Net wor k Wor ki ng Group H Krawczyk

Request for Comments: 2104 | BM
Cat egory: I nfornmational M Bellare
uCsD

R Canetti

| BM

February 1997

HVAC. Keyed-Hashi ng for Message Authentication
Status of This Meno

This menmo provides information for the Internet community. This menp
does not specify an Internet standard of any kind. Distribution of
this meno is unlinited.

Abst ract

Thi s docunent describes HMAC, a nechani smfor message authentication
usi ng cryptographi c hash functions. HVAC can be used with any
iterative cryptographic hash function, e.g., M5, SHA-1, in
conbination with a secret shared key. The cryptographic strength of
HVAC depends on the properties of the underlying hash function.

1. Introduction

Providing a way to check the integrity of information transmtted
over or stored in an unreliable mediumis a prinme necessity in the
worl d of open conputing and communi cati ons. Mechani sms that provide
such integrity check based on a secret key are usually called
"message aut hentication codes" (MAC). Typically, nessage

aut hentication codes are used between two parties that share a secret
key in order to validate information transmtted between these
parties. In this docunent we present such a MAC nechani sm based on
cryptographi c hash functions. This nechanism called HVAC, is based
on work by the authors [BCK1] where the construction is presented and
cryptographically analyzed. We refer to that work for the details on
the rationale and security analysis of HVAC, and its conparison to

ot her keyed- hash net hods.

Krawczyk, et. al. | nf or mati onal [Page 1]

RFC 2104 HVAC February 1997

HVAC can be used in conbination with any iterated cryptographi c hash
function. MD5 and SHA-1 are exanples of such hash functions. HVAC

al so uses a secret key for calculation and verification of the
nmessage aut hentication values. The main goals behind this
construction are

* To use, without nodifications, available hash functions.
In particular, hash functions that performwell in software,
and for which code is freely and w dely avail abl e.

* To preserve the original performance of the hash function wthout
incurring a significant degradation

* To use and handl e keys in a sinple way.

* To have a well understood cryptographic analysis of the strength of
the aut hentication nechani sm based on reasonabl e assunpti ons on the
under | yi ng hash function

* To all ow for easy replaceability of the underlying hash function in
case that faster or nobre secure hash functions are found or
required.

Thi s docunent specifies HVAC using a generic cryptographic hash
function (denoted by H). Specific instantiations of HVAC need to
define a particular hash function. Current candi dates for such hash
functions include SHA-1 [SHA], MD5 [MD5], RIPEMD- 128/160 [RI PEMD].
These different realizations of HVAC will be denoted by HMAC- SHAL,
HVAC- MD5, HVAC- Rl PEMD, et c.

Note: To the date of witing of this docunent MD5 and SHA-1 are the
nost wi dely used cryptographic hash functions. MD5 has been recently
shown to be vulnerable to collision search attacks [Dobb]. This
attack and other currently known weaknesses of MD5 do not conprom se
the use of MD5 within HVAC as specified in this docunent (see

[Dobb]); however, SHA-1 appears to be a cryptographically stronger
function. To this date, MD5 can be considered for use in HVAC for
applications where the superior performance of MDD is critical. In
any case, inplenenters and users need to be aware of possible
cryptanal ytic devel opments regardi ng any of these cryptographi c hash
functions, and the eventual need to replace the underlying hash
function. (See section 6 for nore information on the security of
HVAC.)

Krawczyk, et. al. I nf or mati onal [Page 2]

RFC 2104 HVAC February 1997

2. Definition of HVAC

The definition of HVAC requires a cryptographic hash function, which
we denote by H, and a secret key K. W assume Hto be a cryptographic
hash function where data is hashed by iterating a basic conpression
function on bl ocks of data. We denote by B the byte-length of such
bl ocks (B=64 for all the above nentioned exanpl es of hash functions),
and by L the byte-length of hash outputs (L=16 for MD5, L=20 for
SHA-1). The authentication key K can be of any length up to B, the
bl ock I ength of the hash function. Applications that use keys | onger
than B bytes will first hash the key using H and then use the
resultant L byte string as the actual key to HVAC. In any case the

m ni mal recommended length for Kis L bytes (as the hash out put

l ength). See section 3 for nore information on keys.

We define two fixed and different strings ipad and opad as foll ows
(the "i” and "o’ are mmenonics for inner and outer):

i pad = the byte 0x36 repeated B tines
opad = the byte O0x5C repeated B tines.

To conmpute HMAC over the data ‘text’ we perform
H(K XOR opad, H(K XOR ipad, text))
Nanel vy,

(1) append zeros to the end of Kto create a B byte string

(e.g., if Kis of length 20 bytes and B=64, then Kwll be
appended with 44 zero bytes 0x00)

(2) XOR (bitwi se exclusive-OR) the B byte string conputed in step
(1) with ipad

(3) append the stream of data 'text’ to the B byte string resulting
fromstep (2)

(4) apply Hto the streamgenerated in step (3)

(5) XOR (bitwi se exclusive-OR) the B byte string conputed in
step (1) with opad

(6) append the Hresult fromstep (4) to the B byte string
resulting fromstep (5)

(7) apply Hto the streamgenerated in step (6) and out put

the result
For illustration purposes, sanple code based on MD5 is provided as an
appendi x.

Krawczyk, et. al. I nf or mati onal [Page 3]

RFC 2104 HVAC February 1997

3. Keys

The key for HVAC can be of any length (keys |longer than B bytes are
first hashed using H. However, less than L bytes is strongly

di scouraged as it would decrease the security strength of the
function. Keys longer than L bytes are acceptable but the extra

l ength would not significantly increase the function strength. (A

| onger key may be advisable if the randommess of the key is

consi dered weak.)

Keys need to be chosen at random (or using a cryptographically strong
pseudo-random gener at or seeded with a random seed), and periodically
refreshed. (Current attacks do not indicate a specific reconmended
frequency for key changes as these attacks are practically

i nfeasi ble. However, periodic key refreshnment is a fundamental
security practice that hel ps against potential weaknesses of the
function and keys, and limts the damage of an exposed key.)

4. | nplenentation Note

HVAC is defined in such a way that the underlying hash function H can
be used with no nodification to its code. In particular, it uses the
function Hwith the pre-defined initial value IV (a fixed val ue
specified by each iterative hash function to initialize its
conpressi on function). However, if desired, a performance

i mprovenent can be achi eved at the cost of (possibly) nodifying the
code of Hto support variable IVs.

The idea is that the internmediate results of the conpression function
on the B-byte blocks (K XOR ipad) and (K XOR opad) can be preconputed
only once at the time of generation of the key K, or before its first
use. These internediate results are stored and then used to
initialize the IV of Heach time that a nessage needs to be

aut henticated. This method saves, for each authenticated nmessage,
the application of the conpression function of H on two B-byte bl ocks
(i.e., on (K XOR ipad) and (K XOR opad)). Such a savings may be
significant when authenticating short streans of data. W stress
that the stored internediate val ues need to be treated and protected
the sane as secret keys.

Choosing to inmplenent HVAC in the above way is a decision of the
| ocal inplenmentation and has no effect on inter-operability.

Krawczyk, et. al. I nf or mati onal [Page 4]

RFC 2104 HVAC February 1997

5. Truncat ed out put

A wel | -known practice with nessage authentication codes is to
truncate the output of the MAC and output only part of the bits
(e.g., [MM ANSI]). Preneel and van Qorschot [PV] show some

anal ytical advantages of truncating the output of hash-based MAC
functions. The results in this area are not absolute as for the
overall security advantages of truncation. It has advantages (Il ess

i nformati on on the hash result available to an attacker) and

di sadvantages (less bits to predict for the attacker). Applications
of HMAC can choose to truncate the output of HVAC by outputting the t
| eftmost bits of the HVAC conputation for sone paraneter t (nanely,
the conputation is carried in the nornal way as defined in section 2
above but the end result is truncated tot bits). W recomrend that
the output Iength t be not Iess than half the length of the hash
output (to match the birthday attack bound) and not |ess than 80 bits
(a suitable | ower bound on the nunber of bits that need to be
predicted by an attacker). W propose denoting a realization of HVAC
that uses a hash function Hwith t bits of output as HVAC-Ht. For
exanpl e, HVAC- SHA1- 80 denotes HMAC conputed using the SHA-1 function
and with the output truncated to 80 bits. (If the paranmeter t is not
specified, e.g. HVAC-MD5, then it is assumed that all the bits of the
hash are output.)

6. Security

The security of the message authentication nechani sm presented here
depends on cryptographic properties of the hash function H the
resistance to collision finding (limted to the case where the
initial value is secret and random and where the output of the
function is not explicitly available to the attacker), and the
nessage aut hentication property of the conpression function of H when
applied to single blocks (in HVAC these bl ocks are partially unknown
to an attacker as they contain the result of the inner H computation
and, in particular, cannot be fully chosen by the attacker).

These properties, and actually stronger ones, are commonly assuned
for hash functions of the kind used with HVAC. In particular, a hash
function for which the above properties do not hold woul d becone
unsui table for nost (probably, all) cryptographic applications,

i ncluding alternative nmessage authentication schenes based on such
functions. (For a conplete analysis and rationale of the HVAC
function the reader is referred to [BCK1].)

Krawczyk, et. al. I nf or mati onal [Page 5]

RFC 2104 HVAC February 1997

Gven the Iimted confidence gained so far as for the cryptographic
strength of candi date hash functions, it is inportant to observe the
following two properties of the HVAC construction and its secure use
for message authentication:

1. The construction is independent of the details of the particular
hash function Hin use and then the |atter can be replaced by any
ot her secure (iterative) cryptographic hash function

2. Message authentication, as opposed to encryption, has a
"transient" effect. A published breaking of a nessage authentication
schene would lead to the repl acenent of that schenme, but would have
no adversarial effect on information authenticated in the past. This
is in sharp contrast with encryption, where infornmation encrypted
today may suffer from exposure in the future if, and when, the
encryption algorithmis broken.

The strongest attack known agai nst HVAC i s based on the frequency of
collisions for the hash function H ("birthday attack") [PV, BCK2], and
is totally inmpractical for mininmally reasonabl e hash functi ons.

As an example, if we consider a hash function |like MD5 where the

out put length equals L=16 bytes (128 bits) the attacker needs to
acquire the correct nessage authentication tags conputed (with the
same secret key K!') on about 2**64 known plaintexts. This would
require the processing of at |east 2**64 bl ocks under H, an

i mpossible task in any realistic scenario (for a block | ength of 64
bytes this would take 250,000 years in a continuous 1Gops |ink, and
wi t hout changing the secret key K during all this tine). This attack
coul d beconme realistic only if serious flaws in the collision
behavi or of the function H are di scovered (e.g. collisions found
after 2**30 nessages). Such a discovery would determ ne the i medi ate
repl acenent of the function H (the effects of such failure would be
far nmore severe for the traditional uses of Hin the context of
digital signatures, public key certificates, etc.).

Note: this attack needs to be strongly contrasted with regul ar
collision attacks on cryptographi c hash functions where no secret key
is involved and where 2**64 off-line parallelizable (!) operations
suffice to find collisions. The latter attack is approaching
feasibility [V while the birthday attack on HVAC is totally
inmpractical. (In the above exanples, if one uses a hash function
with, say, 160 bit of output then 2**64 should be replaced by 2**80.)

Krawczyk, et. al. I nf or mati onal [Page 6]

RFC 2104 HVAC February 1997

A correct inplenmentation of the above construction, the choice of
random (or cryptographically pseudorandom) keys, a secure key
exchange nechani sm frequent key refreshments, and good secrecy
protection of keys are all essential ingredients for the security of
the integrity verification nmechani sm provided by HVAC

Krawczyk, et. al. I nf or mati onal [Page 7]

RFC 2104 HVAC February 1997

Appendi x -- Sanpl e Code

For the sake of illustration we provide the follow ng sanple code for
the inplementation of HVAC-MD5 as well as some correspondi ng test
vectors (the code is based on MD5 code as described in [MD5]).

/*
** Function: hmac_nd5
*/
voi d
hmac_nd5(text, text _len, key, key len, digest)
unsi gned char* text; /* pointer to data stream */
i nt text_len; /* length of data stream */
unsi gned char* key; /* pointer to authentication key */
i nt key | en; /* length of authentication key */
caddr _t di gest; [* caller digest to be filled in */
{
MD5_CTX cont ext ;
unsi gned char k_i pad[65]; [* inner padding -
* key XORd with ipad
*/
unsi gned char k_opad[65]; /* outer padding -
* key XORd with opad
*/

unsi gned char tk[16];

int i;

[* if key is longer than 64 bytes reset it to key=MD5(key) */
if (key_len > 64) {

MD5_CTX tctx;
MD5I1 ni t (&t ct x) ;

MD5Updat e(& ct x, key, key_len);
MD5Fi nal (tk, &tctx);

key = tk;
key_len = 16;
}
/*
* the HVMAC MD5 transform | ooks like:
* MD5(K XOR opad, MD5(K XOR ipad, text))
*
* where Kis an n byte key

ipad is the byte 0x36 repeated 64 tines

Krawczyk, et. al. I nf or mati onal [Page 8]

RFC 2104 HVAC February 1997

* opad is the byte 0Ox5c repeated 64 tines
* and text is the data being protected
*/

/* start out by storing key in pads */
bzero(k_ipad, sizeof k_ipad);
bzero(k_opad, sizeof k_opad);
bcopy(key, k_ipad, key len);
bcopy(key, k_opad, key_len);

/* XOR key with ipad and opad val ues */
for (i=0; i<64; i++) {

k ipad[i] "= 0x36;

k _opad[i] "= 0x5c;

}
/*
* performinner NMD5
*/
MD5I1 ni t (&cont ext) ; /* init context for 1st
* pass */
MD5Updat e(&cont ext, k_i pad, 64) [* start with inner pad */
MD5Updat e(&cont ext, text, text_len); /* then text of datagram */
MD5Fi nal (di gest, &context); [* finish up 1st pass */
/*
* performouter M5
*/
MD5I1 ni t (&cont ext) ; /[* init context for 2nd
* pass */
MD5Updat e(&cont ext, k_opad, 64); [* start with outer pad */
MD5Updat e(&cont ext, di gest, 16); /* then results of 1st
* hash */
MD5Fi nal (di gest, &context); [* finish up 2nd pass */
}
Test Vectors (Trailing '\0" of a character string not included in test):
key = 0x0b0b0b0ObOb0ObObObObObObObObObOLOL
key_len = 16 bytes
data = "H There"
data_len = 8 bytes
di gest = 0x9294727a3638bb1c13f 48ef 8158bf c9d
key = "Jef e"
data = "what do ya want for nothing?"
data_len = 28 bytes
di gest = 0x750c783e6ab0b503eaa86e310a5db738
key = OX AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

Krawczyk, et. al. I nf or mati onal [Page 9]

RFC 2104 HVAC February 1997

key |l en 16 bytes
data = 0x DDDDDDDDDDDDDDDDDDDD. .
. . DDDDDDDDDDDDDDDDDDDD. .
. . DDDDDDDDDDDDDDDDDDOD. .
. DDDDDDDDDDDDDDDDDDOD. .
. . DDDDDDDDDDDDDDDDDDDD
data |l en = 50 bytes
di gest = 0x56be34521d144c88dbb8c733f 0e8b3f 6

Acknowl edgnent s

Pau- Chen Cheng, Jeff Kraemer, and M chael Cehler, have provided
useful comments on early drafts, and ran the first interoperability
tests of this specification. Jeff and Pau-Chen kindly provided the
sanmpl e code and test vectors that appear in the appendi x. Burt
Kal i ski, Bart Preneel, Matt Robshaw, Adi Shamr, and Paul van

Qor schot have provi ded useful comments and suggestions during the

i nvestigation of the HVAC construction

Ref er ences

[ANSI] ANSI X9.9, "Anerican National Standard for Financia
Institution Message Authentication (Whol esale),” Anerican
Bankers Associ ation, 1981. Revi sed 1986.

[At K] Atkinson, R, "IP Authentication Header", RFC 1826, August
1995.

[BCK1] M Bellare, R Canetti, and H Krawczyk,
"Keyed Hash Functions and Message Aut hentication”,
Proceedi ngs of Crypto’ 96, LNCS 1109, pp. 1-15.
(http://ww.research.ibmcom security/keyed-nd5. htm)

[BCK2] M Bellare, R Canetti, and H Krawczyk,
"Pseudor andom Functi ons Revisited: The Cascade Construction",
Proceedi ngs of FOCS 96.

[Dobb] H. Dobbertin, "The Status of MD5 After a Recent Attack",
RSA Labs’ CryptoBytes, Vol. 2 No. 2, Sunmer 1996.
http://ww. rsa. com rsal abs/ pubs/ crypt obyt es. ht i

[PV] B. Preneel and P. van Qorschot, "Building fast MACs from hash
functions", Advances in Cryptol ogy -- CRYPTO 95 Proceedi ngs,
Lecture Notes in Conputer Science, Springer-Verlag Vol. 963,
1995, pp. 1-14.

[MD5] Rivest, R, "The MD5 Message-Di gest Al gorithnt
RFC 1321, April 1992.

Krawczyk, et. al. I nf or mati onal [Page 10]

RFC 2104 HVAC February 1997

[MI Meyer, S. and Matyas, S.M, Cryptography, New York WI ey,
1982.

[RIPEMD] H. Dobbertin, A Bosselaers, and B. Preneel, "Rl PEMD 160: A
strengt hened version of R PEMD', Fast Software Encryption,
LNCS Vol 1039, pp. 71-82.
ftp://ftp.esat. kul euven. ac. be/ pub/ COSI C/ bossel ae/ ri pend/ .

[SHA] NI ST, FIPS PUB 180-1: Secure Hash Standard, April 1995.

[Tsu] G Tsudi k, "Message authentication with one-way hash
functions”, In Proceedings of |Infocom 92, May 1992.
(Al'so in "Access Control and Policy Enforcenent in
I nternetworks", Ph.D. Dissertation, Conputer Science
Departnent, University of Southern California, April 1991.)

[VW P. van Qorschot and M Wener, "Parallel Collision
Search with Applications to Hash Functions and Discrete
Logarithns", Proceedi ngs of the 2nd ACM Conf. Computer and
Conmruni cati ons Security, Fairfax, VA Novenber 1994.

Aut hors’ Addr esses

Hugo Krawczyk

IBM T.J. Watson Research Center
P. O. Box 704

Yor kt own Hei ghts, Ny 10598

EMai | : hugo@wat son. i bm com

Mhir Bellare

Dept of Conputer Science and Engi neering
Mai| Code 0114

University of California at San Diego
9500 G I man Drive

La Jolla, CA 92093

EMai | : m hir@s. ucsd. edu

Ran Canetti

IBM T.J. Watson Research Center
P. O. Box 704

Yor kt own Hei ghts, Ny 10598

EMai | : canetti @vwat son.i bm com

Krawczyk, et. al. I nf or mati onal [Page 11]

