnent.

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided; this major status wll
be returned only for successor calls following GSS S CONTI NUE_
NEEDED st atus returns.

0 GSS_S BAD NAMETYPE indicates that the provided targ_nanme is
of a type uninterpretable or unsupported by the applicable
under | yi ng GSS- APl mechani sn(s), so context establishnent
cannot be conpl et ed.

0 GSS S BAD NAME indicates that the provided targ nane is
inconsistent in ternms of internally-incorporated type specifier
i nformati on, so context establishnment cannot be acconpli shed.

0o GSS S BAD MECH indicates recei pt of a context establishment token
or of a caller request specifying a nmechani sm unsupported by
the local systemor with the caller’s active credentials

0 GSS S FAILURE indicates that context setup could not be
acconpl i shed for reasons unspecified at the GSS-APlI |evel, and
that no interface-defined recovery action is avail able.

This routine is used by a context initiator, and ordinarily enits one
(or, for the case of a multi-step exchange, nore than one)

out put _token suitable for use by the target within the sel ected
mech_type’s protocol. Using information in the credentials structure
referenced by clainmant_cred handle, GSS Init_sec_context()
initializes the data structures required to establish a security
context with target targ nanme. The targ nane may be any valid

| NTERNAL NAME; it need not be an MN. The cl ai nant _cred_handl e rnust
correspond to the sane valid credentials structure on the initia
call to GSS Init_sec_context() and on any successor calls resulting
from GSS_S CONTI NUE_NEEDED status returns; different protocol

Li nn St andards Track [Page 37]

RFC 2078 GSS- API January 1997

sequences nodel ed by the GSS S CONTI NUE NEEDED facility will require
access to credentials at different points in the context
est abl i shnent sequence.

The input _context _handl e argunment is 0, specifying "not yet

assigned", on the first GSS Init_sec _context() <call relating to a
given context. If successful (i.e., if acconpani ed by najor_status
GSS S COWPLETE or GSS S CONTI NUE NEEDED), and only if successful, the
initial GSS Init_sec_context() call returns a non-zero

out put _context _handl e for use in future references to this context.
Once a non-zero output_context_handl e has been returned, GSS-API
callers should call GSS Del ete sec _context() to rel ease context-

rel ated resources if errors occur in |ater phases of context
establishment, or when an established context is no | onger required.

VWhen continuation attenpts to GSS Init_sec_context() are needed to
perform cont ext establishment, the previously-returned non-zero
handl e value is entered into the input_context handl e argunent and
will be echoed in the returned output_context handl e argunment. On
such continuation attenpts (and only on continuation attenpts) the
i nput _token value is used, to provide the token returned fromthe
context’'s target.

The chan_bi ndings argunent is used by the caller to provide

i nformati on binding the security context to security-related
characteristics (e.g., addresses, cryptographic keys) of the
under|yi ng communi cati ons channel. See Section 1.1.6 of this document
for nmore discussion of this argunent’s usage.

The i nput _token argunment contains a nessage received fromthe target,
and is significant only on a call to GSS Init_sec_context() which
follows a previous return indicating GSS_S CONTI NUE_NEEDED

maj or _st at us.

It is the caller’s responsibility to establish a comruni cati ons path
to the target, and to transmt any returned output token (independent
of the acconpanying returned nmajor_status value) to the target over
that path. The output _token can, however, be transmtted along with
the first application-provided i nput nessage to be processed by

GSS GetM C() or GSS Wap() in conjunction with a successfully-

est abl i shed cont ext.

The initiator may request various context-level functions through

i nput flags: the deleg req flag requests del egati on of access rights,
the mutual _req_flag requests nutual authentication, the

replay_det _req_flag requests that replay detection features be
applied to nmessages transferred on the established context, and the
sequence_req_flag requests that sequencing be enforced. (See Section

Li nn St andards Track [Page 38]

RFC 2078 GSS- API January 1997

1.2.3 for nore information on replay detection and sequenci ng
features.) The anon_req flag requests that the initiator’s identity
not be transferred within tokens to be sent to the acceptor.

Not all of the optionally-requestable features will be available in
all underlying nmech _types. The corresponding return state val ues
del eg state, mutual state, replay _det state, and sequence_state

i ndicate, as a function of mech_type processing capabilities and
initiator-provided i nput flags, the set of features which will be
active on the context. The returned trans_state val ue indicates
whet her the context is transferable to other processes through use of
GSS Export _sec_context(). These state indicators’ values are
undefined unless either the routine’s major_status indicates

GSS S COWPLETE, or TRUE prot _ready state is returned along with
GSS_S CONTI NUE_NEEDED maj or _status; for the latter case, it is
possi bl e that additional features, not confirmed or indicated al ong
with TRUE prot_ready _state, will be confirned and indicated when
GSS S COWLETE i s subsequently returned.

The returned anon_state and prot_ready _state val ues are significant
for both GSS S COMPLETE and GSS_S CONTI NUE_NEEDED nwmj or _st at us
returns fromGSS I nit_sec_context(). When anon_state is returned
TRUE, this indicates that neither the current token nor its
predecessors delivers or has delivered the initiator’'s identity.
Callers wishing to performcontext establishnment only if anonymty
support is provided should transfer a returned token from

GSS Init_sec_context() to the peer only if it is acconpanied by a
TRUE anon_state indicator. Wen prot_ready_state is returned TRUE in
conjunction with GSS_S CONTI NUE_NEEDED maj or _status, this indicates
that per-nessage protection operations may be applied on the context:
see Section 1.2.7 for further discussion of this facility.

Failure to provide the precise set of features requested by the
cal l er does not cause context establishment to fail; it is the
caller’s prerogative to delete the context if the feature set
provided is unsuitable for the caller’s use.

The returned mech_type val ue indicates the specific mechani sm
enpl oyed on the context, is valid only along with major_status
GSS S COWLETE, and will never indicate the value for "default".
Note that, for the case of certain mechani sms which thensel ves
perform negotiation, the returned nech_type result may indicate
sel ection of a mechanismidentified by an O D different than that
passed in the input nech_type argument.

The conf_avail return value indicates whether the context supports

per - message confidentiality services, and so infornms the caller
whet her or not a request for encryption through the conf _req_flag

Li nn St andards Track [Page 39]

RFC 2078 GSS- API January 1997

input to GSS Wap() can be honored. In simlar fashion, the
integ_avail return val ue indicates whether per-nessage integrity
services are available (through either GSS GetM C() or GSS Wap()) on
the established context. These state indicators’ values are undefined
unl ess either the routine’s major_status indicates GSS S COWLETE, or
TRUE prot _ready state is returned along with GSS S CONTI NUE_NEEDED
nmaj or _stat us.

The lifetine_req input specifies a desired upper bound for the
lifetime of the context to be established, with a value of 0 used to
request a default lifetime. The lifetime_rec return val ue indicates

the length of tine for which the context will be valid, expressed as
an offset fromthe present; dependi ng on nechani sm capabilities,
credential lifetines, and | ocal policy, it may not correspond to the
val ue requested in lifetime_req. |If no constraints on context

lifetime are inposed, this may be indicated by returning a reserved
val ue representing INDEFINITE lifetime_req. The value of lifetine_rec
i s undefined unless the routine’s major_status indicates
GSS_S_COWPLETE
If the mutual _state is TRUE, this fact will be reflected within the
out put _token. A call to GSS Accept_sec_context() at the target in
conjunction with such a context will return a token, to be processed
by a continuation call to GSS Init_sec_context(), 1in order to
achi eve nutual authentication.

2.2.2: GSS Accept _sec_context cal
| nput s:

o acceptor_cred _handl e CREDENTI AL HANDLE, -- NULL specifies
"use default"

0 input_context_handl e CONTEXT HANDLE, -- O specifies
"not yet assigned”

o chan_bi ndi ngs OCTET STRI NG,
0 input_token OCTET STRI NG
Cut put s:

o nmmjor_status | NTEGER,

o mnor_status | NTEGER

0 src_nane | NTERNAL NAME, -- guaranteed to be MN

Li nn St andards Track [Page 40]

RFC 2078 GSS- API January 1997

o nmech_type OBJECT | DENTI FI ER

0 output_context _handl e CONTEXT HANDLE
0o del eg_state BOOLEAN

o nmutual _state BOOLEAN

o replay_det_state BOOLEAN,

0 sequence_state BOOLEAN

0 anon_state BOOLEAN

0 trans_state BOOLEAN,

o prot_ready_state BOOLEAN, -- see Section 1.2.7 for discussion
o conf_avail BOOLEAN

o integ _avail BOOLEAN,

o lifetinme_rec INTEGER, - in seconds, or reserved value for
| NDEFI NI TE

o del egated _cred_handl e CREDENTI AL HANDLE

0 output_token OCTET STRING -NULL or token to pass to context
initiator

This call may bl ock pending network interactions for those nmech_types
in which a directory service or other network entity nust be

consul ted on behal f of a context acceptor in order to validate a
recei ved i nput _token.

Return maj or _status codes:

o0 GSS S COWLETE indicates that context-level data structures
were successfully initialized, and that per-nessage processing
can now be perforned in conjunction with this context.

0 GSS S CONTI NUE _NEEDED indicates that control information in the
returned output_token nust be sent to the initiator, and that
a response nmust be received and passed as the input_token
argunent to a continuation call to GSS_Accept_sec_context (),
bef ore per-message processing can be performed in conjunction
with this context.

Li nn St andards Track [Page 41]

RFC 2078 GSS- API January 1997

Li nn

GSS_S DEFECTI VE_TOKEN i ndi cates that consistency checks perforned
on the input_token failed, preventing further processing from
bei ng performed based on that token

GSS_S DEFECTI VE_CREDENTI AL i ndi cates that consistency checks
perfornmed on the credential structure referenced by
acceptor_cred handle failed, preventing further processing from
bei ng perfornmed using that credential structure.

GSS S BAD SI G indicates that the received i nput_token contains
an incorrect integrity check, so context setup cannot be
acconpl i shed.

GSS S DUPLI CATE_TOKEN i ndicates that the integrity check on the
recei ved i nput_token was correct, but that the input_token

was recogni zed as a duplicate of an input_token already
processed. No new context is established.

GSS S OLD TOKEN indicates that the integrity check on the received
i nput _t oken was correct, but that the input_token is too old

to be checked for duplication against previously-processed

i nput _t okens. No new context is established.

GSS S NO CRED i ndicates that no context was established, either
because the input cred _handl e was invalid, because the
referenced credentials are valid for context initiator use
only, or because the caller |acks authorization to access the
referenced credential s.

GSS S CREDENTI ALS EXPI RED i ndi cates that the credentials provided
through the input acceptor_cred _handl e argunent are no
| onger valid, so context establishment cannot be conpl et ed.

GSS_S BAD BINDINGS i ndicates that a m smatch between the
cal |l er-provi ded chan_bi ndi ngs and those extracted fromthe
i nput _token was detected, signifying a security-rel evant
event and preventing context establishnent.

GSS_S NO CONTEXT indicates that no valid context was recognized
for the input context_handl e provided; this major status will
be returned only for successor calls following GSS_ S CONTI NUE_
NEEDED st atus returns.

GSS S BAD MECH indicates recei pt of a context establishnment token

speci fying a mechani sm unsupported by the local systemor with
the caller’s active credential s.

St andards Track [Page 42]

RFC 2078 GSS- API January 1997

0 GSS S FAILURE indicates that context setup could not be
acconpl i shed for reasons unspecified at the GSS-API |evel, and
that no interface-defined recovery action is avail able.

The GSS_Accept_sec_context() routine is used by a context target.
Using information in the credentials structure referenced by the

i nput acceptor _cred _handle, it verifies the incoming input_token and
(followi ng the successful conmpletion of a context establishnent
sequence) returns the authenticated src_name and the nech_type used.
The returned src_nane is guaranteed to be an M\, processed by the
mechani sm under which the context was established. The
acceptor_cred handl e nust correspond to the sane valid credentials
structure on the initial call to GSS Accept_sec_context() and on any
successor calls resulting from GSS S CONTI NUE NEEDED st atus returns;
di fferent protocol sequences nodel ed by the GSS_S CONTI NUE_NEEDED
mechanismw || require access to credentials at different points in
the context establishnent sequence.

The i nput _context _handl e argurment is 0, specifying "not yet

assigned", on the first GSS Accept _sec_context() call relating to a
gi ven context. |If successful (i.e., if acconpani ed by major_status
GSS_S COWPLETE or GSS_S CONTI NUE_NEEDED), and only if successful, the
initial GSS Accept_sec_context() call returns a non-zero

out put_context _handle for use in future references to this context.
Once a non-zero output_context _handl e has been returned, GSS-API
callers should call GSS Del ete sec _context() to rel ease context-

rel ated resources if errors occur in |ater phases of context
establ i shnent, or when an established context is no |onger required.

The chan_bi ndings argunent is used by the caller to provide

i nformati on binding the security context to security-related
characteristics (e.g., addresses, cryptographic keys) of the
under|yi ng communi cati ons channel. See Section 1.1.6 of this document
for nmore discussion of this argunent’s usage.

The returned state results (deleg state, mutual state,

repl ay_det state, sequence_state, anon_state, trans_state, and
prot _ready state) reflect the same information as described for
GSS Init_sec_context(), and their values are significant under the
sane return state conditions.

Li nn St andards Track [Page 43]

RFC 2078 GSS- API January 1997

The conf_avail return value indicates whether the context supports
per - message confidentiality services, and so infornms the caller
whet her or not a request for encryption through the conf_req_flag
input to GSS Wap() can be honored. In simlar fashion, the
integ_avail return val ue indicates whether per-nmessage integrity
services are available (through either GSS GetM C() or GSS Wap())
on the established context. These values are significant under the
sane return state conditions as described under

GSS Init_sec_context().

The lifetime_rec return value is significant only in conjunction with
GSS S COWPLETE nmj or _status, and indicates the length of tine for
which the context will be valid, expressed as an offset fromthe
present.

The nech_type return val ue indicates the specific nechani smenpl oyed
on the context, is valid only along with major_status GSS_S COVPLETE
and will never indicate the value for "default".

The del egated cred handle result is significant only when del eg_state
is TRUE, and provides a neans for the target to reference the

del egated credentials. The output_token result, when non- NULL

provi des a context-level token to be returned to the context
initiator to continue a nulti-step context establishnment sequence. As
noted with GSS Init_sec_context(), any returned token should be
transferred to the context’s peer (in this case, the context
initiator), independent of the value of the acconpanying returned

maj or _st at us.

Note: A target nust be able to distinguish a context-I|eve
i nput _token, which is passed to GSS Accept _sec_context(), fromthe
per-message data el enents passed to GSS VerifyMC() or GSS Unw ap().
These data elenents nmay arrive in a single application nmessage, and
GSS_Accept _sec_context() must be performed before per-nessage
processi ng can be performed successfully.

2.2.3: GSS Del ete_sec_context cal
I nput :
0 context handl e CONTEXT HANDLE
Qut put s:
0 major_status | NTEGER,

0 mnor_status | NTEGER

Li nn St andards Track [Page 44]

RFC 2078 GSS- API January 1997

0 output_context token OCTET STRI NG
Return maj or _status codes:

o GSS S COWLETE indicates that the context was recogni zed, and that
rel evant context-specific information was flushed. |If the caller
provides a non-null buffer to receive an output_context token, and
the nmechanismreturns a non-NULL token into that buffer, the
returned output_context_token is ready for transfer to the
context’'s peer.

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provi ded, so no del etion was
per f or med.

0 GSS S FAILURE indicates that the context is recognized, but
that the GSS Del ete_sec_context() operation could not be
perfornmed for reasons unspecified at the GSS-API |evel.

This call may bl ock pending network interactions for nech _types in
whi ch active notification nust be nade to a central server when a
security context is to be del eted.

This call can be nade by either peer in a security context, to flush

context-specific information. |If a non-null output_context token
paranmeter is provided by the caller, an output_context token may be
returned to the caller. |[|f an output_context_token is provided to

the caller, it can be passed to the context’s peer to informthe
peer’s GSS-APlI inplenmentation that the peer’s correspondi ng cont ext

i nformati on can al so be flushed. (Once a context is established, the
peers involved are expected to retain cached credential and context-
related information until the information's expiration time is
reached or until a GSS Delete_sec_context() call is nade.)

The facility for context_token usage to signal context deletion is
retained for conpatibility with GSS-API Version 1. For current
usage, it is recomended that both peers to a context invoke

GSS Del ete_sec_context() independently, passing a nul

out put _context _token buffer to indicate that no context_token is
required. Inplementations of GSS Del ete_sec_context() should delete
rel evant |ocally-stored context information

Attenpts to perform per-nessage processing on a deleted context wll
result in error returns.

Li nn St andards Track [Page 45]

RFC 2078 GSS- API January 1997

2.2.4:. GSS Process_context _token cal
[nputs:
0 context handl e CONTEXT HANDLE
0 input_context token OCTET STRI NG
CQut put s:
0 major_status | NTEGER,
o mnor_status | NTEGER
Return maj or _status codes:

0 GSS_ S COVWPLETE indicates that the input_context_token was
successfully processed in conjunction with the context
ref erenced by context handl e.

0 GSS_S DEFECTI VE_TOKEN i ndi cates that consistency checks
performed on the received context_token failed, preventing
further processing frombeing performed with that token

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context handl e provided.

0 GSS S FAILURE indicates that the context is recognized, but
that the GSS Process_context_token() operation could not be
perfornmed for reasons unspecified at the GSS-API |evel.

This call is used to process context tokens received froma peer once
a context has been established, with corresponding inpact on
context-level state information. One use for this facility is
processi ng of the context_tokens generated by

GSS_Del ete_sec_context(); GSS_Process_context_token() will not block
pendi ng network interactions for that purpose. Another use is to
process tokens indicating renote-peer context establishnent failures
after the point where the | ocal GSS-API inplenmentation has already

i ndi cated GSS_S COVWPLETE st at us.

Li nn St andards Track [Page 46]

RFC 2078 GSS- API January 1997

2.2.5: (GSS Context _tinme call
I nput :
0 context _handl e CONTEXT HANDLE,
Qut put s:
0 major_status | NTEGER,
0 mnor_status | NTEGER,

o lifetinme_rec INTEGER - in seconds, or reserved val ue for
| NDEFI NI TE

Return maj or _status codes:

o GSS S COWLETE indicates that the referenced context is valid,
and will remain valid for the anbunt of tine indicated in
lifetime_rec.

0 GSS S CONTEXT EXPI RED i ndicates that data itens related to the
ref erenced context have expired.

0 GSS S CREDENTI ALS EXPI RED i ndicates that the context is
recogni zed, but that its associated credentials have expired.

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided.

0o GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-API |evel.

This call is used to determ ne the anbunt of tinme for which a
currently established context will remain valid.

2.2.6: GSS I nquire_context call
I nput :
0 context _handl e CONTEXT HANDLE,
Qut put s:
0 major_status | NTEGER,

0 mnor_status | NTEGER,

Li nn St andards Track [Page 47]

RFC 2078 GSS- API January 1997
o src_nane | NTERNAL NAME, -- nane of context initiator,
-- guaranteed to be MN

o targ_nanme | NTERNAL NAME, -- name of context target,
-- guaranteed to be M

o lifetime_rec INTEGER -- in seconds, or reserved value for
| NDEFI NI TE,
o mech_type OBJECT | DENTIFIER, -- the mechani sm supporting this

security context
o del eg state BOOLEAN
0 nutual state BOOLEAN,
o replay_det state BOOLEAN,
0 sequence_state BOOLEAN
0 anon_state BOOLEAN,
0 trans_state BOOLEAN,
o prot_ready_state BOOLEAN
o conf_avail BOOLEAN,
o integ avail BOOLEAN,
o locally_initiated BOOLEAN, -- TRUE if initiator, FALSE if acceptor
Return maj or _status codes:

o GSS S COWLETE indicates that the referenced context is valid

and that src_nane, targ _nanme, lifetime_rec, nmech_type, deleg state,
nmutual state, replay _det state, sequence_state, anon_state,
trans_state, prot_ready_state, conf_avail, integ_avail, and

locally initiated return val ues describe the correspondi ng
characteristics of the context.

0 GSS S CONTEXT_EXPI RED i ndi cates that the provided input
context _handl e is recogni zed, but that the referenced context
has expired. Return values other than najor_status and
m nor _status are undefined.

Li nn St andards Track [Page 48]

RFC 2078 GSS- API January 1997

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided. Return val ues other than
maj or _status and minor_status are undefined.

0 GSS S FAILURE indicates that the requested operation failed for

reasons unspecified at the GSS-API |evel. Return val ues other than
nmaj or _status and mnor_status are undefined.

This call is used to extract information describing characteristics

of a security context.

2.2.7: GSS Wap_size limt cal
| nput s:
0 context handl e CONTEXT HANDLE
0 dqop | NTEGER
0 output_size | NTEGER
CQut put s:
o nmmjor_status | NTEGER,
o mnor_status | NTEGER
0 max_input_size | NTEGER

Return maj or _status codes:

o

GSS S COWPLETE i ndi cates a successful token size deternination:

an input nessage with a length in octets equal to the
returned max_i nput _size value will, when passed to GSS W ap()

for

processing on the context identified by the context_handl e

paranmeter and with the quality of protection specifier provided
in the qop paraneter, yield an output token no larger than the
val ue of the provided output_size paraneter.

(0]

GSS_S CONTEXT_EXPI RED i ndi cates that the provided input

context _handl e is recogni zed, but that the referenced context
has expired. Return values other than najor_status and
m nor _status are undefi ned.

o

GSS_S NO CONTEXT indicates that no valid context was recognized

for the input context_handl e provided. Return val ues other than
maj or _status and mnor_status are undefi ned.

Li nn

St andards Track [Page 49]

RFC 2078 GSS- API January 1997

0o GSS S BAD QOP indicates that the provided QOP value is not
recogni zed or supported for the context.

0 GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-API |evel. Return values other than
maj or _status and mnor_status are undefined.
This call is used to determine the |argest input datum which may be
passed to GSS Wap() w thout yielding an output token larger than a
cal l er-specified val ue.

2.2.8: GSS_Export _sec_context cal
| nput s:
0 context handl e CONTEXT HANDLE
Qut put s:
0o nmmjor_status | NTEGER,
0o mnor_status | NTEGER
o interprocess_token OCTET STRI NG
Return maj or _status codes:
o GSS S COVMPLETE indicates that the referenced context has been
successfully exported to a representation in the interprocess_token
and is no | onger available for use by the caller
0 GSS S UNAVAILABLE indicates that the context export facility
is not avail able for use on the referenced context. (This status
shoul d occur only for contexts for which the trans_state value is
FALSE.) Return val ues other than major_status and mnor_status are
undef i ned.
0 GSS S CONTEXT_EXPI RED i ndi cates that the provided input
context _handl e is recognized, but that the referenced context has

expired. Return values other than major_status and mnor_status are
undef i ned.

0 GSS S NO CONTEXT indicates that no valid context was recogni zed

for the input context_handl e provided. Return val ues other than
maj or _status and minor_status are undefined.

Li nn St andards Track [Page 50]

RFC 2078 GSS- API January 1997

0o GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-APlI |evel. Return val ues other than
maj or _status and minor_status are undefined.

This call generates an interprocess token for transfer to another
process within an end system in order to transfer control of a
security context to that process. The recipient of the interprocess
token will call GSS |Inport _sec context() to accept the transfer. The
GSS_Export _sec_context() operation is defined for use only with
security contexts which are fully and successfully established (i.e.
those for which GSS_ I nit_sec_context() and GSS Accept_sec_context ()
have returned GSS S COVWLETE nmmj or _status).

To ensure portability, a caller of GSS Export_sec_context() must not
assune that a context may continue to be used once it has been
exported; follow ng export, the context referenced by the
cont ext _handl e cannot be assunmed to remain valid. Further, portable
callers nmust not assune that a given interprocess token can be

i nported by GSS Inmport _sec_context() nore than once, thereby creating
multiple instantiations of a single context. GSS-API inplenentations
may detect and reject attenpted multiple inports, but are not
required to do so.

The internal representation contained within the interprocess token
is an inplenmentation-defined | ocal matter. Interprocess tokens
cannot be assuned to be transferable across different GSS-API

i mpl ement ati ons.

It is recormended that GSS-API inplenmentations adopt policies suited
to their operational environments in order to define the set of
processes eligible to inport a context, but specific constraints in
this area are local matters. Candi date exanples include transfers
bet ween processes operating on behal f of the sanme user identity, or
processes conprising a comon job. However, it may be inpossible to
enforce such policies in some inplenmentations.

In support of the above goals, inplenmentations may protect the
transferred context data by using cryptography to protect data within
the interprocess token, or by using interprocess tokens as a neans to
reference | ocal interprocess conmunication facilities (protected by
ot her means) rather than storing the context data directly within the
t okens.

Transfer of an open context may, for certain nechanisns and

i mpl ement ati ons, reveal data about the credential which was used to
establish the context. Callers should, therefore, be cautious about
the trustworthiness of processes to which they transfer contexts.

Al t hough the GSS-API inplenentation may provide its own set of

Li nn St andards Track [Page 51]

RFC 2078 GSS- API January 1997

protections over the exported context, the caller is responsible for
protecting the interprocess token from di sclosure, and for taking
care that the context is transferred to an appropriate destination
process.

2.2.9: GSS | nport _sec_context cal
| nput s:
o interprocess_token OCTET STRI NG
Qut put s:
o nmmjor_status | NTEGER,
0o mnor_status | NTEGER
o context _handl e CONTEXT HANDLE
Return maj or _status codes:

0 GSS S COWLETE indicates that the context represented by the
i nput interprocess_token has been successfully transferred to
the caller, and is available for future use via the output

cont ext _handl e.

0 GSS S CONTEXT_EXPI RED i ndi cates that the context represented by
the input interprocess_token has expired. Return val ues ot her
than maj or_status and m nor_status are undefi ned.

0 GSS S NO CONTEXT indicates that the context represented by the
i nput interprocess_token was invalid. Return values other than
maj or _status and minor_status are undefined.

0 GSS S DEFECTIVE_TOKEN i ndicates that the input interprocess_token
was defective. Return values other than major_status and
m nor _status are undefi ned.

0 GSS_ S UNAVAI LABLE indicates that the context inport facility
is not available for use on the referenced context. Return val ues
ot her than major_status and mi nor_status are undefi ned.

0 GSS S UNAUTHORI ZED i ndi cates that the context represented by
the input interprocess_token is unauthorized for transfer to the
caller. Return values other than najor_status and minor_status
are undefi ned.

Li nn St andards Track [Page 52]

RFC 2078 GSS- API January 1997

0o GSS S FAILURE indicates that the requested operation failed for
reasons unspecified at the GSS-APlI |evel. Return val ues other than
maj or _status and minor_status are undefined.

This call processes an interprocess token generated by

GSS _Export _sec_context(), making the transferred context avail able
for use by the caller. After a successful GSS |Inport_sec_context()
operation, the inported context is available for use by the inmporting
process.

For further discussion of the security and authorization issues
regarding this call, please see the discussion in Section 2.2.8.

2.3: Per-nessage calls

This group of calls is used to perform per-nessage protection
processi ng on an established security context. None of these calls
bl ock pending network interactions. These calls nmay be invoked by a
context’s initiator or by the context’s target. The four nmenbers of
this group should be considered as two pairs; the output from

GSS GetM C() is properly input to GSS VerifyMC(), and the output
fromGSS Wap() is properly input to GSS_Unw ap().

GSS GetM C() and GSS VerifyM C() support data origin authentication
and data integrity services. Wien GSS GetM C() is invoked on an

i nput nmessage, it yields a per-nessage token containing data itens
whi ch al | ow underlyi ng mechani sms to provide the specified security
services. The original message, along with the generated per-nessage
token, is passed to the renpte peer; these two data el enents are
processed by GSS VerifyMC(), which validates the nmessage in
conjunction with the separate token

GSS Wap() and GSS _Unwap() support caller-requested confidentiality
in addition to the data origin authentication and data integrity
services offered by GSS GetM C() and GSS VerifyMC(). GSS Wap()
outputs a single data el enent, encapsul ating optionally enciphered
user data as well as associated token data itenms. The data el enent
output fromGSS Wap() is passed to the renpte peer and processed by
GSS Unwap() at that system GSS Unwrap() conbi nes deci pherment (as
required) with validation of data itens related to authentication and
integrity.

Li nn St andards Track [Page 53]

RFC 2078 GSS- API January 1997

2.3.1: GSS GetMC cal
Note: This call is functionally equivalent to the GSS_Sign call as
defined in previous versions of this specification. In the interests
of backward conpatibility, it is recommended that inplenentations

support this function under both nanes for the present; future
references to this function as GSS _Sign are deprecated.

[nputs:

0 context handl e CONTEXT HANDLE

0 gqop_req |INTEGER, -0 specifies default QOP

0 nessage OCTET STRI NG

Cut put s:

o nmmjor_status | NTEGER,

o mnor_status | NTEGER

o per_nsg_token OCTET STRI NG

Return maj or _status codes:

o0 GSS S COWLETE indicates that an integrity check, suitable for an
establ i shed security context, was successfully applied and
that the message and correspondi ng per_nsg_t oken are ready
for transm ssion.

0 GSS S CONTEXT _EXPI RED i ndicates that context-related data
items have expired, so that the requested operation cannot be
per f or med.

0 GSS S CREDENTI ALS EXPI RED i ndi cates that the context is recognized,
but that its associated credentials have expired, so

that the requested operati on cannot be perforned.

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided.

0o GSS S BAD QOP indicates that the provided QOP value is not
recogni zed or supported for the context.

0 GSS S FAILURE indicates that the context is recognized, but

that the requested operation could not be performed for
reasons unspecified at the GSS-API |evel.

Li nn St andards Track [Page 54]

RFC 2078 GSS- API January 1997

Using the security context referenced by context handle, apply an
integrity check to the input nessage (along with tinmestanps and/or
ot her data included in support of mech_type-specific mechanisnms) and
return the result in per_nsg_token. The qgop_req paraneter,
interpretation of which is discussed in Section 1.2.4, allows
quality-of -protection control. The caller passes the nessage and the
per _nmsg token to the target.

The GSS _GetM C() function conpletes before the nessage and
per_msg_token is sent to the peer; successful application of

GSS GetM C() does not guarantee that a corresponding GSS VerifyM C()
has been (or can necessarily be) perforned successfully when the
nessage arrives at the destination.

Mechani sns whi ch do not support per-nessage protection services
should return GSS S FAILURE if this routine is called.

2.3.2: GSS VerifyMC call
Note: This call is functionally equivalent to the GSS Verify call as
defined in previous versions of this specification. In the interests
of backward conpatibility, it is recommended that inplenentations
support this function under both nanes for the present; future
references to this function as GSS Verify are deprecat ed.
| nput s:
0 context handl e CONTEXT HANDLE,
0 nmessage OCTET STRI NG
o per_nsg_token OCTET STRI NG
CQut put s:
0 (qop_state | NTEGER,
o nmmjor_status | NTEGER,
0 minor_status | NTEGER,

Return maj or _status codes:

o GSS S COWLETE indicates that the nmessage was successfully
verified.

Li nn St andards Track [Page 55]

RFC 2078 GSS- API January 1997

0 GSS S DEFECTI VE_TOKEN i ndi cates that consistency checks perforned
on the received per_nsg_token failed, preventing
further processing frombeing performed with that token

0 GSS S BAD SIGindicates that the received per_nsg_token contains
an incorrect integrity check for the nessage.

0 GSS_S DUPLI CATE_TOKEN, GSS S OLD TOKEN, GSS_S UNSEQ TOKEN
and GSS_S GAP_TOKEN val ues appear in conjunction with the
optional per-message replay detection features described
in Section 1.2.3; their semantics are described in that section

0 GSS S CONTEXT _EXPI RED i ndicates that context-related data
itenms have expired, so that the requested operation cannot be
per f or med.

0 GSS S CREDENTI ALS EXPI RED indicates that the context is
recogni zed,
but that its associated credentials have expired, so
that the requested operati on cannot be perforned.

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided.

0o GSS S FAILURE indicates that the context is recognized, but
that the GSS VerifyM C() operation could not be perfornmed for
reasons unspecified at the GSS-API |evel.

Using the security context referenced by context_handl e, verify that
the i nput per_nsg token contains an appropriate integrity check for
the i nput nessage, and apply any active replay detection or
sequenci ng features. Return an indication of the quality-of-
protection applied to the processed nessage in the qop_state result.
Since the GSS VerifyM C() routine never provides a confidentiality
service, its inplenmentations should not return non-zero values in the
confidentiality fields of the output qop_state.

Mechani sns whi ch do not support per-nessage protection services
should return GSS S FAILURE if this routine is called.

2.3.3: GSS Wap call

Note: This call is functionally equivalent to the GSS Seal call as
defined in previous versions of this specification. In the interests
of backward conpatibility, it is recommended that inplenentations
support this function under both nanes for the present; future
references to this function as GSS_Seal are deprecated.

Li nn St andards Track [Page 56]

RFC 2078 GSS- API January 1997

| nput s:

o context_handl e CONTEXT HANDLE,

o conf_reqg_flag BOOLEAN,

0 gop_req |INTEGER, -0 specifies default QOP

o0 input_nessage OCTET STRI NG

Cut put s:

o nmmjor_status | NTEGER,

o mnor_status | NTEGER,

o conf_state BOOLEAN,

0 out put_nmessage OCTET STRI NG

Return maj or _status codes:

0 GSS S COWPLETE indicates that the input_nessage was successfully
processed and that the output _nessage is ready for
transm ssion.

0 GSS_ S CONTEXT_EXPI RED i ndicates that context-related data
items have expired, so that the requested operation cannot be
per f or med.

0 GSS S CREDENTI ALS EXPI RED i ndicates that the context is

recogni zed,
but that its associated credentials have expired, so

that the requested operati on cannot be perforned.

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context_handl e provided.

o GSS S BAD QOP indicates that the provided QOP value is not
recogni zed or supported for the context.

0 GSS S FAILURE indicates that the context is recognized, but
that the GSS Wap() operation could not be perforned for
reasons unspecified at the GSS-API |evel.

Performs the data origin authentication and data integrity functions

of GSS GetM C(). If the input conf_req flag is TRUE, requests that
confidentiality be applied to the i nput_nmessage. Confidentiality may

Li nn St andards Track [Page 57]

RFC 2078 GSS- API January 1997

not be supported in all mech_types or by all inplenentations; the
returned conf_state flag indicates whether confidentiality was
provided for the input_nessage. The qop_req paraneter, interpretation
of which is discussed in Section 1.2.4, allows quality-of-protection
control

In all cases, the GSS Wap() call yields a single output_nessage
data el ement containing (optionally enciphered) user data as well as
control information.

Mechani snms whi ch do not support per-nessage protection services
should return GSS S FAILURE if this routine is called.

2.3.4: GSS_Unwap call

Note: This call is functionally equivalent to the GSS Unseal call as

defined in previous versions of this specification. In the interests

of backward conpatibility, it is recommended that inplenentations

support this function under both nanes for the present; future

references to this function as GSS Unseal are deprecated.

I nput s:

o context _handl e CONTEXT HANDLE

0 input_nessage OCTET STRI NG

CQut put s:

o conf_state BOOLEAN,

0 qop_state | NTEGER

0 major_status | NTEGER

0 mnor_status | NTEGER

0 out put_nessage OCTET STRI NG

Return maj or _status codes:

0o GSS S COWLETE indicates that the input_nessage was
successfully processed and that the resulting output nessage is
avail abl e.

0 GSS S DEFECTI VE_TOKEN i ndi cates that consistency checks performed

on the per_nsg_token extracted fromthe input_nessage
failed, preventing further processing from being perforned.

Li nn St andards Track [Page 58]

RFC 2078 GSS- API January 1997

o0 GSS S BAD SIGindicates that an incorrect integrity check was
det ect ed
for the nessage.

0 GSS_S DUPLI CATE_TOKEN, GSS_S OLD TCOKEN, GSS_S UNSEQ TOKEN
and GSS_ S GAP_TOKEN val ues appear in conjunction with the
optional per-nessage replay detection features described
in Section 1.2.3; their senantics are described in that section

0 GSS S CONTEXT _EXPI RED i ndicates that context-rel ated data
items have expired, so that the requested operation cannot be
per f or med.

0 GSS S CREDENTI ALS EXPI RED i ndi cates that the context is
recogni zed,
but that its associated credential s have expired, so
that the requested operati on cannot be perforned.

0 GSS S NO CONTEXT indicates that no valid context was recogni zed
for the input context_ handl e provided.

0 GSS S FAILURE indicates that the context is recognized, but
that the GSS Unw ap() operation could not be perforned for
reasons unspecified at the GSS-API |evel.

Processes a data el enent generated (and optionally enciphered) by
GSS Wap(), provided as input_mnessage. The returned conf_state val ue
i ndi cates whet her confidentiality was applied to the input_nessage.

If conf_state is TRUE, GSS Unwrap() deciphers the input_nessage.
Returns an indication of the quality-of-protection applied to the
processed nessage in the qop_state result. GSS Wap() perforns the
data integrity and data origin authentication checking functions of
GSS VerifyMC() on the plaintext data. Plaintext data is returned in
out put _nessage.

Mechani sns whi ch do not support per-nessage protection services
should return GSS S FAILURE if this routine is called.

2.4: Support calls
This group of calls provides support functions useful to GSS-API
call ers, independent of the state of established contexts. Their

characterization with regard to bl ocking or non-bl ocking status in
terms of network interactions is unspecified.

Li nn St andards Track [Page 59]

RFC 2078 GSS- API January 1997

2.4.1. GSS Display_status call
[nputs:

o status_val ue | NTEGER, - GSS- APl nmmj or _status or mi nor_status
return val ue

0o status_ type INTECER -1 if mmjor_status, 2 if mnor_status

o mech_type OBJECT | DENTI FI ER-nmech_type to be used for mnor_
status translation

Qut put s:

0 major_status | NTEGER,

0 mnor_status | NTEGER,

0o status_string set SET OF OCTET STRI NG

Return maj or _status codes:

0o GSS S COWLETE indicates that a valid printable status
representation (possibly representing nore than one status event
encoded within the status_value) is available in the returned
status_string_set.

0 GSS S BAD MECH indicates that translation in accordance with an
unsupported mech_type was requested, so translation could not
be perforned.

0 GSS S BAD STATUS indicates that the input status_val ue was
invalid, or that the input status_type carried a val ue other

than 1 or 2, so translation could not be perforned.

0o GSS S FAILURE indicates that the requested operation could not
be perfornmed for reasons unspecified at the GSS-API |evel.

Provides a neans for callers to translate GSS-API-returned nmaj or and
m nor status codes into printable string representations.

2.4.2: GSS Indicate_nechs call
I nput :

o (none)

Li nn St andards Track [Page 60]

RFC 2078 GSS- API January 1997

2.

4.

Qut put s:

0 major_status | NTEGER,

0 mnor_status | NTEGER

o nmech_set SET OF OBJECT | DENTI FI ER
Return maj or _status codes:

0o GSS S COVPLETE indicates that a set of avail able mechani sms has
been returned in mech_set.

0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

Allows callers to determne the set of mechanismtypes avail able on
the local system This call is intended for support of specialized
call ers who need to request non-default mech_type sets from
GSS_Acquire_cred(), and should not be needed by other callers.

3: GSS_Conpare_name call

| nput s:

0o nanel | NTERNAL NANME

0 nane2 | NTERNAL NANE

Qut put s:

o nmmjor_status | NTEGER,

0o mnor_status | NTEGER

o name_equal BOOLEAN

Return maj or _status codes:

0 GSS S COWLETE indicates that namel and name2 were conparabl e
and that the nane_equal result indicates whether nanel and
nane2 represent the sanme entity.

o GSS S BAD NAMETYPE indicates that one or both of nanel and
nane2 contai ned internal type specifiers uninterpretable
by the applicabl e underlying GSS-API mechani sm(s), or that

the two names’ types are different and inconparable, so that
the conparison operation could not be conpl eted.

Li nn St andards Track [Page 61]

RFC 2078 GSS- API January 1997

0 GSS S BAD NAME indicates that one or both of the input names
was ill-fornmed in terns of its internal type specifier, so
the conparison operation could not be conpl et ed.

0 GSS S FAILURE indicates that the call’s operation could not
be perfornmed for reasons unspecified at the GSS-API |evel.

Allows callers to conpare two internal nanme representations to
deternmi ne whether they refer to the sane entity. |If either nane
presented to GSS _Conpare_nane() denotes an anonynous princi pal
GSS_Compare_nane() shall indicate FALSE. It is not required that
either or both inputs namel and nane2 be M\s; for sone
i mpl enent ati ons and cases, GSS S BAD NAMETYPE may be returned
i ndi cati ng name inconparability, for the case where neither input
name i s an M\

2.4.4: GSS Display_nane cal
| nput s:
0 nane | NTERNAL NAME
Cut put s:
o nmmjor_status | NTEGER,
o mnor_status | NTEGER
o name_string OCTET STRI NG
0 nane_type OBJECT | DENTI FI ER

Return maj or _status codes:

0 GSS S COVWPLETE indicates that a valid printable nane
representation is available in the returned name_string.

0 GSS S BAD NAMETYPE indicates that the provided nane was of a
type uninterpretable by the applicable underlying GSS-API
mechani sn(s), so no printable representation could be generated.

0 GSS S BAD NAME indicates that the contents of the provided nane
were inconsistent with the internally-indicated nane type, so
no printable representation could be generated.

0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

Li nn St andards Track [Page 62]

RFC 2078 GSS- API January 1997

Allows callers to translate an internal nane representation into a
printable formw th associ ated nanespace type descriptor. The syntax
of the printable formis a local matter.

If the input name represents an anonynous identity, a reserved val ue
(GSS_C _NT_ANONYMOUS) shall be returned for nane_type

2.4.5. GSS |Inport_nane cal

I nput s:

0 input_nanme_string OCTET STRI NG

0o input_nane_type OBJECT | DENTI FI ER

CQut put s:

o nmmjor_status | NTEGER,

o mnor_status | NTEGER

0 out put_nanme | NTERNAL NANE

Return maj or _status codes:

0o GSS S COWLETE indicates that a valid nanme representation is
out put in output_name and described by the type value in
out put _nane_t ype.

o0 GSS S BAD NAMETYPE indicates that the input_nane_type is unsupported
by the applicable underlying GSS-API nechani sn(s), so the inport
operation could not be conpleted.

0 GSS S BAD NAME indicates that the provided input_nane_string
isill-formed in terms of the input_nanme_type, so the inport

operation could not be conpleted.

0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

Allows callers to provide a name representati on as a conti guous oct et
string, designate the type of nanespace in conjunction with which it
shoul d be parsed, and convert that representation to an internal form
suitable for input to other GSS-API routines. The syntax of the

i nput _nane_string is defined in conjunction with its associ ated nane
type; depending on the input_name_type, the associated

i nput _nanme_string may or may not be a printable string. Note: The

i nput _name_type argunent serves to describe and qualify the

Li nn St andards Track [Page 63]

RFC 2078 GSS- API January 1997

interpretation of the associated input_nanme_string; it does not
specify the data type of the returned output nane.

I f a mechanismclains support for a particular name type, its
GSS I mport _name() operation shall be able to accept all possible

val ues conformant to the external name syntax as defined for that
nane type. These inported values may correspond to:

(1) locally registered entities (for which credentials may be
acqui red),

(2) non-local entities (for which |local credentials cannot be
acqui red, but which nay be referenced as targets of initiated

security contexts or initiators of accepted security contexts), or
to

(3) neither of the above.

Det erm nation of whether a particular nanme belongs to class (1), (2),
or (3) as described above is not guaranteed to be perfornmed by the
GSS I mport _name() function
The internal name generated by a GSS Inport_name() operation nmay be a
singl e-mechanism M\, and is likely to be an MN within a single-
nmechani sm i npl enent ati on, but portable callers nust not depend on
this property (and nust not, therefore, assunme that the output from
GSS I nmport _name() can be passed directly to GSS Export_nane() w thout
first being processed through GSS Canonicalize_name()).

2.4.6: GSS_Rel ease_nane cal
| nput s:
o nane | NTERNAL NAME
Qut put s:
o nmmjor_status | NTEGER,
0o mnor_status | NTEGER

Return maj or _status codes:

o GSS S COWLETE indicates that the storage associated with the
i nput nanme was successfully rel eased.

0 GSS_ S BAD NAME indicates that the input name argunent did not
contain a valid nane.

Li nn St andards Track [Page 64]

RFC 2078 GSS- API January 1997
0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.
Allows callers to rel ease the storage associated with an interna
nane representation. This call’s specific behavior depends on the
| anguage and progranm ng environnment wthin which a GSS-API
i mpl enentati on operates, and is therefore detailed within applicable
bi ndi ngs specifications; in particular, this call may be superfl uous
wi t hi n bi ndi ngs where nmenory nanagenent is autonatic.
2.4.7.: GSS Rel ease buffer cal
| nput s:
o buffer OCTET STRI NG
Cut put s:
o nmmjor_status | NTEGER,
o mnor_status | NTEGER

Return maj or _status codes:

o GSS S COWLETE indicates that the storage associated with the
i nput buffer was successfully rel eased.

0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

Allows callers to rel ease the storage associated with an OCTET STRI NG
buffer allocated by another GSS-API call. This call’s specific
behavi or depends on the | anguage and progranmm ng environnent w thin
whi ch a GSS-API inplenentation operates, and is therefore detail ed
wi t hi n applicabl e bindings specifications; in particular, this cal
may be superfluous wthin bindings where nenory nmanagenment is
automati c.

2.4.8: GSS_Rel ease_A D set cal
| nput s:
o buffer SET OF OBJECT | DENTI FI ER
CQut put s:

0o major_status | NTEGER,

Li nn St andards Track [Page 65]

RFC 2078 GSS- API January 1997

o mnor_status | NTEGER
Return maj or _status codes:

0 GSS S COWPLETE indicates that the storage associated with the
i nput object identifier set was successfully rel eased.

0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

Allows callers to rel ease the storage associated with an object
identifier set object allocated by another GSS-API call. This call’s
speci fi c behavi or depends on the | anguage and programm ng environnent
within which a GSS-API inplenmentation operates, and is therefore
detail ed within applicable bindings specifications; in particular,
this call may be superfluous w thin bindings where nmenory managenent
is automatic.

2.4.9: GSS Create _enpty O D set call
[nputs:
o (none)
Qut put s:
0 major_status | NTEGER,
0 mnor_status | NTEGER,
0 oid_set SET OF OBJECT | DENTI FI ER
Return maj or _status codes:
o0 GSS_S COWPLETE i ndi cates successful conpletion
0 GSS S FAILURE indicates that the operation failed
Creates an object identifier set containing no object identifiers, to
whi ch nenbers may be subsequently added using the
GSS _Add_O D _set _nenber() routine. These routines are intended to be

used to construct sets of nechanismobject identifiers, for input to
GSS Acquire_cred().

Li nn St andards Track [Page 66]

RFC 2078 GSS- API January 1997

2.4.10: GSS Add_A D set_nenber call
[nputs:
o nenber_oid OBJECT | DENTI FI ER,
0 oid_set SET OF OBJECT | DENTI FI ER
CQut put s:
0 major_status | NTEGER,
o mnor_status | NTEGER,
Return maj or _status codes:
o0 GSS_S COWPLETE i ndi cates successful conpletion
0 GSS S FAILURE indicates that the operation fail ed
Adds an Object ldentifier to an Object Identifier set. This routine
is intended for use in conjunction with GSS Create_enpty QO D set()
when constructing a set of mechanism A Ds for input to
GSS Acquire_cred().

2.4.11: GSS Test A D set_nenber call
I nput s:
o nenber OBJECT | DENTI FI ER,
0 set SET OF OBJECT | DENTI FI ER
CQut put s:
o nmmjor_status | NTEGER,
o mnor_status | NTEGER,
0 present BOOLEAN
Return maj or _status codes:

o GSS S COWLETE i ndi cates successful conpletion

0 GSS S FAILURE indicates that the operation failed

Li nn St andards Track [Page 67]

RFC 2078 GSS- API January 1997

Interrogates an Object ldentifier set to determ ne whether a
specified hject Identifier is a menber. This routine is intended to
be used with O D sets returned by GSS | ndicate_nechs(),
GSS Acquire_cred(), and GSS I nquire_cred().
2.4.12: GSS Rel ease_ QA D cal
| nput s:
o oid OBJECT I DENTI FI ER
Qut put s:
o nmmjor_status | NTEGER,
0 mnor_status | NTEGER
Return maj or _status codes:
o GSS S COWLETE i ndi cates successful conpletion
0 GSS S FAILURE indicates that the operation failed
Allows the caller to release the storage associated with an OBJECT
| DENTI FI ER buffer allocated by another GSS-API call. This call’s
speci fic behavi or depends on the | anguage and progranmm ng environment
within which a GSS-API inplenmentation operates, and is therefore
detail ed within applicable bindings specifications; in particular
this call may be superfluous w thin bindings where nmenory managenent
is autonatic.
2.4.13: GSS ODto_str cal
I nput s:
0o oid OBJECT I DENTIFI ER
Qut put s:
0 major_status | NTEGER
0 mnor_status | NTEGER
o oid_str OCTET STRI NG

Return maj or _status codes:

o GSS S COWLETE i ndi cates successful conpletion

Li nn St andards Track [Page 68]

RFC 2078 GSS- API January 1997

0 GSS S FAILURE indicates that the operation failed
The function GSS O D to_str() returns a string representing the input
ODin nuneric ASN. 1 syntax format (curly-brace encl osed, space-
delimted, e.g., "{2 16 840 1 113687 1 2 1}"). The string is
rel easabl e usi ng GSS Rel ease _buffer(). If the input "oid" does not
represent a syntactically valid object identifier, GSS S FAI LURE
status is returned and the returned oid str result is NULL.

2.4.14: GSS Str _to A D call
| nput s:
o oid_str OCTET STRI NG
CQut put s:
o nmmjor_status | NTEGER,
o mnor_status | NTEGER,
o oid OBJECT I DENTI FI ER
Return mmj or _status codes:
o GSS S COWLETE i ndi cates successful conpletion
0 GSS S FAILURE indicates that the operation failed
The function GSS Str _to O D() constructs and returns an OD fromits
printable forn inplenentations should be able to accept the nuneric
ASN. 1 syntax formas described for GSS O D to _str(), and this form
shoul d be used for portability, but inplementations of this routine
may al so accept other formats (e.g., "1.2.3.3"). The O Dis suitable
for release using the function GSS Release O D(). If the input
oid str cannot be translated into an O D, GSS S FAILURE status is
returned and the "oid" result is NULL.

2.4.15: GSS_Inquire_nanes_for_nech call
I nput :
o input_nech type OBJECT | DENTIFIER, -- nechani smtype
CQut put s:

0o major_status | NTEGER,

Li nn St andards Track [Page 69]

RFC 2078 GSS- API January 1997

o mnor_status | NTEGER

0 nane_type_set SET OF OBJECT | DENTI FI ER

Return maj or _status codes:

o0 GSS S COWLETE indicates that the output nane_type set contains
a list of nane types which are supported by the locally avail able
mechani smidentified by input_nech_type.

0 GSS S BAD MECH indicates that the mechanismidentified by
i nput _nmech_type was unsupported within the local inplenentation
causing the query to fail

0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

Allows callers to determ ne the set of name types which are
supportable by a specific locally-avail abl e mechani sm

2.4.16: GSS Inquire_nechs_for_name cal
| nput s:
o input_nanme | NTERNAL NAME
CQut put s:
o major_status | NTEGER,
o mnor_status | NTEGER
o mech_types SET OF OBJECT | DENTI FI ER
Return maj or _status codes:
0o GSS S COWLETE indicates that a set of object identifiers,
corresponding to the set of mechani snms suitable for processing

the input_nane, is available in nech_types.

0 GSS_ S BAD NAME indicates that the input_name could not be
processed.

o0 GSS S BAD NAMVETYPE indicates that the type of the input_nane
i s unsupported by the GSS-API inplenmentation

0 GSS S FAILURE indicates that the requested operation could not
be perfornmed for reasons unspecified at the GSS-API |evel.

Li nn St andards Track [Page 70]

RFC 2078 GSS- API January 1997

This routine returns the nmechanismset with which the i nput_nane may
be processed. After use, the mech_types object should be freed by
the caller via the GSS Rel ease_O D set() call. Note: it is
anticipated that inplenmentations of GSS | nquire_mechs _for_name() wll
commonl y operate based on type information describing the
capabilities of available nmechanisns; it is not guaranteed that al
identified nmechanisns will necessarily be able to canonicalize (via
GSS _Canoni cal i ze_nanme()) a particul ar nane.

2.4.17: GSS_Canoni cal i ze_name cal
| nput s:
0 input_nane | NTERNAL NAME

o nmech_type OBJECT IDENTIFIER -- nust be explicit mechani sm
not "default" specifier

Qut put s:

0 major_status | NTEGER,

0 mnor_status | NTEGER

0 out put _nanme | NTERNAL NANME

Return maj or _status codes:

0 GSS S COWPLETE indicates that a mechani smspecific reduction of
the i nput _nane, as processed by the mechanismidentified by

nech_type, is available in output_nane.

0 GSS S BAD MECH indicates that the identified mechanismis
unsupport ed.

o0 GSS S BAD NAMETYPE indicates that the input name does not
contain an elenment with suitable type for processing by the
identified nmechani sm

0 GSS_ S BAD NAME indicates that the input name contains an
element with suitable type for processing by the identified
nmechani sm but that this elenent could not be processed
successful ly.

0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

Li nn St andards Track [Page 71]

RFC 2078 GSS- API January 1997

This routine reduces a GSS-API internal nane, which may in general
contain elements corresponding to nultiple nechanisns, to a

mechani sm speci fi c Mechani sm Nane (MN) by applying the translations
correspondi ng to the mechani smidentified by mech_type.

2.4.18: GSS Export_nanme call
| nput s:
o input_name | NTERNAL NAME, -- required to be MN
Qut put s:
o nmmjor_status | NTEGER,
0 minor_status | NTEGER,
0 output_name OCTET STRI NG
Return maj or _status codes:

o0 GSS S COWLETE indicates that a flat representation of the
i nput name is available in output_nane.

0o GSS S NAME NOT_MN indicates that the input nane contained
el ements corresponding to multiple nmechanisnms, so cannot
be exported into a single-nechanismflat form

0 GSS_ S BAD NAME indicates that the input name was an M\
but coul d not be processed.

o0 GSS S BAD NAVETYPE indicates that the input nane was an M\,
but that its type is unsupported by the GSS-API inplenmentation.

0 GSS S FAILURE indicates that the requested operation could not
be perfornmed for reasons unspecified at the GSS-API |evel.

This routine creates a flat nane representation, suitable for

byt ewi se comparison or for input to GSS |Inport_nane() in conjunction
with the reserved GSS- APl Exported Nane Object O D, froma internal-
form Mechani sm Name (MN) as enitted, e.g., by GSS Canonicalize_nane()
or GSS Accept _sec_context().

The emtted GSS-API Exported Nanme Cbject is self-describing; no
associ ated paraneter-level O D need be enmitted by this call. This
flat representation consists of a nechani smindependent w apper

| ayer, defined in Section 3.2 of this docunent, enclosing a
nmechani sm defi ned name representation.

Li nn St andards Track [Page 72]

RFC 2078 GSS- API January 1997

In all cases, the flat nane output by GSS Export_ nane() to correspond
to a particular input MN nust be invariant over tine within a
particul ar installation.
The GSS_S NAME _NOT_MN status code is provided to enable
i npl enentations to reject input nanes which are not MNs. It is not,
however, required for purposes of conformance to this specification
that all non-MN input nanes must necessarily be rejected.

2.4.19: GSS Duplicate_nane cal
| nput s:
0 src_name | NTERNAL NAME
CQut put s:
o nmmjor_status | NTEGER,
o mnor_status | NTEGER
0 dest _name | NTERNAL NAME

Return maj or _status codes:

o0 GSS S COWLETE indicates that dest nane references an interna
nanme obj ect containing the same nane as passed to src_narne.

0 GSS S BAD NAME indicates that the input name was invalid.

0 GSS S BAD NAMETYPE indicates that the input nane’s type
i s unsupported by the GSS-API inplenmentation

0 GSS S FAILURE indicates that the requested operation could not
be performed for reasons unspecified at the GSS-API |evel.

This routine takes input internal name src_nane, and returns another
reference (dest_nane) to that name which can be used even if src_nane
is later freed. (Note: This may be inplemented by copying or through
use of reference counts.)

3: Data Structure Definitions for GSS-V2 Usage

Subsections of this section define, for interoperability and
portability purposes, certain data structures for use with GSS-V2.

Li nn St andards Track [Page 73]

RFC 2078 GSS- API January 1997

3.1: Mechani sm | ndependent Token For mat

Thi s section specifies a nmechani smindependent |evel of encapsul ating
representation for the initial token of a GSS-APlI context

est abl i shnent sequence, incorporating an identifier of the nechani sm
type to be used on that context and enabling tokens to be interpreted
unanbi guously at GSS- APl peers. Use of this format is required for
initial context establishment tokens of Internet standards-track

GSS- APl mechani sms; use in non-initial tokens is optional

The encoding format for the token tag is derived fromASN. 1 and DER
(per illustrative ASN. 1 syntax included later within this
subsection), but its concrete representation is defined directly in
terms of octets rather than at the ASN.1 level in order to facilitate
i nteroperabl e i nplenmentation wthout use of general ASN. 1 processing
code. The token tag consists of the follow ng el ements, in order

1. O0x60 -- Tag for [APPLI CATI ON 0] SEQUENCE; i ndicates that
constructed form definite length encoding foll ows.

2. Token length octets, specifying |l ength of subsequent data
(i.e., the sumred | engths of elements 3-5 in this list, and of the
mechani sm defi ned token object followi ng the tag). This el enent
conprises a variabl e nunber of octets:

2a. If the indicated value is less than 128, it shall be
represented in a single octet with bit 8 (high order) set to "0"
and the remaining bits representing the val ue.

2b. If the indicated value is 128 or nore, it shall be represented
in two or nore octets, with bit 8 of the first octet set to "1"
and the remaining bits of the first octet specifying the nunber of
additional octets. The subsequent octets carry the value, 8 bits
per octet, most significant digit first. The m ni mum nunmber of
octets shall be used to encode the length (i.e., no octets
representing | eading zeros shall be included within the length
encodi ng) .

3. 0x06 -- Tag for OBJECT | DENTIFI ER

4. Object identifier length -- length (nunmber of octets) of the
encoded object identifier contained in elenment 5, encoded per
rules as described in 2a. and 2b. above.

5. Object identifier octets -- variable nunber of octets, encoded
per ASN.1 BER rul es:

Li nn St andards Track [Page 74]

RFC 2078 GSS- API January 1997

5a. The first octet contains the sumof two values: (1) the top-

| evel object identifier conponent, multiplied by 40 (decinal), and
(2) the second-level object identifier conponent. This specia
case is the only point within an object identifier encodi ng where
a single octet represents contents of nore than one conponent.

5b. Subsequent octets, if required, encode successively-I|ower
conponents in the represented object identifier. A conponent’s
encodi ng may span multiple octets, encoding 7 bits per octet (npst
significant bits first) and with bit 8 set to "1" on all but the
final octet in the conponent’s encoding. The m ni mum nunber of
octets shall be used to encode each conponent (i.e., no octets
representing | eading zeros shall be included within a component’s
encodi ng) .

(Note: In many inplenentations, elenents 3-5 may be stored and
referenced as a contiguous string constant.)

The token tag is imediately foll owed by a nechani sm defined token
object. Note that no independent size specifier intervenes follow ng
the object identifier value to indicate the size of the mechani sm
defined token object. Wile ASN. 1 usage wi thin mechani sm defined
tokens is permtted, there is no requirenment that the mechani sm

speci fic innerContext Token, innerMgToken, and seal edUserData data

el ements nust enploy ASN. 1 BER/ DER encodi ng conventi ons.

Li nn St andards Track [Page 75]

RFC 2078 GSS- API January 1997

The following ASN. 1 syntax is included for descriptive purposes only,

toillustrate structura

For

performed using the concrete encodi ng procedures described earlier

i nteroperability purposes, token and tag encodi ng shall be

this subsecti on.

Li nn

GSS-API DEFINITIONS :: =
BEG N

MechType ::= OBJECT | DENTI FI ER
-- data structure definitions

-- callers nust be able to distinguish anmong

-- Initial Context Token, Subsequent Cont ext Token
-- Per MsgToken, and Seal edMessage data el ements
-- based on the usage in which they occur

I ni tial ContextToken ::=
-- option indication (delegation, etc.) indicated within
-- mechani smspeci fic token
[APPLI CATI ON O] I MPLICI T SEQUENCE {
thi sMech MechType
i nner Cont ext Token ANY DEFI NED BY t hi sMech
-- contents nechani smspecific
-- ASN. 1 structure not required

}

Subsequent Cont ext Token :: = i nner Cont ext Token ANY
-- interpretation based on predecessor Initial ContextToken
-- ASN. 1 structure not required

Per MsgToken :: =
-- as enmtted by GSS GetM C and processed by GSS VerifyMC
-- ASN. 1 structure not required

i nner MsgToken ANY

Seal edMessage :: =
-- as enmtted by GSS Wap and processed by GSS _Unw ap
-- includes internal, nechanismdefined indicator
-- of whether or not encrypted
-- ASN. 1 structure not required
seal edUser Dat a ANY

END

rel ati onshi ps anong token and tag objects.

in

St andards Track [Page 76]

RFC 2078 GSS- API January 1997

3.2: Mechani sm | ndependent Exported Nane Object Fornat

Thi s section specifies a nmechani smindependent |evel of encapsul ating
representation for nanes exported via the GSS Export_name() call

i ncluding an object identifier representing the exporting mechani sm
The format of nanes encapsul ated via this representation shall be
defined within individual nmechanismdrafts. Nanme objects of this
type will be identified with the followi ng Cbject ldentifier

{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nanetypes),
4(gss- api - export ed- nane) }

No nane type O Dis included in this nmechani smindependent |evel of
format definition, since (depending on individual nechani sm

speci fications) the enclosed name may be inmplicitly typed or may be
explicitly typed using a neans other than O D encodi ng.

Length Nane Descri ption
2 TOL_ I D Token ldentifier

For exported nane objects, this
must be hex 04 01.

2 MECH O D LEN Length of the Mechanism O D
MECH O D_LEN MECH O D Mechani sm O D, in DER

4 NAVE LEN Length of nane

NAVE LEN NANVE Exported name; format defined in

appl i cabl e mechani sm draft.
4: Name Type Definitions
This section includes definitions for nane types and associ at ed
syntaxes which are defined in a mechani smindependent fashion at the
GSS- APl | evel rather than being defined in individual nechanism
speci fications.
4.1: Host-Based Service Name Form

The following Object Identifier value is provided as a nmeans to
identify this name form

{1(iso), 3(org), 6(dod), 1(internet), 5(security), 6(nanetypes),
2(gss- host - based- servi ces)}

The recomended synbolic nane for this type is
" GSS_C _NT_HOSTBASED SERVI CE".

Li nn St andards Track [Page 77]

RFC 2078 GSS- API January 1997

This name type is used to represent services associated wi th host
conputers. This name formis constructed using two el enents,
"service" and "hostname", as follows:

servi ce@ost name

When a reference to a nane of this type is resolved, the "hostnane"
is canonicalized by attenpting a DNS | ookup and using the fully-
qual i fied domain name which is returned, or by using the "hostnane"
as provided if the DNS | ookup fails. The canonicalization operation
al so maps the host’s nane into | ower-case characters.

The "hostnane" el enment nmay be onmitted. If no "@ separator is

i ncluded, the entire nane is interpreted as the service specifier
with the "hostnane" defaulted to the canonicalized name of the | oca
host .

Val ues for the "service" elenent are registered with the | ANA
4.2: User Nane Form

This name formshall be represented by the Object Identifier {iso(l)
menber - body(2) United States(840) mit(113554) infosys(1l) gssapi(2)
generic(1) user_name(1l)}. The recommended nechani smi ndependent
synbolic nane for this type is "GSS C NT_USER NAME'. (Note: the sane
name formand O D is defined within the Kerberos V5 GSS- AP
mechani sm but the symbolic nanme recommended there begins with a
"GSS_KRB5 _NT_" prefix.)

This name type is used to indicate a named user on a |ocal system
Its interpretation is OS-specific. This name formis constructed as:

user nane
4.3: Machine U D Form

This name formshall be represented by the Object Identifier {iso(l)
menber - body(2) United States(840) nit(113554) infosys(1l) gssapi(2)
generic(1) machine_uid_nane(2)}. The recommended mechani sm

i ndependent symbolic nane for this type is

"GSS_C NT_MACHI NE_U D NAME". (Note: the sane nane formand ODis
defined within the Kerberos V5 GSS-API nechanism but the synbolic
nane recomended there begins with a "GSS KRB5 NT_" prefix.)

This name type is used to indicate a nuneric user identifier
corresponding to a user on a local system Its interpretation is
OS-specific. The gss_buffer_desc representing a nane of this type
should contain a locally-significant uid_t, represented in host byte

Li nn St andards Track [Page 78]

RFC 2078 GSS- API January 1997

order. The GSS |Inport _nane() operation resolves this uid into a
username, which is then treated as the User Nane Form

4.4: String U D Form

This name formshall be represented by the Ohject Identifier {iso(l)
nmenber - body(2) United States(840) nmit(113554) infosys(1l) gssapi(2)
generic(1l) string uid nanme(3)}. The reconmended synbolic name for
this type is "GSS_C NT_STRING U D NAME". (Note: the sane name form
and ODis defined within the Kerberos V5 GSS-API mechani sm but the
synmbol i ¢ nane recommended there begins with a "GSS KRB5 NT_" prefix.)

This name type is used to indicate a string of digits representing
the nuneric user identifier of a user on a local system |Its
interpretation is OS-specific. This nanme type is similar to the
Machi ne U D Form except that the buffer contains a string
representing the uid_t.

5: Mechani sm Speci fic Exanpl e Scenari os

This section provides illustrative overviews of the use of various
candi dat e nmechani smtypes to support the GSS-API. These di scussions
are intended primarily for readers famliar with specific security
technol ogi es, denobnstrating how GSS-API functions can be used and

i mpl enent ed by candi date underlyi ng nechani sns. They shoul d not be
regarded as constrictive to inplenmentations or as defining the only
nmeans through whi ch GSS-API functions can be realized with a
particul ar underlying technol ogy, and do not denonstrate all GSS-API
features with each technol ogy.

5.1: Kerberos V5, single-TGl

OS-specific login functions yield a TGT to the | ocal real mKerberos
server; TGT is placed in a credentials structure for the client.
Client calls GSS Acquire_cred() to acquire a cred_handle in order to
reference the credentials for use in establishing security contexts.

Client calls GSS Init_sec_context(). |If the requested service is
located in a different realm GSS_Init_sec_context() gets the
necessary TGI/key pairs needed to traverse the path fromlocal to
target realm these data are placed in the owner’s TGI cache. After
any needed renpte real mresolution, GSS Init_sec _context() yields a
service ticket to the requested service with a correspondi ng session
key; these data are stored in conjunction with the context. GSS-API
code sends KRB TGS _REQ request(s) and receives KRB TGS _REP
response(s) (in the successful case) or KRB _ERROR

Li nn St andards Track [Page 79]

RFC 2078 GSS- API January 1997

Assumi ng success, GSS |Init_sec _context() builds a Kerberos-fornmatted
KRB_AP_REQ nessage, and returns it in output_token. The client sends
the out put_token to the service.

The service passes the received token as the input_token argunent to
GSS Accept _sec_context(), which verifies the authenticator, provides
the service with the client’s authenticated name, and returns an

out put _cont ext _handl e.

Both parties now hold the session key associated with the service
ticket, and can use this key in subsequent GSS GetM (),
GSS VerifyMC(), GSS Wap(), and GSS_Unwrap() operations.

5.2: Kerberos V5, double-TGr
TGT acquisition as above.

Not e: To avoid unnecessary frequent invocations of error paths when
i npl enenting the GSS-API atop Kerberos V5, it seens appropriate to
represent "single-TGI K-V5" and "doubl e-TGT K-V5" with separate
mech_types, and this discussion makes that assunption.

Based on the (specified or defaulted) mech_type,

GSS Init_sec_context() determ nes that the doubl e-TGI protoco
shoul d be enpl oyed for the specified target. GSS I nit_sec_context()
returns GSS_S CONTI NUE NEEDED mmj or _status, and its returned

out put _token contains a request to the service for the service's TGI.
(I'f a service TGT with suitably long remaining lifetime already
exists in a cache, it my be usable, obviating the need for this
step.) The client passes the output _token to the service. Note: this
scenario illustrates a different use for the GSS_S CONTI NUE_NEEDED
status return facility than for support of nutual authentication
note that both uses can coexi st as successive operations within a
singl e context establishnment operation

The service passes the received token as the input_token argunent to
GSS Accept _sec_context(), which recognizes it as a request for TGI.
(Note that current Kerberos V5 defines no intra-protocol mechanismto
represent such a request.) GSS Accept_sec_context() returns

GSS_S CONTI NUE_NEEDED maj or _status and provides the service's TGTI in
its output_token. The service sends the output_token to the client.

The client passes the received token as the input_token argunment to a
continuation of GSS Init_sec _context(). GSS Init_sec_context() caches
the received service TGI and uses it as part of a service ticket
request to the Kerberos authentication server, storing the returned
service ticket and session key in conjunction with the context.

GSS Init_sec_context() builds a Kerberos-formatted authenticator,

Li nn St andards Track [Page 80]

RFC 2078 GSS- API January 1997

and returns it in output_token along with GSS S COWLETE return
maj or _status. The client sends the output _token to the service.

Servi ce passes the received token as the input_token argunent to a
continuation call to GSS Accept_sec_context().

GSS Accept _sec_context() verifies the authenticator, provides the
service with the client’s authenticated nane, and returns

nmaj or _status GSS_ S COMPLETE

GSS GetM C(), GSS VerifyM(C(), GSS Wap(), and GSS Unwrap() as
above.

5.3: X. 509 Authentication Framework

This exanple illustrates use of the GSS-APlI in conjunction with
publ i c- key mechani sms, consistent with the X. 509 Directory
Aut henti cati on Framewor k.

The GSS Acquire_cred() call establishes a credentials structure,
making the client’s private key accessible for use on behalf of the
client.

The client calls GSS Init_sec_context(), which interrogates the
Directory to acquire (and validate) a chain of public-key
certificates, thereby collecting the public key of the service. The
certificate validation operation determ nes that suitable integrity
checks were applied by trusted authorities and that those
certificates have not expired. GSS Init_sec_context() generates a
secret key for use in per-nmessage protection operations on the
context, and enciphers that secret key under the service's public
key.

The enci phered secret key, along with an authenticator quantity
signed with the client’s private key, is included in the output_token
fromGSS_ Init_sec_context(). The output_token also carries a
certification path, consisting of a certificate chain | eading from
the service to the client; a variant approach would defer this path
resolution to be perforned by the service instead of being asserted
by the client. The client application sends the output_token to the
servi ce.

The service passes the received token as the input_token argunent to
GSS Accept _sec_context(). GSS Accept _sec_context() validates the
certification path, and as a result deternines a certified binding
between the client’s distinguished name and the client’s public key.
G ven that public key, GSS Accept_sec_context() can process the

i nput _token’s authenticator quantity and verify that the client’s
private key was used to sign the input_token. At this point, the

Li nn St andards Track [Page 81]

RFC 2078 GSS- API January 1997

client is authenticated to the service. The service uses its private
key to deci pher the enci phered secret key provided to it for per-
nessage protection operations on the context.

The client calls GSS GetM C() or GSS Wap() on a data nmessage, which
causes per-nmessage authentication, integrity, and (optional)
confidentiality facilities to be applied to that nessage. The service
uses the context’'s shared secret key to perform correspondi ng

GSS VerifyM C() and GSS Unw ap() calls.

6: Security Considerations
Security issues are discussed throughout this neno.
7: Related Activities

In order to inplement the GSS-API atop existing, energing, and future
security nechani sns:

object identifiers nmust be assigned to candi date GSS- API
mechani sns and the name types which they support

concrete data elenent formats and processing procedures nust be
defined for candi date nechani sns

Calling applications nmust inmplenent formatting conventions which wll
enable themto distinguish GSS-API tokens fromother data carried in
their application protocols.

Concrete | anguage bindings are required for the programm ng

environnents in which the GSS-APlI is to be enpl oyed, as RFC 1509
defines for the C programm ng | anguage and GSS- V1.

Li nn St andards Track [Page 82]

RFC 2078 GSS- API January 1997

APPENDI X A
MECHANI SM DESI GN CONSTRAI NTS

The foll owi ng constraints on GSS-APlI nechani sm designs are adopted in
response to observed caller protocol requirenents, and adherence
thereto is anticipated in subsequent descriptions of GSS-API
mechani sns to be documented in standards-track |nternet

speci fications.

It is strongly reconmended t hat nechani sns of fering per-nessage
protection services also offer at | east one of the replay detection
and sequenci ng services, as nechanisns offering neither of the latter
will fail to satisfy recognized requirenents of certain candidate
cal l er protocols.

APPENDI X B
COWPATIBILITY WTH GSS- V1

It is the intent of this docunent to define an interface and
procedures which preserve conpatibility between GSS-V1 (RFC 1508)
callers and GSS- V2 providers. All calls defined in GSS-V1 are
preserved, and it has been a goal that GSS-V1 callers should be able
to operate atop GSS-V2 provider inplenentations. Certain detailed
changes, sunmarized in this section, have been nade in order to
resol ve omissions identified in GSS- V1.

The foll owing GSS-V1 constructs, while supported within GSS-V2, are
depr ecat ed:

Nanes for per-nmessage processing routines: GSS Seal () deprecated
in favor of GSS Wap(); GSS Sign() deprecated in favor of

GSS GetM C(); GSS Unseal () deprecated in favor of GSS Unw ap();
GSS Verify() deprecated in favor of GSS VerifyM ().

GSS Del ete_sec_context() facility for context token usage,

al |l owi ng mechani snms to signal context deletion, is retained for
conpatibility with GSS-V1. For current usage, it is reconmended
that both peers to a context invoke GSS Del ete_sec_context ()

i ndependently, passing a null output_context_token buffer to

i ndicate that no context _token is required. |nplenentations of
GSS Del ete_sec_context() should delete relevant |ocally-stored
context information.

Li nn St andards Track [Page 83]

RFC 2078 GSS- API January 1997

This GSS-V2 specification adds the followi ng calls which are not
present in GSS-V1:

Credential managenent calls: GSS _Add_cred(),
GSS I nquire_cred_by nech().

Context-level calls: GSS Inquire context(), GSS Wap_size linmt(),
GSS_Export_sec_context (), GSS_Inport_sec_context().

Per-message calls: No new calls. Existing calls have been renamed.

Support calls: GSS Create_enpty QO D set(),

GSS Add_AO D set_nenber (), GSS Test QO D set nenber(),

GSS Release O D(), GSS ODto str(), GSS str to AD(),

GSS I nquire_names_for_mech(), GSS_Inquire_mechs_for_nane(),
GSS_Canoni cal i ze_name(), GSS_Export_nane(), GSS Duplicate_name().

This GSS-V2 specification introduces three new facilities applicable
to security contexts, indicated using the followi ng context state
val ues whi ch are not present in GSS-VL1:

anon_state, set TRUE to indicate that a context’s initiator is
anonymous fromthe viewpoint of the target; Section 1.2.5 of this
specification provides a sunmary description of the GSS-V2
anonymty support facility, support and use of which is optional

prot_ready_state, set TRUE to indicate that a context nmay be used
for per-nessage protection before final conpletion of context
establishnent; Section 1.2.7 of this specification provides a
sunmary description of the GSS-V2 facility enabling nmechanisnms to
sel ectively permt per-nessage protection during context

est abl i shnent, support and use of which is optional

trans_state, set TRUE to indicate that a context is transferable to
anot her process using the GSS-V2 GSS Export_sec_context() facility.

These state values are represented (at the C bindings level) in
positions within a bit vector which are unused in GSS-V1, and nmay be
safely ignored by GSS-V1 callers.

Rel ative to GSS-V1, GSS-V2 provides additional guidance to GSS-API

i npl enentors in the followi ng areas: inplenentation robustness,
credenti al managenent, behavior in multi-nmechani smconfigurations,
nam ng support, and inclusion of optional sequencing services. The
token tagging facility as defined in GSS-V2, Section 3.1, is now
described directly in terns of octets to facilitate interoperable

i mpl enent ati on wi thout general ASN. 1 processing code; the
correspondi ng ASN. 1 syntax, included for descriptive purposes, is

Li nn St andards Track [Page 84]

RFC 2078 GSS- API January 1997

unchanged fromthat in GSS-V1. For use in conjunction with added
nam ng support facilities, a new Exported Nane Cbject construct is
added. Additional name types are introduced in Section 4.

This GSS-V2 specification adds the foll owi ng maj or_status val ues
whi ch are not defined in GSS-VI:

GSS S BAD QOP unsupported QOP val ue
GSS_S UNAUTHORI ZED operation unaut hori zed
GSS_S _UNAVAI LABLE operation unavail abl e
GSS_S DUPLI CATE_ELEMENT duplicate credential element requested
GSS_S NAME _NOT_MWN nanme contains mnulti-nmechani smel enents
GSS S GAP_TOKEN ski pped predecessor token(s)

det ect ed

O these added status codes, only two values are defined to be
returnable by calls existing in GSS-V1: GSS S BAD QOP (returnable by
GSS GetM C() and GSS Wap()), and GSS S GAP_TCKEN (returnabl e by
GSS VerifyM C() and GSS Unwap()).

Additionally, GSS-V2 descriptions of certain calls present in GSS- V1
have been updated to allow return of additional major_status val ues
fromthe set as defined in GSS-V1: GSS Inquire_cred() has

GSS_S DEFECTI VE_CREDENTI AL and GSS_S CREDENTI ALS _EXPI RED defi ned as
returnable, GSS Init_sec _context() has GSS S O.D TOKEN,

GSS S DUPLI CATE_TOKEN, and GSS S BAD MECH defined as returnable, and
GSS_Accept _sec_context() has GSS S BAD MECH defined as returnable.

Aut hor’ s Addr ess
John Linn
OpenVi si on Technol ogi es
One Main St.
Canbridge, MA 02142 USA

Phone: +1 617.374. 2245
EMai | : John. Li nn@v. com

Li nn St andards Track [Page 85]

