Net wor k Wor ki ng Group J. Way
Request for Comments: 2744 Iris Associ ates
osol etes: 1509 January 2000
Cat egory: Standards Track

Generic Security Service APl Version 2 : C- bindings
Status of this Meno

Thi s docunent specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i mprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nemo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2000). Al Rights Reserved.
Abst r act

Thi s docunent specifies C |language bindings for Version 2, Update 1
of the Generic Security Service Application Programl|nterface (GSS-
APl), which is described at a | anguage-i ndependent conceptual |eve
in RFC-2743 [GSSAPI]. It obsol etes RFC 1509, making specific

i ncrenental changes in response to inplenmentation experience and
liaison requests. It is intended, therefore, that this nmeno or a
successor version thereof will becone the basis for subsequent
progression of the GSS-API specification on the standards track

The Generic Security Service Application Programring Interface
provides security services to its callers, and is intended for

i npl enentation atop a variety of underlying cryptographic nmechani sns.
Typically, GSS-API callers will be application protocols into which
security enhancenents are integrated through invocation of services
provided by the GSS-API. The GSS-API allows a caller application to
authenticate a principal identity associated with a peer application,
to delegate rights to a peer, and to apply security services such as
confidentiality and integrity on a per-nessage basis.

W ay St andards Track [Page 1]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

1. | ntroducti on

The Generic Security Service Application Programing Interface

[GSSAPI] provides security services to calling applications. It
allows a comunicating application to authenticate the user
associated with another application, to delegate rights to another
application, and to apply security services such as confidentiality
and integrity on a per-nessage basis.

There are four stages to using the GSS-API:

a) The application acquires a set of credentials with which it my
prove its identity to other processes. The application’s
credentials vouch for its global identity, which nay or may not be
related to any |ocal usernanme under which it may be running.

b) A pair of conmmunicating applications establish a joint security
context using their credentials. The security context is a pair
of GSS- APl data structures that contain shared state information,
which is required in order that per-nmessage security services my
be provided. Exanples of state that mi ght be shared between
applications as part of a security context are cryptographic keys,
and nessage sequence nunbers. As part of the establishment of a
security context, the context initiator is authenticated to the
responder, and nmay require that the responder is authenticated in
turn. The initiator nay optionally give the responder the right
toinitiate further security contexts, acting as an agent or
del egate of the initiator. This transfer of rights is termed
del egation, and is achieved by creating a set of credentials,
simlar to those used by the initiating application, but which may
be used by the responder

To establish and maintain the shared information that nakes up the
security context, certain GSS-APl calls will return a token data
structure, which is an opaque data type that may contain
cryptographically protected data. The caller of such a GSS-API
routine is responsible for transferring the token to the peer
application, encapsulated if necessary in an application-
application protocol. On receipt of such a token, the peer
application should pass it to a correspondi ng GSS-API routine
which will decode the token and extract the information, updating
the security context state information accordingly.

W ay St andards Track [Page 2]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

c) Per-nessage services are invoked to apply either

integrity and data origin authentication, or confidentiality,
integrity and data origin authentication to application data,
which are treated by GSS-APlI as arbitrary octet-strings. An
application transmtting a nmessage that it wishes to protect will
call the appropriate GSS-APlI routine (gss_get mc or gss wap) to
apply protection, specifying the appropriate security context, and
send the resulting token to the receiving application. The
receiver will pass the received token (and, in the case of data
protected by gss_get_mic, the acconpanying nessage-data) to the
correspondi ng decoding routine (gss_verify mc or gss_unwap) to
renove the protection and validate the data

d) At the completion of a communi cations session (which may extend
across several transport connections), each application calls a
GSS- APl routine to delete the security context. Miltiple contexts
may al so be used (either successively or simltaneously) within a
singl e conmuni cati ons associ ation, at the option of the
applications.

2. GSS- APl Routi nes

This section lists the routines that nake up the GSS-API, and
offers a brief description of the purpose of each routine.
Det ai |l ed descriptions of each routine are listed in al phabetica
order in section 5.

Table 2-1 GSS-APlI Credenti al - nanagenment Routi nes

Rout i ne Secti on Functi on

gss_acquire_cred 5.2 Assune a global identity; Obtain
a GSS- APl credential handle for
pre-existing credential s.

gss_add_cred 5.3 Construct credentials
increnental ly

gss_inquire_cred 5.21 Qotain information about a
credenti al

gss_inquire_cred_by nech 5.22 Ootain per-mechani sminformation
about a credenti al
gss_rel ease_cred 5.27 Discard a credential handle

W ay St andards Track [Page 3]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000
Tabl e 2-2 GSS-API Context-Level Routines
Rout i ne Secti on Functi on
gss_init_sec_cont ext 5.19 Initiate a security context with

gss_accept _sec_cont ext
gss_del et e_sec_cont ext
gss_process_cont ext _t oken
gss_context _tine

gss_i nqui re_cont ext
gss_wap_size limt
gss_export _sec_cont ext

gss_i mport _sec_cont ext

Table 2-3 GSS-API Per-ne

Rout i ne

gss_get _mc

gss_verify mc

gss_wrap

gss_unwr ap

W ay

Section

a peer application

5.1 Accept a security context
initiated by a
peer application

5.9 Discard a security context

5.25 Process a token on a security
context froma peer application

5.7 Deternmne for how | ong a context
will remain valid

5.20 Qotain information about a
security context

5.34 Determ ne token-size limt for
gss_wrap on a context

5.14 Transfer a security context to
anot her process

5.17 Inport a transferred context

ssage Routi nes

Functi on

5.15 Cal cul ate a cryptographic nessage
integrity code (MC) for a

nessage; integrity service

5.32 Check a M C agai nst a nessage;
verify integrity of a received
nmessage

5.33 Attach a MC to a nessage, and
optionally encrypt the nessage
content;
confidentiality service

5.31 Verify a nessage with attached

M C, and decrypt message content
i f necessary.

St andards Track [Page 4]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Table 2-4 GSS-APlI Nane mani pul ati on Routi nes

Rout i ne Secti on Functi on
gss_i mport _name 5.16 Convert a contiguous string nane
to internal-form
gss_di spl ay_nane 5.10 Convert internal-formnanme to
t ext
gss_conpar e_nane 5.6 Conpare two internal-form nanes
gss_rel ease_nane 5.28 Discard an internal-form nane

gss_inquire_nanmes_for _nmech 5.24 List the nane-types supported by
the specified nmechani sm
gss_inquire_nechs _for_name 5.23 List nmechani snms that support the
speci fied nane-type
.5 Convert an internal name to an MN
.13 Convert an MN to export form
.12 Create a copy of an internal nane

gss_canoni cal i ze_nane
gss_export _nane
gss_dupli cate_nane

o1 o1 Ol

Table 2-5 GSS-API M scel | aneous Routi nes

Rout i ne Secti on Functi on

gss_add_oi d_set nenber 5.4 Add an object identifier to
a set

gss_di spl ay_stat us 5.11 Convert a GSS-APlI status code
to text

gss_i ndi cat e_mechs 5.18 Determ ne avail abl e underl yi ng
aut henti cati on nechani sns

gss_rel ease_buffer 5.26 Discard a buffer

gss_rel ease_oi d_set 5.29 Discard a set of object

identifiers
gss_create_enpty oid_set 5.8 Create a set containing no
object identifiers
gss_test oid_set nenber 5.30 Determ nes whet her an obj ect
identifier is a nenber of a set.

I ndi vi dual GSS-API inpl enentati ons nmay augnent these routines by
provi di ng additional nechani smspecific routines if required
functionality is not available fromthe generic fornms. Applications
are encouraged to use the generic routines wherever possible on
portability grounds.

W ay St andards Track [Page 5]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

3. Data Types and Cal ling Conventions

The foll owi ng conventions are used by the GSS- APl C-1anguage
bi ndi ngs:

3.1. Integer types
GSS- APl uses the following integer data type:
OM _ui nt 32 32-bit unsigned integer

Where guaranteed minimumbit-count is inportant, this portable data
type is used by the GSS-API routine definitions. |Individual GSS-API
i mpl enentations will include appropriate typedef definitions to map
this type onto a built-in data type. |If the platformsupports the
X/ Open xom h header file, the OMuint32 definition contained therein
shoul d be used; the GSS-API header file in Appendi x A contains |ogic
that will detect the prior inclusion of xomh, and will not attenpt
to re-declare OMuint32. |If the X/ Open header file is not avail able
on the platform the GSS-API inplenmentation should use the small est
natural unsigned integer type that provides at |east 32 bits of
preci si on.

3.2. String and sim|lar data

Many of the GSS-APlI routines take argunments and return val ues that
descri be contiguous octet-strings. Al such data is passed between
the GSS-API and the caller using the gss_buffer_t data type. This
data type is a pointer to a buffer descriptor, which consists of a
length field that contains the total nunber of bytes in the datum
and a value field which contains a pointer to the actual datum

typedef struct gss_buffer_desc_struct {
size_t | engt h;
voi d *val ue;

} gss_buffer_desc, *gss buffer t;

Storage for data returned to the application by a GSS-API routine
using the gss_buffer_t conventions is allocated by the GSS-API
routine. The application nmay free this storage by invoking the
gss_rel ease_buffer routine. Allocation of the gss_buffer_desc object
is always the responsibility of the application; unused
gss_buffer_desc objects may be initialized to the val ue
GSS_C_EMPTY_BUFFER.

W ay St andards Track [Page 6]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

3.2.1. Opaque data types

Certain multiple-word data itens are considered opaque data types at
the GSS-API, because their internal structure has no significance
either to the GSS-APlI or to the caller. Exanples of such opaque data
types are the input_token paraneter to gss_init_sec _context (which is
opaque to the caller), and the input_nessage paraneter to gss_wap
(which is opaque to the GSS-API). Opaque data is passed between the
GSS- APl and the application using the gss_buffer_t datatype.

3.2.2. Character strings

Certain nmultiple-word data itens nay be regarded as sinple |1SO
Latin-1 character strings. Exanples are the printable strings passed
to gss_inport_nane via the input_name_buffer paranmeter. Sone GSS-API
routines also return character strings. Al such character strings
are passed between the application and the GSS-API inpl enmentation
using the gss_buffer_t datatype, which is a pointer to a
gss_buffer_desc object.

When a gss_buffer_desc object describes a printable string, the
length field of the gss_buffer_desc should only count printable
characters within the string. |In particular, a trailing NUL
character should NOT be included in the length count, nor should
either the GSS-API inplenentation or the application assune the
presence of an uncounted trailing NUL

3.3. hject ldentifiers

Certain GSS- APl procedures take paraneters of the type gss O D, or
ohject identifier. This is a type containing | SO defined tree-
structured values, and is used by the GSS-API caller to select an
underlying security nechanismand to specify nanespaces. A value of
type gss_O D has the followi ng structure

typedef struct gss_O D desc_struct {
OM ui nt 32 | engt h;
voi d *el enent s;

} gss_O D desc, *gss_Q D,

The elements field of this structure points to the first byte of an
octet string containing the ASN. 1 BER encodi ng of the value portion
of the normal BER TLV encoding of the gss_ OD. The length field
contains the nunber of bytes in this value. For exanple, the gss_QOD
val ue corresponding to {iso(1) identified-organization(3) icd-
ecma(12) nenber-conpany(2) dec(1011) cryptoAl gorithnms(7) DASS(5)},
meani ng the DASS X. 509 aut hentication mechanism has a length field
of 7 and an elenents field pointing to seven octets containing the

W ay St andards Track [Page 7]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

foll owi ng octal values: 53,14, 2,207,163,7,5. GSS-API inplenentations
shoul d provide constant gss_ O D values to allow applications to
request any supported nmechani sm al though applications are encouraged
on portability grounds to accept the default mechanism gss QD

val ues shoul d al so be provided to allow applications to specify
particul ar nane types (see section 3.10). Applications should treat
gss_O D desc val ues returned by GSS-API routines as read-only. In
particular, the application should not attenpt to deallocate them
with free(). The gss_O D desc datatype is equivalent to the X Open
OM obj ect _identifier datatype[XOM.

3.4. nject ldentifier Sets

Certain GSS- APl procedures take paranmeters of the type gss A D set.
This type represents one or nore object identifiers (section 2.3). A
gss_O D set object has the follow ng structure:

typedef struct gss_ O D set_desc_struct {
size_t count ;
gss OD elenents;

} gss_O D set_desc, *gss_O D set;

The count field contains the nunber of O Ds within the set. The
elenments field is a pointer to an array of gss_O D desc objects, each
of which describes a single AOD. gss _OD set values are used to nane
the avail abl e mechani snms supported by the GSS-API, to request the use
of specific mechanisnms, and to indicate which nechani sns a given
credential supports.

Al OD sets returned to the application by GSS-APlI are dynam ¢
objects (the gss O D set _desc, the "elenents" array of the set, and
the "el enents" array of each nenber O D are all dynamcally

al l ocated), and this storage nmust be deal |l ocated by the application
using the gss_rel ease_oid_set() routine.

3.5. Credentials

A credential handle is a caller-opaque atomic datumthat identifies a
GSS- APl credential data structure. It is represented by the caller-
opaque type gss_cred_id_t, which should be inplenmented as a pointer
or arithmetic type. |If a pointer inplementation is chosen, care nust
be taken to ensure that two gss _cred id t values may be conpared with
the == operator.

GSS- APl credentials can contain mechani smspecific principal
aut hentication data for multiple nechanisns. A GSS-API credential is
conposed of a set of credential-elenents, each of which is applicable
to a single nechanism A credential nay contain at nobst one

W ay St andards Track [Page 8]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

credential -el ement for each supported nechanism A credential -el enent
identifies the data needed by a single nechanismto authenticate a
single principal, and conceptually contains two credential -references
that describe the actual mechani smspecific authentication data, one
to be used by GSS-API for initiating contexts, and one to be used
for accepting contexts. For nechanisns that do not distinguish

bet ween acceptor and initiator credentials, both references woul d
point to the same underlying mechani smspecific authentication data.

Credential s describe a set of nechani smspecific principals, and give
their holder the ability to act as any of those principals. A
principal identities asserted by a single GSS-APlI credential should
bel ong to the same entity, although enforcenent of this property is
an i nmpl ementation-specific matter. The GSS-API does not make the
actual credentials available to applications; instead a credentia
handle is used to identify a particular credential, held internally
by GSS-API. The combination of GSS-API credential handle and

nmechani smidentifies the principal whose identity will be asserted by
the credential when used with that mechani sm

The gss_init_sec_context and gss_accept_sec_context routines all ow
the value GSS_C NO CREDENTIAL to be specified as their credentia
handl e parameter. This special credential-handle indicates a desire
by the application to act as a default principal. Wile individua
GSS- APl inplenmentations are free to determ ne such default behavior
as appropriate to the nechanism the follow ng default behavior by
these routines is recomended for portability:

gss_init_sec_cont ext

1) If there is only a single principal capable of initiating
security contexts for the chosen nechanismthat the application
is authorized to act on behalf of, then that principal shall be
used, otherw se

2) If the platformmaintains a concept of a default network-
identity for the chosen nmechanism and if the application is
aut horized to act on behalf of that identity for the purpose of
initiating security contexts, then the principal corresponding
to that identity shall be used, otherw se

3) If the platformmaintains a concept of a default |oca
identity, and provides a neans to map local identities into
network-identities for the chosen nechanism and if the
application is authorized to act on behal f of the network-
identity inmage of the default local identity for the purpose of

W ay St andards Track [Page 9]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

initiating security contexts using the chosen nmechanism then
the principal corresponding to that identity shall be used,
ot herw se

4) A user-configurable default identity should be used.
gss_accept _sec_cont ext

1) If there is only a single authorized principal identity capable
of accepting security contexts for the chosen nechani sm then
that principal shall be used, otherw se

2) |If the mechanismcan determne the identity of the target
princi pal by exam ning the context-establishnent token, and if
the accepting application is authorized to act as that
principal for the purpose of accepting security contexts using
the chosen nechanism then that principal identity shall be
used, otherwi se

3) If the nechani sm supports context acceptance by any principal
and if nutual authentication was not requested, any principa
that the application is authorized to accept security contexts
under using the chosen nechani sm may be used, otherw se

4) A user-configurable default identity shall be used.
The purpose of the above rules is to allow security contexts to be
established by both initiator and acceptor using the default behavior
wher ever possible. Applications requesting default behavior are
likely to be nore portabl e across nechani sns and platforns than ones
that use gss _acquire cred to request a specific identity.
3.6. Contexts

The gss_ctx_id_t data type contains a caller-opaque atom c val ue that

identifies one end of a GSS-API security context. It should be

i npl enented as a pointer or arithnetic type. |If a pointer type is
chosen, care should be taken to ensure that two gss _ctx id t val ues
may be conpared with the == operator.

The security context holds state information about each end of a peer
conmuni cati on, including cryptographic state infornation.

W ay St andards Track [Page 10]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

3.7. Authentication tokens

A token is a caller-opaque type that GSS-APlI uses to nmaintain
synchroni zati on between the context data structures at each end of a
GSS- APl security context. The token is a cryptographically protected
octet-string, generated by the underlying nechanismat one end of a
GSS- APl security context for use by the peer nmechani smat the other
end. Encapsulation (if required) and transfer of the token are the
responsibility of the peer applications. A token is passed between
the GSS-API and the application using the gss_buffer_t conventions.

3.8. Interprocess tokens

Certain GSS-API routines are intended to transfer data between
processes in nulti-process prograns. These routines use a caller-
opaque octet-string, generated by the GSS-APlI in one process for use
by the GSS-API in another process. The calling application is
responsi ble for transferring such tokens between processes in an CS
specific nanner. Note that, while GSS-API inplenentors are
encouraged to avoid placing sensitive information within interprocess
tokens, or to cryptographically protect them many inplenentations
will be unable to avoid placing key material or other sensitive data
within them It is the application’s responsibility to ensure that

i nterprocess tokens are protected in transit, and transferred only to
processes that are trustworthy. An interprocess token is passed

bet ween the GSS- APl and the application using the gss buffer _t
conventi ons.

3.9. Status val ues

Every GSS-APlI routine returns two distinct values to report status
information to the caller: GSS status codes and Mechani sm st at us
codes.

3.9.1. GSS status codes

GSS- APl routines return GSS status codes as their OM uint32 function
val ue. These codes indicate errors that are independent of the
under | yi ng mechani sm(s) used to provide the security service. The
errors that can be indicated via a GSS status code are either generic
APl routine errors (errors that are defined in the GSS-API
specification) or calling errors (errors that are specific to these

| anguage bi ndi ngs) .

A GSS status code can indicate a single fatal generic APl error from
the routine and a single calling error. |In addition, supplenentary
status informati on may be indicated via the setting of bits in the
suppl enentary info field of a GSS status code

W ay St andards Track [Page 11]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

These errors are encoded into the 32-bit GSS status code as foll ows:

Hence if a GSS-APlI routine returns a GSS status code whose upper 16
bits contain a non-zero value, the call failed. |If the calling error
field is non-zero, the invoking application’s call of the routine was
erroneous. Calling errors are defined in table 5-1. If the routine
error field is non-zero, the routine failed for one of the routine-
specific reasons listed belowin table 5-2. Whether or not the upper
16 bits indicate a failure or a success, the routine may indicate
additional information by setting bits in the supplenmentary info
field of the status code. The meaning of individual bits is listed
below in table 5-3.

Table 3-1 Calling Errors

Nane Value in field Meani ng
GSS S CALL | NACCESSI BLE READ 1 A required input paraneter
coul d not be read
GSS S CALL_ | NACCESSI BLE WRI TE 2 A required output paraneter
could not be witten.
GSS S CALL_BAD STRUCTURE 3 A paraneter was nal f or med

W ay St andards Track [Page 12]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Table 3-2 Routine Errors

Nare Value in field Meani ng

GSS_S BAD MECH 1 An unsupported mechani sm
was requested

GSS_S BAD NAME 2 An invalid nane was
supplied

GSS_S BAD NAMETYPE 3 A supplied nane was of an
unsupported type

GSS_S BAD BI NDI NGS 4 I ncorrect channel bindings
were supplied

GSS_S BAD STATUS 5 An invalid status code was
supplied

GSS S BADMC GSS S BAD SIG 6 A token had an invalid MC

GSS_S NO CRED 7 No credentials were
supplied, or the
credentials were
unavai |l abl e or
i naccessi bl e.

GSS_S _NO _CONTEXT 8 No context has been
est abl i shed

GSS_S DEFECTI VE_TOKEN 9 A token was invalid

GSS_S DEFECTI VE_CREDENTI AL 10 A credential was invalid

GSS_S CREDENTI ALS EXPI RED 11 The referenced credential s
have expired

GSS_S CONTEXT_EXPI RED 12 The context has expired

GSS_S FAI LURE 13 M scel | aneous failure (see
text)

GSS S BAD QOP 14 The qual ity-of-protection
requested could not be
provi ded

GSS_S UNAUTHORI ZED 15 The operation is forbidden
by | ocal security policy

GSS_S UNAVAI LABLE 16 The operation or option is
unavai | abl e

GSS_ S DUPLI CATE_ELEMENT 17 The requested credentia
el emrent al ready exists

GSS_S NAME_NOT_MWN 18 The provi ded name was not a

mechani sm nane

W ay St andards Track [Page 13]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Table 3-3 Supplenentary Status Bits

Nare Bit Number Meani ng

GSS_S CONTI NUE_NEEDED 0 (LSB) Returned only by
gss_init_sec_context or
gss_accept _sec_context. The
routi ne nust be called again
to conplete its function
See routine docunentation for
det ai |l ed description

GSS S DUPLI CATE_ TOKEN 1 The token was a duplicate of
an earlier token

GSS S OLD TOKEN 2 The token's validity period
has expired

GSS_S UNSEQ TOKEN 3 A later token has al ready been
processed

GSS S GAP_TCKEN 4 An expected per-nessage token

was not received

The routine docunentation al so uses the nanme GSS_S COWPLETE, which is
a zero value, to indicate an absence of any APl errors or
suppl enentary information bits.

Al GSS S xxx synbols equate to conplete OMuint32 status codes,
rather than to bitfield values. For exanple, the actual value of the
synmbol GSS_S BAD NAMETYPE (value 3 in the routine error field) is
3<<16. The macros GSS_CALLI NG ERROR(), GSS_ROUTI NE_ERROR() and
GSS_SUPPLEMENTARY_I NFQ() are provided, each of which takes a GSS
status code and renoves all but the relevant field. For exanple, the
val ue obtai ned by applying GSS ROUTINE ERROR to a status code renoves
the calling errors and supplenentary info fields, |eaving only the
routine errors field. The values delivered by these macros may be
directly conpared with a GSS_S xxx synbol of the appropriate type

The macro GSS ERROR() is also provided, which when applied to a GSS
status code returns a non-zero value if the status code indicated a
calling or routine error, and a zero value otherwise. Al nacros
defined by GSS-API eval uate their argunent(s) exactly once.

A GSS- APl inplementation may choose to signal calling errors in a

pl atf orm specific manner instead of, or in addition to the routine
val ue; routine errors and supplenentary info should be returned via
nmaj or status val ues only.

The GSS maj or status code GSS S FAILURE is used to indicate that the
under | yi ng mechani sm detected an error for which no specific GSS
status code is defined. The mechani smspecific status code wll
provide nore details about the error

W ay St andards Track [Page 14]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

3.9.2. Mechani smspecific status codes

GSS- APl routines return a mnor_status paraneter, which is used to
i ndi cate specialized errors fromthe underlying security nmechani sm
This paraneter may contain a single mechani smspecific error

i ndi cated by a OM ui nt 32 val ue.

The minor_status paranmeter will always be set by a GSS-API routine,
even if it returns a calling error or one of the generic APl errors

i ndi cated above as fatal, although nost other output paraneters may
remai n unset in such cases. However, output paraneters that are
expected to return pointers to storage allocated by a routine nust

al ways be set by the routine, even in the event of an error, although
in such cases the GSS-API routine nay elect to set the returned
parameter value to NULL to indicate that no storage was actually
allocated. Any length field associated with such pointers (as in a
gss_buffer_desc structure) should al so be set to zero in such cases.

3.10. Nanes

A name is used to identify a person or entity. GSS-APlI authenticates
the relationship between a nane and the entity claimng the name.

Since different authentication mechani sns nmay enploy different
nanespaces for identifying their principals, GSSAPI's naning support
is necessarily conmplex in nulti-nmechani smenvironnents (or even in
sone singl e-mechani sm envi ronments where the underlying nmechani sm
supports nultipl e namespaces).

Two distinct representations are defined for nanes:

An internal form This is the GSS-API "native" format for nanes,
represented by the inplenmentation-specific gss_nane_t type. It is
opaque to GSS-APlI callers. A single gss_nane_t object may contain
mul tiple names fromdifferent namespaces, but all nanes should
refer to the sane entity. An exanple of such an internal nane
woul d be the nanme returned froma call to the gss_inquire _cred
routine, when applied to a credential containing credentia
el enents for nultiple authentication mechani snms enpl oyi ng
di fferent nanespaces. This gss_name_t object will contain a
di stinct name for the entity for each authenticati on mechani sm

For GSS- APl inplenmentations supporting nultiple nanespaces,

obj ects of type gss _nane_t mnust contain sufficient information to
deterni ne the namespace to which each primtive nane bel ongs.

W ay St andards Track [Page 15]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Mechani sm speci fi c contiguous octet-string forns. A fornmat
capabl e of containing a single name (froma single namespace).
Conti guous string nanes are always accomnpani ed by an obj ect
identifier specifying the nanespace to which the name bel ongs, and
their format is dependent on the authentication mechani smthat
enpl oys the nane. Many, but not all, contiguous string names wl|
be printable, and nay therefore be used by GSS- APl applications
for communication with their users.

Routines (gss_inport_nane and gss_di spl ay_nane) are provided to
convert nanmes between contiguous string representations and the
internal gss _nane_t type. gss_inport_nanme may support nultiple
syntaxes for each supported nanespace, allow ng users the freedomto
choose a preferred nanme representation. gss_di splay _nane shoul d use
an inpl ementation-chosen printable syntax for each supported name-

type.

If an application calls gss_display _nanme(), passing the internal nane
resulting froma call to gss_inmport _name(), there is no guarantee the
the resulting contiguous string nane will be the sane as the origina
i mported string nane. Nor do name-space identifiers necessarily
survive unchanged after a journey through the internal name-form An
exanpl e of this mght be a mechani smthat authenticates X 500 nanes,
but provides an algorithm c mappi ng of Internet DNS nanes into X 500.
That mechani sm s inpl enentati on of gss_inport_nane() m ght, when
presented with a DNS nane, generate an internal name that contained
both the original DNS nane and the equival ent X 500 nane.
Alternatively, it mght only store the X. 500 nane. In the latter
case, gss_display_nane() would nmost likely generate a printable X 500
nanme, rather than the original DNS nane.

The process of authentication delivers to the context acceptor an
internal name. Since this name has been authenticated by a single
mechani sm it contains only a single nane (even if the internal name
presented by the context initiator to gss_init_sec_context had

nul tipl e conponents). Such nanmes are terned internal mechani sm
nanes, or "MN's and the nanes emtted by gss_accept_sec_context() are
al ways of this type. Since sone applications nmay require MNs wi thout
wanting to incur the overhead of an authentication operation, a
second function, gss_canonicalize_name(), is provided to convert a
general internal name into an M\

Conparison of internal-formnanes nmay be acconplished via the
gss_conpare_nanme() routine, which returns true if the two names being
conpared refer to the sanme entity. This renoves the need for the
application programto understand the syntaxes of the various
printable names that a given GSS-API inplenentati on may support.
Since GSS- APl assunes that all primtive nanes contained within a

W ay St andards Track [Page 16]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

given internal nane refer to the sane entity, gss_conpare_nanme() can
return true if the two names have at | east one prinitive nanme in
common. |f the inplenentation enbodi es know edge of equival ence

rel ati onshi ps between names taken from different namespaces, this
know edge may al so al | ow successful conparison of internal nanes
contai ning no overlapping primtive el ements.

When used in large access control lists, the overhead of invoking
gss_i nmport _name() and gss_conpare_nane() on each nane fromthe ACL
may be prohibitive. As an alternative way of supporting this case,
GSS- APl defines a special formof the contiguous string name which
may be conpared directly (e.g. with nencnp()). Contiguous nanes
suitable for conparison are generated by the gss_export nane()
routine, which requires an MN as input. Exported nanes may be re-

i mported by the gss_inport_nane() routine, and the resulting interna
nanme will also be an MN\. The gss_O D constant GSS _C NT_EXPORT_NAME
indentifies the "export nane" type, and the value of this constant is
given in Appendix A Structurally, an exported nane object consists
of a header containing an O D identifying the nechani smthat

aut henticated the name, and a trailer containing the nane itself,
where the syntax of the trailer is defined by the individua

mechani sm speci fication. The precise format of an export nane is
defined in the | anguage-i ndependent GSS- APl specification [GSSAPI].

Note that the results obtained by using gss _conpare nane() will in
general be different fromthose obtai ned by invoking
gss_canoni cal i ze_nanme() and gss_export_nane(), and then conparing the
exported names. The first series of operation determ nes whether two
(unaut henti cated) nanes identify the same principal; the second

whet her a particul ar nmechani smwoul d aut henticate them as the sane
principal. These two operations will in general give the sane
results only for M\s.

The gss_name_t datatype should be inplenmented as a pointer type. To
allow the conpiler to aid the application progranmrer by perform ng

type-checking, the use of (void *) is discouraged. A pointer to an
i mpl enent ati on-defined type is the preferred choice.

Storage is allocated by routines that return gss_nane_t values. A

procedure, gss_release_name, is provided to free storage associ ated
with an internal -form nane.

W ay St andards Track [Page 17]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

3.11. Channel Bindings

GSS- APl supports the use of user-specified tags to identify a given
context to the peer application. These tags are intended to be used
to identify the particul ar conmuni cations channel that carries the
context. Channel bindings are conmunicated to the GSS-API using the
foll owi ng structure:

typedef struct gss_channel _bi ndi ngs_struct {

OM _ui nt 32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM ui nt 32 accept or _addrtype;

gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;
} *gss_channel _bindi ngs_t;

The initiator_addrtype and acceptor_addrtype fields denote the type
of addresses contained in the initiator_address and acceptor_address
buf fers. The address type should be one of the follow ng:

GSS_C_AF_UNSPEC Unspeci fi ed address type

GSS _C AF _LOCAL Host -1 ocal address type

GSS_C AF I NET Internet address type (e.g. IP)
GSS _C _AF | MPLI NK ARPAnet | MP address type

GSS _C AF_PUP pup protocols (eg BSP) address type
GSS _C AF_CHACs M T CHACS protocol address type
GSS_C AF_Ns XEROX NS address type

GSS _C AF_NBS nbs address type

GSS_C_AF_ECMA ECVA address type

GSS _C AF DATAKIT dat akit protocol s address type
GSS C AF CaTT CCI TT protocol s

GSS C AF_SNA | BM SNA address type
GSS_C_AF_DECnet DECnet address type

GSS C AF DLI Direct data link interface address type
GSS _C AF_LAT LAT address type

GSS_C _AF_HYLI NK NSC Hyper channel address type

GSS _C AF_APPLETALK Appl eTal k address type

GSS C AF_BSC Bl SYNC 2780/ 3780 address type
GSS_C _AF_DSS Di stributed system services address type
GSS _C AF _Csi OSlI TP4 address type

GSS_C _AF_X25 X. 25

GSS C AF NULLADDR No address specified

Note that these synbols name address fanilies rather than specific
addressing formats. For address families that contain several
alternative address forns, the initiator_address and acceptor_address
fields nmust contain sufficient information to determ ne which address

W ay St andards Track [Page 18]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

formis used. When not otherw se specified, addresses should be
specified in network byte-order (that is, native byte-ordering for
the address fanily).

Conceptual |y, the GSS-API concatenates the initiator_addrtype,
initiator_address, acceptor_addrtype, acceptor_address and
application _data to forman octet string. The nmechanismcal culates a
M C over this octet string, and binds the MC to the context
establ i shnent token emitted by gss_init_sec_context. The sane

bi ndi ngs are presented by the context acceptor to

gss_accept _sec_context, and a MC is calculated in the same way. The
calculated MCis conpared with that found in the token, and if the
M Cs differ, gss_accept_sec _context will return a GSS S BAD Bl NDI NGS
error, and the context will not be established. Sone nechani sns may
i ncl ude the actual channel binding data in the token (rather than
just a MC); applications should therefore not use confidential data
as channel - bi ndi ng component s.

I ndi vi dual nechani sns may i npose additional constraints on addresses
and address types that may appear in channel bindings. For exanple,
a nmechanismnmay verify that the initiator_address field of the
channel bindings presented to gss_init_sec_context contains the
correct network address of the host system Portable applications
shoul d therefore ensure that they either provide correct infornmation
for the address fields, or omt addressing information, specifying
GSS C AF NULLADDR as the address-types.

3.12. Optional paraneters

Various paraneters are described as optional. This nmeans that they
follow a convention whereby a default value may be requested. The
foll owi ng conventions are used for onitted paraneters. These
conventions apply only to those paraneters that are explicitly
docunent ed as opti onal

3.12.1. gss_buffer_t types
Speci fy GSS C NO BUFFER as a value. For an input paraneter this
signifies that default behavior is requested, while for an output
parameter it indicates that the information that would be returned
via the parameter is not required by the application

3.12. 2. Integer types (input)

I ndi vi dual paraneter docunentation lists values to be used to
i ndi cate default actions.

W ay St andards Track [Page 19]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

3.12.3. Integer types (output)

Specify NULL as the value for the pointer.
3.12.4. Pointer types

Speci fy NULL as the val ue.
3.12.5. hject IDs

Specify GSS_C NO O D as the val ue.
3.12.6. nject ID Sets

Specify GSS C NO O D SET as the val ue.
3.12.7. Channel Bindings

Specify GSS C NO CHANNEL _BI NDI NGS to indicate that channel bindings
are not to be used.

4. Addi tional Controls

This section discusses the optional services that a context initiator
may request of the GSS-API at context establishment. Each of these
services is requested by setting a flag in the reqg_flags input
parameter to gss_init_sec_context.

The optional services currently defined are:

Del egation - The (usually tenporary) transfer of rights from
initiator to acceptor, enabling the acceptor to authenticate
itself as an agent of the initiator.

Mut ual Authentication - In addition to the initiator authenticating
its identity to the context acceptor, the context acceptor shoul d
al so authenticate itself to the initiator.

Repl ay detection - In addition to providing nessage integrity
services, gss_get_mc and gss_wrap should include nessage
nunbering information to enable gss_verify mc and gss_unwap to
detect if a nessage has been dupli cat ed.

Qut - of - sequence detection - In addition to providing nessage
integrity services, gss_get_mc and gss_wap should include
nmessage sequencing information to enable gss_verify nic and
gss_unwap to detect if a message has been received out of
sequence.

W ay St andards Track [Page 20]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Anonynous aut hentication - The establishnment of the security context
shoul d not reveal the initiator’'s identity to the context
acceptor.

Any currently undefined bits within such flag argunents shoul d be

i gnored by GSS-API inplenmentations when presented by an application
and shoul d be set to zero when returned to the application by the
GSS- APl i npl ement ati on.

Sone mechani sms may not support all optional services, and sone
mechani sns may only support some services in conjunction with others.
Both gss_init_sec_context and gss_accept_sec_context informthe

applications which services will be available fromthe context when
the establishnent phase is conplete, via the ret _flags output
parameter. |In general, if the security mechanismis capabl e of

providing a requested service, it should do so, even if additiona
services nust be enabled in order to provide the requested service.
If the mechanismis incapable of providing a requested service, it
shoul d proceed w thout the service, |eaving the application to abort
the context establishnent process if it considers the requested
service to be nandatory.

Sone mechani sms may specify that support for some services is
optional, and that inplenmentors of the nmechani smneed not provide it.
This is nmost commonly true of the confidentiality service, often
because of legal restrictions on the use of data-encryption, but nmay
apply to any of the services. Such nechanisns are required to send
at |l east one token fromacceptor to initiator during context
establ i shnent when the initiator indicates a desire to use such a
service, so that the initiating GSS-APlI can correctly indicate

whet her the service is supported by the acceptor’s GSS-API.

4.1. Del egation

The GSS-API allows delegation to be controlled by the initiating
application via a bool ean paraneter to gss init_sec_context(), the
routine that establishes a security context. Sone mechani sms do not
support del egati on, and for such mechani sns attenpts by an
application to enabl e del egati on are ignored.

The acceptor of a security context for which the initiator enabled
del egation will receive (via the del egated cred _handl e paraneter of
gss_accept _sec_context) a credential handle that contains the

del egated identity, and this credential handl e nmay be used to
initiate subsequent GSS-API security contexts as an agent or del egate
of the initiator. |If the original initiator’'s identity is "A" and
the delegate’s identity is "B", then, depending on the underlying
mechani sm the identity enbodi ed by the del egated credential may be

W ay St andards Track [Page 21]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

either "A" or "B acting for A"

For many mechani snms that support del egation, a sinple bool ean does
not provide enough control. Examples of additional aspects of

del egation control that a mechani sm m ght provide to an application
are duration of del egation, network addresses from which del egation
is valid, and constraints on the tasks that nay be perforned by a
del egate. Such controls are presently outside the scope of the GSS-
APl . GSS- APl inpl enentations supporting mechani snms of fering
addi ti onal controls should provide extension routines that allow
these controls to be exercised (perhaps by nodifying the initiator’s
GSS- APl credential prior to its use in establishing a context).
However, the sinple delegation control provided by GSS-API shoul d

al ways be able to over-ride other mechani smspecific del egation
controls - If the application instructs gss_init_sec_context() that
del egation is not desired, then the inplenentation nust not permt
del egation to occur. This is an exception to the general rule that a
mechani sm nmay enabl e services even if they are not requested -

del egation may only be provided at the explicit request of the
application.

4.2. Mitual authentication

Usual |y, a context acceptor will require that a context initiator
authenticate itself so that the acceptor nay nmake an access-contro
decision prior to perfornming a service for the initiator. In sone

cases, the initiator may al so request that the acceptor authenticate
itself. GSS-API allows the initiating application to request this
mut ual aut hentication service by setting a flag when calling
gss_init_sec_context.

The initiating application is informed as to whether or not the
context acceptor has authenticated itself. Note that some nechani sns
may not support mnutual authentication, and other nmechani sns nay

al ways perform nutual authentication, whether or not the initiating
application requests it. |In particular, nutual authentication nmy be
requi red by sonme mechanisns in order to support replay or out-of-
sequence nessage detection, and for such mechani snms a request for
either of these services will automatically enabl e nutual

aut henti cati on.

W ay St andards Track [Page 22]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

4.3. Replay and out-of-sequence detection

The GSS-APlI may provide detection of mis-ordered nessage once a
security context has been established. Protection nay be applied to
messages by either application, by calling either gss_get_mc or
gss_wap, and verified by the peer application by calling
gss_verify mc or gss_unwap.

gss_get _mic calculates a cryptographic M C over an application
nmessage, and returns that MC in a token. The application should
pass both the token and the nessage to the peer application, which
presents themto gss verify mc

gss_wap cal culates a cryptographic M C of an application nessage,
and pl aces both the M C and the nmessage inside a single token. The
Application should pass the token to the peer application, which
presents it to gss_unwap to extract the nessage and verify the MC

Ei ther pair of routines may be capabl e of detecting out-of-sequence
nessage delivery, or duplication of nessages. Details of such m s-
ordered nmessages are indicated through supplenmentary status bits in
the mpjor status code returned by gss_verify mc or gss_unwap. The
rel evant supplenentary bits are:

GSS S DUPLI CATE_ TOKEN - The token is a duplicate of one that has
al ready been received and processed. Only
contexts that claimto provide replay detection
may set this bit.

GSS S OLD TOKEN - The token is too old to determ ne whet her or
not it is a duplicate. Contexts supporting
out - of - sequence detection but not replay
detection should always set this bit if
GSS_ S UNSEQ TOKEN i s set; contexts that support
repl ay detection should only set this bit if the
token is so old that it cannot be checked for
dupl i cati on.

GSS S UNSEQ TOKEN - A | ater token has already been processed.

GSS S GAP_TCKEN - An earlier token has not yet been received.

A mechani sm need not maintain a list of all tokens that have been
processed in order to support these status codes. A typica
nmechani sm m ght retain informati on about only the nost recent "N’
tokens processed, allowing it to distinguish duplicates and m ssing
tokens within the nmost recent "N' messages; the receipt of a token
ol der than the nost recent "N' would result in a GSS_S OLD_TOKEN
st at us.

W ay St andards Track [Page 23]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

4. 4. Anonynous Aut hentication

In certain situations, an application may wish to initiate the

aut hentication process to authenticate a peer, without revealing its
own identity. As an exanple, consider an application providing
access to a database containing nedical information, and offering
unrestricted access to the service. A client of such a service might
wi sh to authenticate the service (in order to establish trust in any
information retrieved fromit), but mght not wish the service to be
able to obtain the client’s identity (perhaps due to privacy concerns
about the specific inquiries, or perhaps sinply to avoid being pl aced
on mailing-lists).

In normal use of the GSS-API, the initiator’'s identity is nade

avail able to the acceptor as a result of the context establishnent
process. However, context initiators may request that their identity
not be revealed to the context acceptor. Many mechani sms do not
support anonynous authentication, and for such mechani snms the request
will not be honored. An authentication token will be still be
generated, but the application is always inforned if a requested
service is unavailable, and has the option to abort context
establishnent if anonymity is valued above the other security
services that would require a context to be established.

In addition to informng the application that a context is

est abl i shed anonynously (via the ret _flags outputs from
gss_init_sec_context and gss_accept_sec_context), the optiona
src_nane output from gss_accept_sec_context and gss_i nquire_cont ext
will, for such contexts, return a reserved internal-form namne,
defined by the inplenentation

When presented to gss_di splay nane, this reserved internal-form nane
will result in a printable nane that is syntactically distinguishable
fromany valid principal nane supported by the inplenmentation
associated with a nane-type object identifier with the val ue

GSS_C _NT_ANONYMOUS, whose val ue us given in Appendix A The
printable form of an anonynobus nane should be chosen such that it

i mplies anonynity, since this name nmay appear in, for exanple, audit

| ogs. For exanple, the string "<anonynmous>" mnight be a good choice,
if no valid printable names supported by the inplenentation can begin
with "<" and end with ">".

4.5. Confidentiality
If a context supports the confidentiality service, gss_wap nay be
used to encrypt application nessages. Messages are selectively

encrypted, under the control of the conf_req_flag input parameter to
gss_wrap.

W ay St andards Track [Page 24]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

4.6. Inter-process context transfer

GSS- APl V2 provides routines (gss_export_sec_context and
gss_import_sec_context) which allow a security context to be
transferred between processes on a single nmachine. The npbst conmobn
use for such a feature is a client-server design where the server is
i npl enented as a single process that accepts incom ng security
contexts, which then launches child processes to deal with the data
on these contexts. 1In such a design, the child processes nmust have
access to the security context data structure created within the
parent by its call to gss_accept_sec_context so that they can use
per - message protection services and delete the security context when
t he communi cati on sessi on ends.

Since the security context data structure is expected to contain
sequencing information, it is inpractical in general to share a

cont ext between processes. Thus GSS-API provides a cal
(gss_export_sec_context) that the process which currently owns the
context can call to declare that it has no intention to use the

cont ext subsequently, and to create an inter-process token containing
i nformati on needed by the adopting process to successfully inport the
context. After successful conpletion of gss_export_sec_context, the
original security context is made inaccessible to the calling process
by GSS-API, and any context handles referring to this context are no
| onger valid. The originating process transfers the inter-process
token to the adopting process, which passes it to

gss_import _sec_context, and a fresh gss _ctx_id_t is created such that
it is functionally identical to the original context.

The inter-process token may contain sensitive data fromthe origina
security context (including cryptographic keys). Applications using
inter-process tokens to transfer security contexts nust take
appropriate steps to protect these tokens in transit.

| mpl ement ati ons are not required to support the inter-process
transfer of security contexts. The ability to transfer a security
context is indicated when the context is created, by
gss_init_sec_context or gss_accept _sec_context setting the

GSS _C TRANS FLAG bit in their ret_flags paraneter.

4.7. The use of incomplete contexts

Sone nechani snms nmay al |l ow the per-nessage services to be used before
the context establishnent process is conplete. For exanple, a
mechani sm may include sufficient information in its initial context-
| evel token for the context acceptor to i medi ately decode messages
protected with gss_wap or gss_get_mc. For such a nechanism the
initiating application need not wait until subsequent context-|eve

W ay St andards Track [Page 25]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

t okens have been sent and received before invoking the per-nessage
protection services.

The ability of a context to provide per-nessage services in advance
of compl ete context establishment is indicated by the setting of the
GSS _C PROT_READY FLAG bit in the ret _flags paranmeter from
gss_init_sec_context and gss_accept_sec_context. Applications w shing
to use per-nessage protection services on partially-established
contexts should check this flag before attenpting to i nvoke gss_w ap
or gss_get_mc.

5. GSS- APl Routine Descriptions

In addition to the explicit major status codes docunented here, the
code GSS S FAILURE may be returned by any routine, indicating an

i mpl enent ati on-specific or mechani smspecific error condition
further details of which are reported via the mnor_status paraneter.

5.1. gss_accept_sec_cont ext

OM ui nt 32 gss_accept _sec_context (
OM ui nt 32 *m nor _st at us,
gss_ctx_id_t *cont ext _handl e,
const gss_cred_id_ t acceptor_cred_handl e,
const gss_buffer_t input_token_ buffer,
const gss_channel _bindings_t input_chan_bi ndings,

const gss_name_t *src_name,

gss_QAO D *mech_t ype,

gss_buffer _t out put _t oken

OM ui nt 32 *ret fl ags,

OM ui nt 32 *tinme_rec,

gss_cred_ id_t *del egat ed_cred_handl e)
Pur pose:

Allows a renptely initiated security context between the application
and a renpte peer to be established. The routine may return a

out put _t oken whi ch should be transferred to the peer application
where the peer application will present it to gss_init_sec_context.
If no token need be sent, gss_accept_sec_context will indicate this
by setting the length field of the output_token argunent to zero. To
conpl ete the context establishnent, one or nore reply tokens may be
required fromthe peer application; if so, gss_accept_sec_context
will return a status flag of GSS_S CONTI NUE_NEEDED, in which case it
shoul d be called again when the reply token is received fromthe peer
application, passing the token to gss_accept_sec_context via the

i nput _t oken paraneters.

W ay St andards Track [Page 26]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Portabl e applications should be constructed to use the token |ength
and return status to determ ne whether a token needs to be sent or
waited for. Thus a typical portable caller should al ways invoke
gss_accept _sec_context within a | oop:

gss_ctx_id t context_hdl = GSS_C NO CONTEXT;

do {
recei ve_t oken_from peer (i nput _t oken);
maj _stat = gss_accept_sec_cont ext (&m n_st at,
&cont ext _hdl ,
cred_hdl,
i nput _t oken,
i nput _bi ndi ngs,
&cl i ent _nane,
&rech_type,
out put _t oken,
& et fl ags,
& inme_rec,
&del eg_cred);
if (GSS_ERROR(maj _stat)) {
report_error(maj _stat, mn_stat);
s
i f (output_token->length !'=0) {
send_t oken_t o_peer (out put _t oken);

gss_rel ease_buffer (& n_stat, output_token);
b
if (GSS_ERROR(mmj _stat)) {
if (context_hdl !'= GSS _C NO CONTEXT)
gss_del ete_sec_cont ext (& n_st at,
&cont ext _hdl ,
GSS_C _NO BUFFER);
br eak;
b
} while (mpj _stat & GSS_S_CONTI NUE_NEEDED) ;

Whenever the routine returns a major status that includes the value
GSS_S CONTI NUE_NEEDED, the context is not fully established and the
followi ng restrictions apply to the output paraneters:

The value returned via the tine_rec paraneter is undefined Unless the
acconpanying ret flags paranmeter contains the bit

GSS _C PROT_READY FLAG, indicating that per-nessage services may be
applied in advance of a successful conpletion status, the value
returned via the mech_type paraneter may be undefined until the
routine returns a major status value of GSS S COWLETE.

W ay St andards Track [Page 27]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

The val ues of the GSS C DELEG FLAG

GSS_C MJUTUAL_FLAG, GSS_C REPLAY_FLAG GSS_C SEQUENCE_FLAG

GSS_C _CONF_FLAG, GSS_C | NTEG_FLAG and GSS_C ANON_FLAG bits returned
via the ret_flags parameter should contain the values that the

i mpl enent ati on expects would be valid if context establishment were
to succeed.

The val ues of the GSS C PROT_READY FLAG and GSS C TRANS FLAG hits
within ret_flags should indicate the actual state at the tine
gss_accept _sec_context returns, whether or not the context is fully
est abl i shed.

Al though this requires that GSS-API inplenmentations set the

GSS C PROT_READY FLAG in the final ret _flags returned to a caller
(i.e. when acconpani ed by a GSS_ S COWLETE status code), applications
should not rely on this behavior as the flag was not defined in
Version 1 of the GSS-API. Instead, applications should be prepared to
use per-nessage services after a successful context establishnment,
according to the GSS C I NTEG FLAG and GSS _C CONF_FLAG val ues.

Al other bits within the ret_flags argunent should be set to zero.
While the routine returns GSS_S CONTI NUE_NEEDED, the val ues returned
via the ret_flags argunment indicate the services that the

i npl enent ati on expects to be available fromthe established context.

If the initial call of gss_accept_sec _context() fails, the

i mpl ement ati on should not create a context object, and should | eave
the value of the context_handl e paranmeter set to GSS_C NO CONTEXT to
indicate this. 1In the event of a failure on a subsequent call, the

i npl enentation is pernmitted to delete the "half-built" security
context (in which case it should set the context _handl e paraneter to
GSS _C NO CONTEXT), but the preferred behavior is to | eave the
security context (and the context _handl e paraneter) untouched for the
application to delete (using gss_del ete_sec_context).

During context establishnment, the infornational status bits

GSS S OLD TOKEN and GSS S DUPLI CATE TOKEN i ndicate fatal errors, and
GSS- APl nmechani snms shoul d al ways return themin association with a
routine error of GSS S FAILURE. This requirenment for pairing did not
exist in version 1 of the GSS-API specification, so applications that
wi sh to run over version 1 inplenentations nmust special -case these
codes.

W ay St andards Track [Page 28]

RFC 2744

Par anet ers:

GSS- APl V2: G- bi ndi ngs January 2000

cont ext _handl e gss_ctx_id_t, read/nodify context handl e for new

acceptor_cred_handl e

i nput _t oken_buf fer

i nput _chan_bi ndi ngs

src_name

mech_t ype

out put _t oken

W ay

context. Supply GSS _C NO CONTEXT for first
call; use value returned in subsequent calls.
Once gss_accept _sec_context() has returned a
val ue via this paraneter, resources have been
assigned to the correspondi ng context, and nust
be freed by the application after use with a
call to gss_delete_sec_context().

gss cred id t, read Credential handle clained
by context acceptor. Specify
GSS_C NO CREDENTI AL to accept the context as a
default principal. |1f GSS_C NO CREDENTIAL is
speci fied, but no default acceptor principal is
defined, GSS S NO CRED wi || be returned.

buf fer, opaque, read token obtained fromrenote
application.

channel bindings, read, optional Application-
specified bindings. Allows application to
securely bind channel identification informtion
to the security context. |f channel bindings
are not used, specify GSS_C_NO CHANNEL_BI NDI NGS

gss_nanme_t, nodify, optional Authenticated nane
of context initiator. After use, this nane
shoul d be deal | ocated by passing it to
gss_release name(). |If not required, specify
NULL.

nject 1D, nodify, optional Security mechani sm
used. The returned QD value will be a pointer
into static storage, and should be treated as
read-only by the caller (in particular, it does
not need to be freed). If not required, specify
NULL.

buf fer, opaque, nodify Token to be passed to
peer application. |If the length field of the
returned token buffer is 0, then no token need
be passed to the peer application. |If a non-
zero length field is returned, the associated
storage nmust be freed after use by the
application with a call to gss_release buffer().

St andards Track [Page 29]

RFC 2744

ret _flags

W ay

GSS- APl V2: G- bi ndi ngs January 2000

bi t-mask, nodify, optional Contains various
i ndependent flags, each of which indicates that
the context supports a specific service option
I f not needed, specify NULL. Synbolic nanes are
provi ded for each flag, and the synbolic nanes
corresponding to the required flags should be
| ogically-ANDed with the ret _flags value to test
whet her a given option is supported by the
context. The flags are:
GSS_C DELEG FLAG
True - Del egated credentials are avail able
via the del egated cred_handl e
par anet er
Fal se - No credentials were del egated
GSS_C_MJTUAL_FLAG
True - Renote peer asked for nmutua
aut henti cation
Fal se - Renote peer did not ask for nutua
aut henti cation
GSS_C_REPLAY_FLAG
True - replay of protected nessages
will be detected
Fal se - repl ayed nessages will not be
det ect ed
GSS_C_SEQUENCE_FLAG
True - out-of -sequence protected
nessages will be detected
Fal se - out-of-sequence nmessages will not
be detected
GSS_C_CONF_FLAG
True - Confidentiality service may be
i nvoked by calling the gss_wap
routine
Fal se - No confidentiality service (via
gss_w ap) available. gss_wap wll
provi de nessage encapsul ati on
dat a-ori gi n authentication and
integrity services only.
GSS_C_| NTEG FLAG
True - Integrity service may be invoked by
calling either gss_get_mc or
gss_wrap routines.
Fal se - Per-nmessage integrity service
unavai | abl e.
GSS_C_ANON_FLAG
True - The initiator does not wish to
be authenticated; the src_nane
paraneter (if requested) contains

St andards Track [Page 30]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

an anonynous i nternal nane.
Fal se - The initiator has been
aut henticated normally.
GSS_C _PROT_READY_FLAG
True - Protection services (as specified
by the states of the GSS _C CONF_FLAG
and GSS C I NTEG FLAG are avail abl e
i f the acconpanyi ng maj or status
return value is either GSS_S COWLETE
or GSS_S CONTI NUE_NEEDED.
Fal se - Protection services (as specified
by the states of the GSS _C CONF_FLAG
and GSS C I NTEG FLAG are avail abl e
only if the acconpanyi ng naj or status
return value is GSS_S COVPLETE
GSS_C TRANS_FLAG
True - The resultant security context may
be transferred to other processes via
a call to gss_export_sec_context().
Fal se - The security context is not
transferabl e.
Al other bits should be set to zero.

time_rec I nteger, nodify, optiona
nunber of seconds for which the context will
remain valid. Specify NULL if not required.

del egat ed_cred_handl e
gss_cred_id_t, nodify, optional credentia
handl e for credentials received from cont ext
initiator. Only valid if deleg flag in
ret flags is true, in which case an explicit
credential handle (i.e. not GSS_C NO CREDENTI AL)
will be returned; if deleg _flag is fal se,
gss_accept _context() will set this parameter to
GSS C NO CREDENTIAL. If a credential handle is
returned, the associ ated resources must be
rel eased by the application after use with a
call to gss_release cred(). Specify NULL if not
required.

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

GSS_S CONTI NUE_NEEDED | ndi cates that a token fromthe peer
application is required to conmplete the
context, and that gss_accept_sec_cont ext mnust
be called again with that token

W ay St andards Track [Page 31]

RFC 2744

GSS- APl V2: G- bi ndi ngs January 2000

GSS_S DEFECTI VE_TOKEN | ndi cat es that consistency checks perforned on

the i nput _token fail ed.

GSS_S DEFECTI VE_CREDENTI AL | ndi cates that consistency checks

GSS_S_NO_CRED The

performed on the credential failed.

supplied credentials were not valid for context
acceptance, or the credential handle did not
ref erence any credenti al s.

GSS_S CREDENTI ALS _EXPI RED The referenced credentials have expired.

GSS_ S BAD BI NDINGS The input_token contains different channe

GSS_S_NO_CONTEXT

GSS_S BAD SI G The

GSS_S OLD TOKEN The

GSS_S_DUPLI CATE_TOKEN

GSS_S BAD MECH The

5. 2.

gss_acquire_cred

bi ndings to those specified via the
i nput _chan_bi ndi ngs paraneter.

I ndi cates that the supplied context handle did not

refer to a valid context.
i nput _token contains an invalid MC.

i nput _token was too old. This is a fatal error
during context establishnent.

The input _token is valid, but is a duplicate of
a token already processed. This is a fata
error during context establishnent.

recei ved token specified a mechanismthat is
not supported by the inplenentation or the
provi ded credenti al

OM ui nt 32 gss_acquire_cred (

W ay

OM ui nt 32 *m nor _st at us,
const gss_nane_t desired_nane,
OM ui nt 32 time_req,

const gss_O D set desired_nechs,
gss_cred_usage_ t cred_usage,

gss_cred_id_t *out put _cred_handl e,
gss_O D set *act ual _mechs,
OM ui nt 32 *time_rec)
St andards Track [Page 32]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Pur pose:

Allows an application to acquire a handle for a pre-existing
credential by name. GSS-APlI inplementations nust inpose a |loca
access-control policy on callers of this routine to prevent

unaut hori zed callers fromacquiring credentials to which they are not
entitled. This routine is not intended to provide a "login to the
networ k" function, as such a function would involve the creation of
new credentials rather than nerely acquiring a handle to existing
credentials. Such functions, if required, should be defined in

i mpl enent ati on-specific extensions to the API.

If desired _nane is GSS C NO NAME, the call is interpreted as a
request for a credential handle that will invoke default behavior
when passed to gss_init_sec_context() (if cred_usage is

GSS C I NI TI ATE or GSS _C BOTH) or gss_accept_sec_context() (if
cred_usage is GSS_C ACCEPT or GSS_C BOTH).

Mechani sns shoul d honor the desired nechs paraneter, and return a
credential that is suitable to use only with the requested

mechani sns. An exception to this is the case where one underlying
credential elenment can be shared by nmultiple mechanisms; in this case
it is permssible for an inplenentation to indicate all mechani snms
with which the credential elenent nay be used. |f desired nmechs is
an enpty set, behavior is undefined.

This routine is expected to be used primarily by context acceptors,
since inmplenentations are likely to provide mechani smspecific ways
of obtaining GSS-API initiator credentials fromthe system|l ogin
process. Sone inplenentations nay therefore not support the
acquisition of GSS C IN TIATE or GSS C BOTH credentials via
gss_acquire_cred for any name other than GSS_C NO NAME, or a nanme
produced by applying either gss_inquire_cred to a valid credenti al
or gss_inquire_context to an active context.

If credential acquisition is tinme-consumng for a nechanism the
nmechani sm nmay choose to delay the actual acquisition until the
credential is required (e.g. by gss_init_sec_context or

gss_accept _sec_context). Such nmechani smspecific inplenmentation

deci sions should be invisible to the calling application; thus a cal
of gss_inquire cred i mediately followi ng the call of
gss_acquire_cred nust return valid credential data, and may therefore
i ncur the overhead of a deferred credential acquisition

W ay St andards Track [Page 33]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Par anet ers:

desired_nane gss_hane_t, read
Nanme of principal whose credentia
shoul d be acquired

time_req I nteger, read, optiona
nunber of seconds that credentials
shoul d remain valid. Specify GSS_C_| NDEFI NI TE
to request that the credentials have the maxi num
permtted lifetime.

desired_nechs Set of Obhject IDs, read, optiona
set of underlying security nechani sns that
may be used. GSS C NO O D SET nay be used
to obtain an inplenentation-specific default.

cred_usage gss_cred _usage t, read
GSS C BOTH - Credentials nmay be used
either to initiate or accept
security contexts.
GSS CINITIATE - Credentials will only be
used to initiate security contexts.
GSS _C ACCEPT - Credentials will only be used to
accept security contexts.

out put_cred_handle gss_cred_id_ t, nodify
The returned credential handle. Resources
associated with this credential handl e nust
be rel eased by the application after use
with a call to gss_release cred().

act ual _nechs Set of Object IDs, nodify, optiona
The set of nechanisns for which the
credential is valid. Storage associated
with the returned O D-set nust be rel eased by
the application after use with a call to
gss_release oid set(). Specify NULL if not

required.
time_rec I nteger, nodify, optiona
Actual nunber of seconds for which the
returned credentials will remain valid. [If the

i mpl enent ati on does not support expiration of
credentials, the value GSS_C | NDEFI NI TE wi | |
be returned. Specify NULL if not required

W ay St andards Track [Page 34]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000
m nor _stat us I nteger, nodify
Mechani sm specific status code
Function value: GSS status code
GSS S COWPLETE Successful conpletion
GSS S BAD MECH Unavai | abl e nmechani sm request ed

GSS_S BAD NAMETYPE Type contai ned within desired_nane paraneter
i s not supported

GSS_S BAD NAME Val ue supplied for desired_nane paraneter is il
f or ned.

GSS_S CREDENTI ALS EXPI RED The credentials could not be acquired
Because t hey have expired.

GSS S NO CRED No credentials were found for the specified nane.
5.3. gss_add_cred

OM ui nt 32 gss_add_cred (

OM ui nt 32 *m nor _st at us,
const gss_cred_id_t input_cred_handl e,
const gss_nane_t desired_nane,
const gss_QOD desired_mech,
gss_cred_usage_t cred_usage,
OM ui nt 32 initiator_tinme_req,
OM ui nt 32 acceptor _tinme_req,
gss_cred_ id_t *out put _cred_handl e,
gss_QO D set *act ual _mechs,
OM _ui nt 32 *initiator_time_rec,
OM ui nt 32 *acceptor_tine_rec)
Pur pose:
Adds a credential-elenent to a credential. The credential-elenment is

identified by the nanme of the principal to which it refers. GSS-API

i mpl enent ati ons must i npose a | ocal access-control policy on callers
of this routine to prevent unauthorized callers fromacquiring
credential -el ements to which they are not entitled. This routine is
not intended to provide a "login to the network"™ function, as such a
function would involve the creation of new mechani smspecific

aut hentication data, rather than nerely acquiring a GSS-API handle to
exi sting data. Such functions, if required, should be defined in

i mpl enent ati on-specific extensions to the API.

W ay St andards Track [Page 35]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

If desired nane is GSS C NO NAME, the call is interpreted as a
request to add a credential elenent that will invoke default behavior
when passed to gss_init_sec_context() (if cred_usage is

GSS C I NI TI ATE or GSS _C BOTH) or gss_accept_sec_context () (if
cred_usage is GSS_C ACCEPT or GSS_C BOTH).

This routine is expected to be used prinmarily by context acceptors,
since inplenentations are likely to provide nmechani smspecific ways
of obtaining GSS-API initiator credentials fromthe systemlogin
process. Sone inplenentations nmay therefore not support the
acquisition of GSS _C IN TIATE or GSS_C BOTH credentials via
gss_acquire_cred for any name other than GSS_C NO NAME, or a nane
produced by applying either gss _inquire cred to a valid credenti al
or gss_inquire context to an active context.

If credential acquisition is tinme-consum ng for a nechanism the
mechani sm may choose to delay the actual acquisition until the
credential is required (e.g. by gss_init_sec_context or

gss_accept _sec_context). Such nmechani smspecific inplenmentation
deci si ons should be invisible to the calling application; thus a cal
of gss_inquire cred i Mmediately following the call of gss_add_cred
must return valid credential data, and nay therefore incur the
overhead of a deferred credential acquisition

This routine can be used to either conpose a new credenti al
containing all credential-elements of the original in addition to the
new y-acquire credential -elenent, or to add the new credenti al -
element to an existing credential. If NULL is specified for the

out put _cred_handl e paraneter argunent, the new credenti al - el enent

will be added to the credential identified by input _cred handle; if a
valid pointer is specified for the output _cred handl e paraneter, a
new credential handle will be created.

I f GSS_C _NO CREDENTIAL is specified as the input_cred_handl e,
gss_add_cred will conpose a credential (and set the

out put _cred_handl e paraneter accordingly) based on default behavior
That is, the call will have the sane effect as if the application had
first made a call to gss_acquire cred(), specifying the sane usage
and passing GSS_C NO NAME as the desired_nane paraneter to obtain an
explicit credential handl e enbodyi ng default behavior, passed this
credential handle to gss_add_cred(), and finally called

gss_release cred() on the first credential handle.

I f GSS_C NO CREDENTIAL is specified as the input_cred_handl e
parameter, a non-NULL out put_cred_handl e must be supplied.

W ay St andards Track [Page 36]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code.

i nput_cred_handle gss _cred_id t, read, optiona

The credential to which a credential -el emrent
will be added. If GSS_C NO CREDENTIAL is
specified, the routine will conpose the new
credential based on default behavior (see
description above). Note that, while the
credential -handle is not nodified by
gss_add _cred(), the underlying credentia

will be nodified if output_credential handle
is NULL.
desi red_nane gss_hane_t, read.

Nanme of principal whose credentia
shoul d be acquired.

desired_mech ohject 1D, read
Under | yi ng security mechanismw th which the
credential may be used.

cred_usage gss_cred _usage t, read

GSS C BOTH - Credential may be used

either to initiate or accept

security contexts.

GSS CINITIATE - Credential will only be
used to initiate security
cont ext s.

GSS C ACCEPT - Credential will only be used to

accept security contexts.

initiator _time_req Integer, read, optiona
nunber of seconds that the credentia
should renmain valid for initiating security
contexts. This argument is ignored if the
conposed credentials are of type GSS_C ACCEPT.
Specify GSS C | NDEFI NI TE to request that the
credential s have the maxi num permitted
initiator lifetine.

acceptor _time_req Integer, read, optiona
nunber of seconds that the credentia
should remain valid for accepting security
contexts. This argunent is ignored if the
conposed credentials are of type GSS C I N TI ATE.

W ay St andards Track [Page 37]

RFC 2744

GSS- APl V2: G- bi ndi ngs January 2000

Specify GSS C I NDEFI NI TE to request that the
credentials have the maxi num permitted initiator
lifetine.

out put _cred_handl e gss_cred_id_t, nmodify, optiona

actual _nechs

The returned credential handl e, containing

the new credential -el ement and all the
credential -el ements frominput_cred_handl e.

If a valid pointer to a gss_cred_id_t is
supplied for this paraneter, gss_add_cred
creates a new credential handl e containing al
credential -elements fromthe i nput_cred_handl e
and the newly acquired credential -elenent; if
NULL is specified for this paraneter, the newy
acquired credential -elenment will be added

to the credential identified by input_cred_handl e.

The resources associated with any credentia
handl e returned via this parameter nust be
rel eased by the application after use with a
call to gss_release cred().

Set of Object IDs, nodify, optiona

The conpl ete set of mechani sns for which
the new credential is valid. Storage for
the returned O D-set nust be freed by the
application after use with a call to
gss_release_oid_set(). Specify NULL if
not required.

initiator _time_rec Integer, nodify, optiona

Actual nunber of seconds for which the

returned credentials will remain valid for
initiating contexts using the specified
mechanism [|If the inplementation or mechani sm
does not support expiration of credentials, the
value GSS C INDEFINITE will be returned. Specify
NULL if not required

acceptor _time_rec Integer, nodify, optiona

W ay

Actual nunber of seconds for which the

returned credentials will remain valid for
accepting security contexts using the specified
mechanism |f the inplenmentation or nmechani sm
does not support expiration of credentials, the
value GSS _C INDEFINITE will be returned. Specify
NULL if not required

St andards Track [Page 38]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Functi on val ue: GSS status code
GSS_S COWPLETE Successful conpl etion
GSS_S BAD MECH Unavai | abl e mechani sm request ed

GSS_S BAD NAMETYPE Type contai ned within desired_nane paraneter
is not supported

GSS_S BAD NAME Val ue supplied for desired_nane paraneter is
ill-formed.

GSS S DUPLI CATE_ELEMENT The credential already contains an el enent
for the requested mechani smwith overl apping
usage and validity period.

GSS_S CREDENTI ALS _EXPI RED The required credentials could not be
added because they have expired.

GSS S NO CRED No credentials were found for the specified nane.
5.4. gss_add_oi d_set_menber

OM ui nt 32 gss_add_oid _set nenber (

OM ui nt 32 *m nor _st at us,
const gss_ OD nenber_oid,
gss_QO D set *0i d_set)

Pur pose:

Add an bject ldentifier to an Cbject ldentifier set. This routine
is intended for use in conjunction with gss create_enpty oid_set when
constructing a set of mechanism O Ds for input to gss_acquire_cred.
The oid_set paranmeter nust refer to an O D set that was created by
GSS- APl (e.g. a set returned by gss_create_enpty_oid_set()). GSS-API
creates a copy of the nenber _oid and inserts this copy into the set,
expandi ng the storage allocated to the ODset’s elenents array if
necessary. The routine may add the new nmenber O D anywhere within
the elements array, and inplenentations should verify that the new
menber _oid is not already contained within the elements array; if the
menber _oid is already present, the oid_set should remain unchanged.

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

W ay St andards Track [Page 39]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

nenber oid oject 1D, read
The object identifier to copied into
the set.

oi d_set Set of (bject ID, nodify

The set in which the object identifier
shoul d be inserted.

Functi on val ue: GSS status code
GSS_S COVPLETE Successful compl etion
5.5. gss_canonicalize_nane

OM ui nt 32 gss_canoni cal i ze_name (
OM ui nt 32 *m nor _st at us,
const gss_name_t input_nane,
const gss_AD nmech_type
gss_nane_t *out put _nane)

Pur pose:

CGenerate a canoni cal mechani smnane (M\N) froman arbitrary interna
name. The nmechanismnane is the nane that woul d be returned to a
context acceptor on successful authentication of a context where the
initiator used the input _nanme in a successful call to
gss_acquire_cred, specifying an O D set containing <mech_type> as its
only menber, followed by a call to gss_init_sec_context, specifying
<mech_type> as the authentication mechani sm

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

i nput _nane gss_hane_t, read
The nane for which a canonical formis
desired

mech_t ype ohject 1D, read

The aut henti cation mechani smfor which the
canoni cal formof the name is desired. The
desired nmechani sm nmust be specified explicitly;
no default is provided.

W ay St andards Track [Page 40]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

out put _nane gss_hame_t, nodify
The resul tant canonical name. Storage
associated with this nane nmust be freed by
the application after use with a call to
gss_rel ease_nane() .

Functi on val ue: GSS status code
GSS_S COWPLETE Successful conpl etion
GSS_S BAD MECH The identified mechanismis not supported.
GSS_S BAD NAMETYPE The provided internal nane contains no el enents
that could be processed by the specified
mechani sm
GSS_S BAD NAME The provided internal nane was ill-formed.
5. 6. gss_conpare_nane
OM ui nt 32 gss_conpare_name (
OM ui nt 32 *m nor _st at us,
const gss_name_t nanel,
const gss_name_t nane2,
i nt *nanme_equal)

Pur pose:

Al ows an application to conpare two internal-formnanes to determne
whet her they refer to the sanme entity.

If either name presented to gss_conpare_nane denotes an anonynous
principal, the routines should indicate that the two names do not
refer to the sane identity.

Par anet ers:

m nor _stat us I nteger, nodify
Mechani sm specific status code

namel gss_nane_t, read
i nternal -form nane

nane2 gss_hanme_t, read
i nternal -form nane

W ay St andards Track [Page 41]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

nane_equal bool ean, nodify
non-zero - nanes refer to sane entity
zero - nanes refer to different entities
(strictly, the nanes are not known
to refer to the sane identity).
Functi on val ue: GSS status code
GSS_S COWPLETE Successful conpl etion
GSS_S BAD NAMETYPE The two nanmes were of inconparable types.
GSS_S BAD NAME One or both of nanel or name2 was ill-forned.
5.7. gss_context _tine

OM ui nt 32 gss_context _tinme (

OM ui nt 32 *m nor _st at us,
const gss_ctx id t context handl e,
OM ui nt 32 *time_rec)

Pur pose:

Det erm nes the nunmber of seconds for which the specified context wll
remain valid.

Par anet ers:

m nor _st at us I nteger, nodify
| mpl ement ati on specific status code.

cont ext _handl e gss ctx_ id t, read
Identifies the context to be interrogated.

time_rec I nteger, nodify
Nurmmber of seconds that the context will remmin
valid. |If the context has already expired,
zero will be returned.

Function val ue: GSS status code

GSS_S COWPLETE Successful conpletion
GSS S CONTEXT_EXPI RED The context has al ready expired

GSS_S NO CONTEXT The context _handl e paraneter did not identify
a valid context

W ay St andards Track [Page 42]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

5.8. gss_create_enpty oid_set

OM uint 32 gss_create_enpty_oid_set (
OM ui nt 32 *m nor _st at us,
gss_O D set *oid_set)

Pur pose:

Create an object-identifier set containing no object identifiers, to
whi ch nenbers may be subsequently added using the
gss_add_oi d_set _nenber() routine. These routines are intended to be
used to construct sets of nechanismobject identifiers, for input to
gss_acqui re_cr ed.

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

oi d_set Set of Object IDs, nodify
The enpty object identifier set.
The routine will allocate the

gss_O D set_desc object, which the
application nust free after use with
a call to gss release oid_set().

Functi on val ue: GSS status code
GSS_S COVPLETE Successful compl etion
5.9. gss_del ete_sec_cont ext

OM ui nt 32 gss_del ete_sec_context (
OM ui nt 32 *m nor _st at us,
gss_ctx_id_t *context_handl e,
gss_buffer _t output_token)

Pur pose:

Del ete a security context. gss_delete _sec_context will delete the

| ocal data structures associated with the specified security context,
and may generate an output token, which when passed to the peer
gss_process_context _token will instruct it to do likewise. If no
token is required by the nmechanism the GSS-API should set the I ength
field of the output_token (if provided) to zero. No further security
services may be obtai ned using the context specified by

cont ext _handl e.

W ay St andards Track [Page 43]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

In addition to del eting established security contexts,

gss_del ete_sec_context nust also be able to delete "half-built"
security contexts resulting froman inconplete sequence of
gss_init_sec_context()/gss_accept_sec_context() calls.

The out put token paraneter is retained for conpatibility with version
1 of the GSS-API. It is recomrended that both peer applications

i nvoke gss_del ete_sec_context passing the value GSS C NO BUFFER for
the out put_token paraneter, indicating that no token is required, and
that gss_del ete_sec_context should sinply delete | ocal context data
structures. |If the application does pass a valid buffer to

gss_del ete_sec_context, mechani snms are encouraged to return a zero-

| ength token, indicating that no peer action is necessary, and that
no token should be transferred by the application

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

cont ext _handl e gss_ctx_id_t, nodify
context handl e identifying context to delete.
After deleting the context, the GSS-API wll set
this context handle to GSS _C NO CONTEXT

out put _t oken buf fer, opaque, nodify, optiona
token to be sent to renmpote application to
instruct it to also delete the context. It

is recommended that applications specify

GSS _C NO BUFFER for this paraneter, requesting

| ocal deletion only. |If a buffer paraneter is
provi ded by the application, the nechani sm may
return a token in it; mechanisms that inplenent
only local deletion should set the length field of
this token to zero to indicate to the application
that no token is to be sent to the peer

Functi on val ue: GSS status code
GSS_ S COVPLETE Successful compl etion

GSS_ S NO CONTEXT No valid context was supplied

W ay St andards Track [Page 44]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

5. 10. gss_di spl ay_nane

OM ui nt 32 gss_di spl ay_nane (

OM ui nt 32 *m nor _st at us,

const gss_name_t input_nane,

gss_buffer t out put _nane_buffer,

gss_QO D *out put _nane_type)
Pur pose:

Allows an application to obtain a textual representation of an opaque
internal-form nanme for display purposes. The syntax of a printable
nane is defined by the GSS-API inplenentation

I f input_nane denotes an anonynpus principal, the inplenentation
should return the gss_O D val ue GSS_C NT_ANONYMOUS as the

out put _nane_type, and a textual name that is syntactically distinct
fromall valid supported printable nanes in output_nane_buffer.

If input_nane was created by a call to gss_inmport_nane, specifying
GSS C NO O D as the nane-type, inplenentations that enploy |azy
conversi on between name types may return GSS_ C NO O D via the

out put _nane_t ype paraneter.

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code.

i nput _nane gss_hane_t, read
nane to be displ ayed

out put _nane_buffer buffer, character-string, nodify
buffer to receive textual name string.
The application nmust free storage associ ated
with this name after use with a call to
gss_rel ease_buffer().

out put_nane_type oject ID, nodify, optiona
The type of the returned nane. The returned
gss ODw Il be a pointer into static storage,
and should be treated as read-only by the caller
(in particular, the application should not attenpt
to free it). Specify NULL if not required.

W ay St andards Track [Page 45]

RFC 2744 GSS- API

Functi on val ue:
GSS_S COWPLETE Successfu

GSS_S BAD_NAME
5. 11. gss_display_status

OM ui nt 32 gss_display_status (

V2: C- bi ndi ngs

January 2000

GSS st atus code
conpl eti on

i nput _name was ill-formed

OM ui nt 32 *m nor _st at us,

OM ui nt 32 st at us_val ue,

i nt status_type,
const gss_ O D nech_type

OM ui nt 32 *message_cont ext,

gss_buffer_t status_string)

Pur pose:

Allows an application to obtain
status code, for display to the
some status values nay indicate
need to call gss_display_status
a single text string.

The message_cont ext parameter

a textual representation of a GSS-API
user or for |ogging purposes. Since
mul tiple conditions, applications may
multiple times, each call generating

i s used by

gss_display_status to store state information about which error
nessages have al ready been extracted froma given status_val ue;
nessage_context must be initialized to O by the application prior to

the first call,
in this paraneter

The nessage _cont ext paraneter contains al
by gss_display status in order to extract further
even when a non-zero value is returned in this

st atus_val ue;
par anet er,

extracts al
stderr:

OM ui nt 32 nessage_cont ext;

OM ui nt 32 status_code;

OM ui nt 32 mmj _st at us;

OM ui nt32 m n_status;
gss_buffer _desc status_string;

message_context = O;

do {

W ay

and gss_di splay_
if there are further

the application is not
agai n unl ess subsequent nessages are desired.
messages froma given status code and prints themto

St andards Track

status will return a non-zero val ue
nmessages to extract.

state information required
nessages fromthe

required to call gss_display_status
The foll owi ng code

[Page 46]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

maj _status = gss_display_status (
&m n_st at us,
st at us_code,
GSS_C_GSS_CODE
GSS_C _NO_ A Db,
&mressage_cont ext,
&status_string)

fprintf(stderr,
"% *s\n",
(int)status_string.length,
(char *)status_string.val ue);

gss_rel ease_buffer (& n_status, &status_string);

} while (message_context !'= 0);

Par anet er s:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

status_val ue I nt eger, read
Status value to be converted

status_type I nt eger, read
GSS C GSS CODE - status _value is a GSS status
code

GSS C MECH CODE - status_value is a nechani sm
status code

mech_t ype nject 1D, read, optiona
Under | yi ng mechani sm (used to interpret a
m nor status value) Supply GSS CNOOD to
obtain the system default.

nmessage_cont ext I nteger, read/ nodify
Shoul d be initialized to zero by the
application prior to the first call
On return fromgss_display_status(),
a non-zero status_val ue paraneter indicates
that additional nessages may be extracted
fromthe status code via subsequent calls

W ay St andards Track [Page 47]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

to gss_display_status(), passing the sane
status_val ue, status type, nech_type, and
nmessage_cont ext paraneters.

status_string buffer, character string, nodify
textual interpretation of the status_val ue.
St orage associated with this paraneter nust
be freed by the application after use with
a call to gss_release_buffer().

Functi on val ue: GSS status code

GSS S COWPLETE Successful conpletion

GSS_S BAD MECH I ndi cates that translation in accordance with
an unsupported nechani smtype was requested

GSS_S BAD STATUS The status val ue was not recogni zed, or the
status type was neither GSS _C GSS CODE nor
GSS_C_MECH_CODE.

5.12. gss_duplicate_nane

OM ui nt 32 gss_duplicate_nanme (

OM ui nt 32 *m nor _st at us,

const gss_nanme_t src_naneg,

gss_hane_t *dest _nane)
Pur pose:

Create an exact duplicate of the existing internal name src_nane.
The new dest _nanme will be independent of src_nanme (i.e. src_nanme and
dest _nane nmust both be rel eased, and the rel ease of one shall not
affect the validity of the other).

Par anet ers:

m nor _stat us I nteger, nodify
Mechani sm specific status code

src_nane gss_nane_t, read
internal name to be duplicated

dest _nane gss_hanme_t, nodify
The resultant copy of <src_name>.
St orage associated with this name nust
be freed by the application after use
with a call to gss_rel ease nane().

W ay St andards Track [Page 48]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Functi on val ue: GSS status code

GSS_S COWPLETE Successful conpl etion

GSS_S BAD NAME The src_name paraneter was ill-formed.
5.13. gss_export_name

OM ui nt 32 gss_export_nane (

OM ui nt 32 *m nor _st at us,

const gss_name_t input_nane,

gss_buffer t exported_nane)
Pur pose:

To produce a canonical contiguous string representation of a
mechani sm namre (M\), suitable for direct conparison (e.g. with
mencnp) for use in authorization functions (e.g. matching entries in
an access-control list). The <input_name> paraneter must specify a
valid MN (i.e. an internal nane generated by gss_accept_sec_context
or by gss_canonicalize_nane).

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

i nput _nane gss_hanme_t, read
The MN to be exported

exported _nane gss_buffer _t, octet-string, nodify
The canoni cal contiguous string form of
<i nput _nanme>. Storage associated with
this string must freed by the application
after use with gss_rel ease_buffer().
Functi on val ue: GSS status code
GSS_S COWPLETE Successful conpletion

GSS_S NAME_NOT_MWN The provided internal name was not a mechani sm
name.

GSS S BAD NAME The provided internal nane was ill-forned.

GSS_S BAD NAMETYPE The internal name was of a type not supported
by the GSS-API inplenmentation

W ay St andards Track [Page 49]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

5.14. gss_export_sec_cont ext

OM ui nt 32 gss_export_sec_context (
OM ui nt 32 *m nor _st at us,
gss_ctx_id_t *context_handl e,
gss_buffer _t interprocess_token)

Pur pose:

Provided to support the sharing of work between multiple processes.
This routine will typically be used by the context-acceptor, in an
application where a single process receives incom ng connection
requests and accepts security contexts over them then passes the
establ i shed context to one or nore other processes for nessage
exchange. gss_export_sec_context() deactivates the security context
for the calling process and creates an interprocess token which, when
passed to gss_inport_sec_context in another process, will re-activate
the context in the second process. Only a single instantiation of a
gi ven context may be active at any one tine; a subsequent attenpt by
a context exporter to access the exported security context will fail.

The i npl enentati on may constrain the set of processes by which the

i nterprocess token may be inported, either as a function of |oca
security policy, or as a result of inplenentation decisions. For
exanpl e, sone inplenmentations may constrain contexts to be passed
only between processes that run under the same account, or which are
part of the same process group

The interprocess token may contain security-sensitive information
(for exanple cryptographic keys). While nechanisns are encouraged to
ei ther avoid placing such sensitive infornation within interprocess
tokens, or to encrypt the token before returning it to the
application, in a typical object-library GSS-API inplenentation this
may not be possible. Thus the application nust take care to protect
the interprocess token, and ensure that any process to which the
token is transferred is trustworthy.

If creation of the interprocess token is successful, the

i mpl ement ation shall deall ocate all process-w de resources associ ated
with the security context, and set the context_handle to

GSS _C NO CONTEXT. In the event of an error that makes it inpossible
to conplete the export of the security context, the inplenentation
nmust not return an interprocess token, and should strive to | eave the
security context referenced by the context handl e paraneter

untouched. If this is inpossible, it is pernmissible for the

i mpl enentation to delete the security context, providing it also sets
the context_handl e paraneter to GSS_C _NO CONTEXT.

W ay St andards Track [Page 50]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

cont ext _handl e gss ctx_id t, nodify
context handle identifying the context to
transfer.

i nt erprocess_t oken buf fer, opaque, nodify
token to be transferred to target process.
St orage associated with this token nust be
freed by the application after use with a
call to gss_release buffer().

Functi on val ue: GSS status code

GSS S COWPLETE Successful conpletion

GSS S CONTEXT_EXPI RED The context has expired

GSS_ S NO CONTEXT The context was invalid

GSS_S UNAVAI LABLE The operation is not supported.

5.15. gss_get mc

OM uint32 gss_get_mc (

OM ui nt 32 *m nor _st at us,
const gss_ctx id t context handl e,
gss_qop_t qop_req,
const gss_buffer _t nmessage buffer,
gss_buffer_t nsg_t oken)

Pur pose:

Cenerates a cryptographic MC for the supplied nessage, and pl aces
the MCin a token for transfer to the peer application. The qop_req
paraneter allows a choice between several cryptographic algorithms,

i f supported by the chosen mechani sm

Si nce sone application-level protocols may wish to use tokens enmitted

by gss wap() to provide "secure fram ng", inplenentations nust
support derivation of MCs from zero-1length nessages.

W ay St andards Track [Page 51]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Par anet ers:

m nor _st at us I nteger, nodify
| mpl ement ati on specific status code.

cont ext _handl e gss ctx_id t, read
identifies the context on which the nessage
will be sent

gop_req gss_qop_t, read, optiona

Speci fies requested quality of protection
Cal l ers are encouraged, on portability grounds,
to accept the default quality of protection

of fered by the chosen nmechani sm which may be
requested by specifying GSS_C QOP_DEFAULT for
this parameter. |f an unsupported protection
strength is requested, gss_get_mc will return a
maj or _status of GSS S BAD QOP

nessage_buf fer buf fer, opaque, read
nmessage to be protected

nmsg_t oken buf fer, opaque, nodify
buffer to receive token. The application nust
free storage associated with this buffer after
use with a call to gss_release buffer().

Function val ue: GSS st atus code

GSS_S COWPLETE Successful conpletion

GSS S CONTEXT_EXPI RED The context has al ready expired

GSS_S NO CONTEXT The context _handl e paraneter did not identify
a valid context

GSS S BAD QOP The specified QOP is not supported by the
mechani sm

5.16. gss_inmport_nane

OM ui nt 32 gss_inport_nane (

OM ui nt 32 *m nor _st at us,
const gss_buffer_t input_name_buffer,
const gss_QO D i nput _nane_type
gss_nane_t *out put _nane)

W ay St andards Track [Page 52]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Pur pose:

Convert a contiguous string nane to internal form |In general, the

i nternal name returned (via the <output_name> parameter) will not be
an MN, the exception to this is if the <input_nane_type> indicates
that the contiguous string provided via the <input_nane_buffer>
paranmeter is of type GSS C NT_EXPORT_NAME, in which case the returned
internal name will be an MN for the nechanismthat exported the nane.

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

i nput _nanme_buffer buffer, octet-string, read
buf fer containing contiguous string name to convert

i nput _nanme_type Oobject 1D, read, optiona
oj ect 1D specifying type of printable
nane. Applications may specify either
GSS C NOAODto use a nechani smspecific
default printable syntax, or an O D recogni zed
by the GSS-API inplenentation to nanme a
speci fi c nanespace

out put _nane gss_hane_t, nodify
returned name in internal form Storage
associated with this name nust be freed

by the application after use with a cal
to gss_rel ease_name().

Function val ue: GSS status code
GSS_ S COVPLETE Successful conmpl etion
GSS_S BAD NAMETYPE The i nput _name_type was unrecogni zed

GSS S BAD NAME The i nput _name paraneter could not be interpreted
as a nane of the specified type

GSS_S BAD MECH The i nput name-type was GSS_C NT_EXPORT_NAME,

but the nmechani smcontained within the
i nput-nanme i s not supported

W ay St andards Track [Page 53]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

5.17. gss_inmport_sec_cont ext

OM ui nt 32 gss_i nport_sec_context (

OM ui nt 32 *m nor _st at us,

const gss_buffer_t interprocess_token

gss_ctx_id_ t *cont ext _handl e)
Pur pose:

Allows a process to inport a security context established by another
process. A given interprocess token may be inmported only once. See
gss_export_sec_cont ext.

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

i nterprocess_token buffer, opaque, nodify
token recei ved from exporting process

cont ext handl e gss_ctx_id_ t, nodify
context handle of newly reactivated context.
Resour ces associated with this context handle
nust be rel eased by the application after use
with a call to gss_delete sec_context().

Function val ue: GSS st atus code

GSS_S COWPLETE Successful conpletion

GSS S NO CONTEXT The token did not contain a valid context
ref erence.

GSS_S DEFECTI VE_TOKEN The token was invalid.
GSS_S UNAVAI LABLE The operation is unavail abl e.

GSS_S UNAUTHORI ZED Local policy prevents the inport of this context
by the current process.

5.18. gss_indicate_nechs
OM ui nt 32 gss_indicate _nechs (

OM _ui nt 32 *m nor _st at us,
gss_O D set *mech_set)

W ay St andards Track [Page 54]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Pur pose:

Al'lows an application to determ ne which underlying security
nmechani snms are avail abl e.

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm specific status code

mech_set set of Object IDs, nodify
set of inplenmentation-supported nechani sns.
The returned gss_ O D set value will be a

dynami cal |l y-all ocated O D set, that should
be released by the caller after use with a
call to gss_release oid_set().

Functi on val ue: GSS status code

GSS S COWPLETE Successful conpletion

5.19. gss_init_sec_context

OM uint32 gss_init_sec_context (

OM ui nt 32 *m nor _st at us,
const gss_cred_ id_t initiator_cred_handl e
gss_ctx_id_t *cont ext _handl e, \
const gss_name_t target _nane,
const gss_QAOD mech_t ype
OM ui nt 32 req_fl ags,
OM ui nt 32 time_req,
const gss_channel _bindings_t input_chan_bi ndi ngs,
const gss_buffer_t i nput _t oken
gss_QAO D *actual _mech_type
gss_buffer _t out put _t oken
OM ui nt 32 *ret fl ags,
OM ui nt 32 *time_rec)

Pur pose:

Initiates the establishment of a security context between the
application and a renote peer. Initially, the input_token paraneter
shoul d be specified either as GSS C NO BUFFER, or as a pointer to a
gss_buffer_desc object whose length field contains the value zero.
The routine may return a output _token which should be transferred to

the peer application, where the peer application will present it to
gss_accept _sec_context. If no token need be sent,
gss_init_sec_context will indicate this by setting the length field

W ay St andards Track [Page 55]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

of the output _token argunment to zero. To conplete the context

establ i shnent, one or nore reply tokens may be required fromthe peer
application; if so, gss_init_sec_context will return a status

contai ning the supplementary information bit GSS_ S CONTI NUE_NEEDED.
In this case, gss_init_sec_context should be called again when the
reply token is received fromthe peer application, passing the reply
token to gss_init_sec_context via the input_token paraneters.

Portabl e applications should be constructed to use the token | ength
and return status to deterni ne whether a token needs to be sent or
waited for. Thus a typical portable caller should al ways invoke
gss_init_sec_context within a | oop:

int context _established = O;
gss_ctx_id_t context_hdl = GSS_C_NO CONTEXT;

i nput _t ;ﬂ(én— >l ength = O;

whil e (!context_established) {

nmaj _stat = gss_init_sec_context(&m n_stat,
cred_hdl,
&cont ext _hdl ,
target _nane,
desired_mnech,
desired_servi ces,
desired_tine,
i nput _bi ndi ngs,
i nput _t oken,
&act ual _nech,
out put _t oken,
&act ual _servi ces,
&actual _tinme);

if (GSS_ERROR(maj _stat)) {

report_error(maj _stat, mn_stat);

b

if (output_token->length !'= 0) {
send_t oken_t o_peer (out put _t oken);
gss_rel ease_buffer (& n_stat, output_token)

b
if (GSS_ERROR(mmj _stat)) {

if (context_hdl != GSS _C NO CONTEXT)
gss_del ete_sec_cont ext (&nmi n_st at,
&cont ext _hdl ,
GSS_C_NO BUFFER);
br eak;

H

W ay St andards Track [Page 56]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

if (mpj_stat & GSS_S_CONTI NUE_NEEDED) {
recei ve_t oken_from peer (i nput _t oken);

} else {

b
b

context established = 1

Whenever the routine returns a major status that includes the value
GSS_S CONTI NUE_NEEDED, the context is not fully established and the
followi ng restrictions apply to the output paraneters:

W ay

The value returned via the time_rec paraneter is undefined Unl ess
the acconpanying ret flags paraneter contains the bit

GSS C PROT_READY FLAG, indicating that per-nessage services may be
applied in advance of a successful conpletion status, the value
returned via the actual _mech_type paranmeter is undefined until the
routine returns a major status value of GSS S COVPLETE

The val ues of the GSS C DELEG FLAG GSS C MJUTUAL FLAG

GSS_C _REPLAY_FLAG, GSS_C SEQUENCE_FLAG GSS_C CONF_FLAG

GSS _C | NTEG FLAG and GSS_C ANON FLAG bits returned via the

ret _flags paranmeter should contain the values that the

i mpl enent ati on expects would be valid if context establishnment
were to succeed. In particular, if the application has requested
a service such as del egation or anonynous authentication via the
req_flags argunment, and such a service is unavailable fromthe
under|yi ng mechani sm gss_init_sec_context should generate a token
that will not provide the service, and indicate via the ret_flags
argunent that the service will not be supported. The application
may choose to abort the context establishment by calling

gss_del ete_sec_context (if it cannot continue in the absence of
the service), or it may choose to transmt the token and conti nue
context establishnent (if the service was nmerely desired but not
mandat ory) .

The val ues of the GSS_C PROT_READY_FLAG and GSS_C TRANS FLAG bits
within ret _flags should indicate the actual state at the tine
gss_init_sec_context returns, whether or not the context is fully
est abl i shed.

GSS- APl i npl ement ations that support per-nessage protection are
encouraged to set the GSS C PROT_READY FLAG in the final ret flags
returned to a caller (i.e. when acconpani ed by a GSS S COVPLETE
status code). However, applications should not rely on this
behavior as the flag was not defined in Version 1 of the GSS-API.

I nst ead, applications should determ ne what per-nessage services
are avail able after a successful context establishment according
to the GSS_C_| NTEG FLAG and GSS_C_CONF_FLAG val ues.

St andards Track [Page 57]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Al other bits within the ret_flags argunent should be set to
zero.

If the initial call of gss_init_sec_context() fails, the

i mpl enent ati on shoul d not create a context object, and should | eave
the value of the context_handl e paranmeter set to GSS C NO CONTEXT to
indicate this. 1In the event of a failure on a subsequent call, the
i mpl enentation is pernitted to delete the "half-built" security
context (in which case it should set the context_handl e paranmeter to
GSS_C NO CONTEXT), but the preferred behavior is to | eave the
security context untouched for the application to delete (using
gss_del ete_sec_context).

During context establishnent, the informational status bits

GSS_ S OLD TOKEN and GSS_S DUPLI CATE TOKEN i ndicate fatal errors, and
GSS- APl mechani snms shoul d al ways return themin association with a
routine error of GSS S FAILURE. This requirement for pairing did not
exist in version 1 of the GSS-API specification, so applications that
wi sh to run over version 1 inplenentations nust special -case these
codes.

Par anet ers:

m nor _st at us Integer, nodify
Mechani sm speci fic status code

initiator_cred_handle gss_cred_id_t, read, optiona
handl e for credentials clainmed. Supply
GSS_C NO CREDENTIAL to act as a default
initiator principal. |If no default
initiator is defined, the function will
return GSS_S NO _CRED.

cont ext _handl e gss_ctx_id_t, read/nodify
context handle for new context. Supply
GSS _C NO CONTEXT for first call; use value
returned by first call in continuation calls.
Resour ces associated with this context-handle
nmust be rel eased by the application after use
with a call to gss_delete_sec_context().

target _nane gss_nane_t, read
Nane of target

mech_t ype O D, read, optiona
nj ect I D of desired mechanism Supply
GSS CNOAODto obtain an inplementation
specific default

W ay St andards Track [Page 58]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

req_fl ags bi t - mask, read
Cont ai ns various independent flags, each of
whi ch requests that the context support a
specific service option. Symnbolic
nanes are provided for each flag, and the
synbol i ¢ nanes corresponding to the required
flags shoul d be | ogically-ORed
together to formthe bit-mask value. The
flags are:

GSS_C _DELEG FLAG
True - Delegate credentials to renote peer
Fal se - Don't del egate

GSS_C _MJTUAL_FLAG
True - Request that renote peer
aut henticate itself
Fal se - Authenticate self to renote peer
only

GSS_C_REPLAY_FLAG
True - Enable replay detection for
nmessages protected with gss_wap
or gss_get _mc
Fal se - Don't attenpt to detect
repl ayed nessages

GSS_C_SEQUENCE_FLAG
True - Enabl e detection of out-of-sequence
prot ected nmessages
Fal se - Don't attenpt to detect
out - of - sequence nessages

GSS_C _CONF_FLAG
True - Request that confidentiality service
be made avail able (via gss_w ap)
Fal se - No per-nessage confidentiality service
is required.

GSS_C I NTEG_FLAG
True - Request that integrity service be
nmade available (via gss_wap or
gss_get _mc)
Fal se - No per-nessage integrity service
is required.

W ay St andards Track [Page 59]

RFC 2744

time_req

GSS- APl V2: G- bi ndi ngs January 2000

GSS_C_ANON_FLAG
True - Do not reveal the initiator’s
identity to the acceptor.
Fal se - Authenticate normally.

I nteger, read, optiona

Desired nunber of seconds for which context
should remain valid. Supply 0 to request a
default validity period.

i nput _chan_bi ndi ngs channel bindings, read, optiona

i nput _t oken

actual _nech_type

out put _t oken

ret_flags

W ay

Application-specified bindings. Alows
application to securely bind channe
identification information to the security
context. Specify GSS_C_NO CHANNEL_BI NDI NGS
i f channel bindings are not used.

buf fer, opaque, read, optional (see text)

Token received from peer application.

Supply GSS_C NO BUFFER, or a pointer to

a buffer containing the value GSS_C EMPTY_BUFFER
on initial call

O D, nodify, optiona

Actual mechani smused. The O D returned via
this paraneter will be a pointer to static
storage that should be treated as read-only;

In particular the application should not attenpt
to free it. Specify NULL if not required.

buf fer, opaque, nodify

token to be sent to peer application. |If

the length field of the returned buffer is
zero, no token need be sent to the peer
application. Storage associated with this

buf fer nust be freed by the application

after use with a call to gss_release bhuffer().

bi t - mask, nodify, optiona

Cont ai ns various independent flags, each of which
i ndi cates that the context supports a specific
service option. Specify NULL if not

required. Synbolic names are provided

for each flag, and the synbolic nanes
corresponding to the required flags should be

| ogically-ANDed with the ret_flags value to test
whet her a given option is supported by the
context. The flags are:

St andards Track [Page 60]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

GSS_C DELEG FLAG
True - Credentials were delegated to
the renote peer
Fal se - No credential s were del egated

GSS_C_MJTUAL_FLAG
True - The renote peer has authenticated
itself.
Fal se - Renote peer has not authenticated
itself.

GSS_C_REPLAY_FLAG
True - replay of protected nessages
will be detected
Fal se - repl ayed nmessages will not be
det ect ed

GSS_C_SEQUENCE_FLAG
True - out-of -sequence protected
nessages will be detected
Fal se - out-of -sequence nmessages wil |
not be detected

GSS_C_CONF_FLAG
True - Confidentiality service may be
i nvoked by calling gss wap routine
Fal se - No confidentiality service (via
gss_w ap) available. gss_wap wll
provi de nessage encapsul ati on
dat a-origin authentication and
integrity services only.

GSS_C_| NTEG FLAG

True - Integrity service may be invoked by
calling either gss_get_mc or gss_wap
routines.

Fal se - Per-nmessage integrity service
unavai |l abl e.

GSS_C_ANON _FLAG
True - The initiator’s identity has not been

reveal ed, and will not be revealed if
any emtted token is passed to the
acceptor.

Fal se - The initiator’s identity has been or
wi Il be authenticated normally.

GSS_C_PROT_READY_FLAG

W ay St andards Track [Page 61]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

True - Protection services (as specified
by the states of the GSS _C CONF_FLAG
and GSS_C I NTEG FLAG) are available for
use if the acconpanying major status
return value is either GSS_ S COWPLETE or
GSS_S_CONTI NUE_NEEDED
Fal se - Protection services (as specified
by the states of the GSS _C CONF_FLAG
and GSS_C | NTEG FLAG) are avail able
only if the acconpanyi ng naj or status
return value is GSS_S COVPLETE

GSS_C _TRANS_FLAG
True - The resultant security context may
be transferred to other processes via
a call to gss_export_sec_context().
Fal se - The security context is not
transferabl e.

All other bits should be set to zero.

time_rec I nteger, nodify, optiona
nunber of seconds for which the context
will remain valid. If the inplenmentation does

not support context expiration, the val ue
GSS_C INDEFINITE will be returned. Specify
NULL i f not required.

Functi on val ue: GSS status code

GSS S COWPLETE Successful conpletion

GSS_S CONTI NUE_NEEDED | ndi cates that a token fromthe peer
application is required to conmplete the
context, and that gss_init_sec_context
nust be called again with that token

GSS S DEFECTI VE_TOKEN | ndi cat es that consistency checks perforned
on the input_token failed

GSS_S DEFECTI VE_CREDENTI AL | ndi cates that consistency checks
perfornmed on the credential failed.

GSS S NO CRED The supplied credentials were not valid for
context initiation, or the credential handle
did not reference any credentials.

GSS_S CREDENTI ALS EXPI RED The referenced credentials have expired

W ay St andards Track [Page 62]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

GSS_S BAD BI NDI NGS The i nput _token contains different channe
bi ndings to those specified via the
i nput _chan_bi ndi ngs par anet er

GSS_S BAD SI G The input _token contains an invalid MC, or a MC
that could not be verified

GSS S OLD TOKEN The input_token was too old. This is a fata
error during context establishnent

GSS_S DUPLI CATE_TOKEN The i nput _token is valid, but is a duplicate
of a token already processed. This is a
fatal error during context establishment.

GSS_S NO CONTEXT Indicates that the supplied context handle did
not refer to a valid context

GSS_S BAD NAMETYPE The provi ded target _nanme paraneter contained an
i nvalid or unsupported type of nane

GSS_S BAD NAME The provided target_nane paraneter was ill-formed.
GSS_S BAD MECH The specified nechanismis not supported by the
provi ded credential, or is unrecognized by the
i mpl enent ati on.

5.20. gss_inquire_context

OM ui nt 32 gss_i nqui re_context (

OM ui nt 32 *m nor _st at us,
const gss_ctx id t context handl e,
gss_nane_t *src_nane,
gss_name_t *targ_nane,
OM ui nt 32 *lifetime_rec,
gss_A D *mech_type,
OM ui nt 32 *ctx_fl ags,
i nt *locally initiated,
i nt *open)

Pur pose:

ot ains informati on about a security context. The caller nust
al ready have obtained a handle that refers to the context, although
the context need not be fully established.

W ay St andards Track [Page 63]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

cont ext _handl e gss ctx_id t, read
A handle that refers to the security context.

src_nane gss_hame_t, nodify, optiona
The nane of the context initiator.
If the context was established usi ng anonynous
aut hentication, and if the application invoking
gss_inquire_context is the context acceptor,
an anonymous nane will be returned. Storage
associated with this nane nmust be freed by the
application after use with a call to
gss_rel ease_nanme(). Specify NULL if not
required.

targ_name gss_hane_t, nodify, optiona
The nane of the context acceptor.
St orage associated with this name nust be
freed by the application after use with a cal
to gss_release_nane(). |If the context acceptor
did not authenticate itself, and if the initiator
did not specify a target nane inits call to
gss_init_sec_context(), the value GSS_C NO NAME
will be returned. Specify NULL if not required.

lifetinme_rec I nteger, nodify, optiona
The nunber of seconds for which the context
will remain valid. |f the context has
expired, this paranmeter will be set to zero.
If the inplementation does not support
context expiration, the value
GSS C INDEFINITE will be returned. Specify
NULL if not required.

mech_t ype gss_O D, nodify, optiona
The security mechani sm providing the
context. The returned ODwII| be a

pointer to static storage that should

be treated as read-only by the application
in particular the application should not
attempt to free it. Specify NULL if not
required.

W ay St andards Track [Page 64]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

ctx_flags bi t-mask, nodify, optiona
Cont ai ns various independent flags, each of
whi ch indicates that the context supports
(or is expected to support, if ctx_open is
false) a specific service option. |f not
needed, specify NULL. Synbolic nanes are
provi ded for each flag, and the synbolic nanes
corresponding to the required fl ags
shoul d be logically-ANDed with the ret fl ags
value to test whether a given option is
supported by the context. The flags are:

GSS_C DELEG FLAG
True - Credentials were del egated from
the initiator to the acceptor.
Fal se - No credentials were del egated

GSS_C_MJTUAL_FLAG
True - The acceptor was aut henticated
to the initiator
Fal se - The acceptor did not authenticate
itself.

GSS_C_REPLAY_FLAG
True - replay of protected nessages
will be detected
Fal se - repl ayed nmessages will not be
det ect ed

GSS_C_SEQUENCE_FLAG
True - out-of -sequence protected
nessages will be detected
Fal se - out-of-sequence nmessages will not
be detected

GSS_C_CONF_FLAG

True - Confidentiality service nmay be invoked
by calling gss wap routine

Fal se - No confidentiality service (via
gss_w ap) available. gss_wap wll
provi de nessage encapsul ati on
dat a-ori gin authentication and
integrity services only.

GSS_C_| NTEG FLAG

True - Integrity service may be invoked by
calling either gss_get_mc or gss_wap
routines.

W ay St andards Track [Page 65]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Fal se - Per-nmessage integrity service
unavai |l abl e.

GSS_C_ANON_FLAG

True - The initiator’'s identity will not
be revealed to the acceptor.
The src_nane paraneter (if
request ed) contai ns an anonynous
i nternal name.

Fal se - The initiator has been

aut henti cated nornal ly.

GSS_C _PROT_READY_FLAG
True - Protection services (as specified
by the states of the GSS_C CONF_FLAG
and GSS_C I NTEG FLAG are avail abl e
for use.
Fal se - Protection services (as specified
by the states of the GSS _C CONF_FLAG
and GSS_C I NTEG FLAG are avail able
only if the context is fully
established (i.e. if the open paraneter
i S non-zero).

GSS_C _TRANS_FLAG
True - The resultant security context may
be transferred to other processes via
a call to gss_export_sec_context().
Fal se - The security context is not
transferabl e.

locally initiated Bool ean, nodify
Non-zero if the invoking application is the
context initiator.
Specify NULL if not required.

open Bool ean, nodify
Non-zero if the context is fully established,;
Zero if a context-establishnent token
is expected fromthe peer application.
Specify NULL if not required.

Functi on val ue: GSS status code

GSS_S COWPLETE Successful conpl etion

GSS_S NO CONTEXT The referenced context could not be accessed.

W ay St andards Track [Page 66]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

5.21. gss_inquire_cred

OM uint32 gss_inquire_cred (

OM ui nt 32 *m nor _st at us,

const gss_cred_id_t cred_handl e,

gss_nane_t *nanme,

OM ui nt 32 *[ifetine,

gss_cred_usage t *cred_usage,

gss_QO D set *mechani sns)
Pur pose:

bt ai ns i nformati on about a credenti al
Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

cred_handl e gss_cred id t, read
A handle that refers to the target credenti al
Speci fy GSS_C NO CREDENTI AL to inquire about
the default initiator principal

nanme gss_hane_t, nodify, optiona
The nane whose identity the credential asserts.
St orage associated with this name should be freed
by the application after use with a call to
gss_rel ease_nanme(). Specify NULL if not required.

lifetinme I nteger, nodify, optiona
The nunber of seconds for which the credentia
will remain valid. |If the credential has
expired, this parameter will be set to zero.
If the inplementation does not support
credential expiration, the value
GSS C INDEFINITE will be returned. Specify
NULL i f not required.

cred_usage gss_cred_usage t, nodify, optiona
How t he credential may be used. One of the
fol | owi ng:
GSS_C_I NI TI ATE
GSS_C_ACCEPT
GSS_C_BOTH
Specify NULL if not required.

W ay St andards Track [Page 67]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

nmechani sns gss_O D set, nodify, optiona
Set of nechani sns supported by the credential
Storage associated with this O D set nust be
freed by the application after use with a cal
to gss_release_oid_set(). Specify NULL if not
required.

Functi on val ue: GSS status code

GSS_ S COVPLETE Successful conmpl etion

GSS S NO CRED The referenced credentials could not be accessed.

GSS_S DEFECTI VE_CREDENTI AL The referenced credentials were invalid.

GSS_S CREDENTI ALS EXPI RED The referenced credentials have expired.
If the lifetine paranmeter was not passed as NULL
it will be set to O.

5.22. gss_inquire_cred_by mech

OM ui nt 32 gss_inquire_cred_by nech (

OM ui nt 32 *m nor _st at us,
const gss cred id t cred _handl e,
const gss_AD nech_type
gss_nane_t *nane,
OM_ui nt 32 *Initiator_lifetine,
OM ui nt 32 *acceptor_lifetinme,
gss_cred_usage_t *cred_usage)
Pur pose:

ot ai ns per-nechani sminformation about a credenti al
Par anmet er s:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

cred_handl e gss_cred_id_t, read
A handle that refers to the target credenti al
Speci fy GSS C NO CREDENTI AL to inquire about
the default initiator principal

mech_t ype gss_O D, read

The nmechani sm for which informati on shoul d be
r et ur ned.

W ay St andards Track [Page 68]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

nanme gss_nhane_t, nodify, optiona
The nane whose identity the credential asserts.
St orage associated with this name nust be
freed by the application after use with a cal
to gss_rel ease_name(). Specify NULL if not
required.

initiator lifetime |Integer, nodify, optiona
The nunber of seconds for which the credentia
will remain capable of initiating security contexts
under the specified mechanism |If the credentia
can no longer be used to initiate contexts, or if
the credential usage for this nechanismis
GSS C ACCEPT, this paraneter will be set to zero.
If the inplenmentati on does not support expiration
of initiator credentials, the val ue
GSS C INDEFINITE will be returned. Specify NULL
if not required.

acceptor _lifetine Integer, nodify, optiona
The nunber of seconds for which the credentia
will remain capabl e of accepting security contexts
under the specified mechanism |If the credentia
can no | onger be used to accept contexts, or if
the credential usage for this nechanismis
GSS CINITIATE, this paraneter will be set to zero.

If the inplenmentati on does not support expiration
of acceptor credentials, the value GSS_C | NDEFI NI TE
will be returned. Specify NULL if not required.

cred_usage gss_cred usage t, nodify, optiona
How t he credential may be used with the specified
mechanism One of the foll ow ng:
GSS_C I NI TI ATE
GSS_C_ACCEPT
GSS_C BOTH
Specify NULL if not required.
Functi on val ue: GSS status code
GSS_S COWPLETE Successful conpletion
GSS S NO CRED The referenced credentials could not be accessed.

GSS_S DEFECTI VE_CREDENTI AL The referenced credentials were invalid.

W ay St andards Track [Page 69]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

GSS S CREDENTI ALS EXPI RED The referenced credentials have expired.
If the lifetine paraneter was not passed as NULL
it will be set to O.
5.23. gss_inquire_nechs_for_nane

OM ui nt 32 gss_inquire_nechs _for_nanme (

OM ui nt 32 *m nor _st at us,

const gss_name_t input_nane,

gss_QO D set *mech_types)
Pur pose:

Returns the set of mechani snms supported by the GSS-API inpl enentation
that may be able to process the specified nane.

Each nechanismreturned will recognize at |east one elenment within
the name. It is permissible for this routine to be inplenented

wi thin a nmechani smindependent GSS-API | ayer, using the type

i nformati on contained within the presented nanme, and based on

regi stration information provided by individual mechani sm

i mpl enentations. This neans that the returned nech_types set nay
indicate that a particular mechanismw || understand the name when in
fact it would refuse to accept the nane as input to
gss_canoni cali ze_nanme, gss_init_sec_context, gss_acquire_cred or
gss_add _cred (due to sonme property of the specific nanme, as opposed
to the name type). Thus this routine should be used only as a pre-
filter for a call to a subsequent nechani sm specific routine.

Par anet ers:

m nor _stat us I nteger, nodify
| npl enent ati on specific status code.

i nput _nane gss_nane_t, read
The nane to which the inquiry rel ates.

nmech_t ypes gss_O D set, nodify
Set of nechani sns that may support the
specified nanme. The returned A D set
must be freed by the caller after use
with a call to gss_release oid set().

Functi on val ue: GSS status code

GSS_ S COVPLETE Successful compl etion

GSS_S BAD NAME The input_name paraneter was ill-forned.

W ay St andards Track [Page 70]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

GSS_S BAD NAMETYPE The i nput _nane paraneter contained an invalid or
unsupported type of nane

5.24. gss_inquire_nanes_for_nech

OM ui nt 32 gss_inquire_nanmes_for_mech (
OM ui nt 32 *m nor _st at us,
const gss_O D nechani sm
gss_QO D set *name_t ypes)

Pur pose:
Returns the set of nanetypes supported by the specified nechani sm
Par anet er s:

m nor _st at us I nteger, nodify
| mpl ement ati on specific status code.

mechani sm gss_AO D, read
The nechani smto be interrogated.

nane_t ypes gss_QO D set, nodify
Set of nane-types supported by the specified
mechani sm The returned O D set must be
freed by the application after use with a
call to gss_release oid_set().

Functi on val ue: GSS status code
GSS S COWPLETE Successful conpletion
5.25. gss_process_cont ext _t oken

OM ui nt 32 gss_process_cont ext _token (
OM ui nt 32 *m nor _st at us,
const gss_ctx id t context handl e,
const gss_buffer_t token_buffer)

Pur pose:

Provides a way to pass an asynchronous token to the security service.
Most context-level tokens are emitted and processed synchronously by
gss_init_sec_context and gss_accept_sec_context, and the application
is informed as to whether further tokens are expected by the

GSS_C _CONTI NUE_NEEDED maj or status bit. Gccasionally, a nechani sm
may need to enmit a context-level token at a point when the peer
entity is not expecting a token. For exanple, the initiator’'s fina

W ay St andards Track [Page 71]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

call to gss_init_sec_context may enit a token and return a status of
GSS S COWPLETE, but the acceptor’s call to gss_accept_sec_context may
fail. The acceptor’s mechanismnmay wi sh to send a token containing
an error indication to the initiator, but the initiator is not
expecting a token at this point, believing that the context is fully
establ i shed. Gss_process_context token provides a way to pass such a
token to the nechanismat any tine.

Par anet ers:

m nor _st at us I nteger, nodify
| mpl ement ati on specific status code.

cont ext _handl e gss ctx_id t, read
context handl e of context on which token is to
be processed

t oken_buffer buf fer, opaque, read
token to process

Functi on val ue: GSS status code
GSS_ S COVPLETE Successful compl etion

GSS_S DEFECTI VE_TOKEN | ndi cat es that consistency checks perforned
on the token failed

GSS_S NO CONTEXT The context _handle did not refer to a valid context
5.26. gss_rel ease buffer

OM ui nt 32 gss_rel ease_buffer (
OM _ui nt 32 *m nor _st at us,
gss_buffer_t buffer)

Pur pose:

Free storage associated with a buffer. The storage nust have been
all ocated by a GSS-API routine. |In addition to freeing the

associ ated storage, the routine will zero the length field in the
descriptor to which the buffer paraneter refers, and inplenmentations
are encouraged to additionally set the pointer field in the
descriptor to NULL. Any buffer object returned by a GSS-API routine
may be passed to gss_rel ease buffer (even if there is no storage
associated with the buffer).

W ay St andards Track [Page 72]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

buf f er buf fer, nodify
The storage associated with the buffer will be
del eted. The gss_buffer_desc object will not
be freed, but its length field will be zeroed.
Functi on val ue: GSS status code

GSS S COWPLETE Successful conpletion
5.27. gss_rel ease_cred
OM uint32 gss_release_cred (
OM ui nt 32 *m nor _st at us,
gss_cred id t *cred_handl e)
Pur pose:
Inforns GSS-API that the specified credential handle is no | onger
required by the application, and frees associ ated resources.
| mpl ement ati ons are encouraged to set the cred handle to
GSS_C _NO CREDENTI AL on successful conpletion of this call
Par anmet er s:
cred_handl e gss_cred _id t, nodify, optiona
Opaque handl e identifying credentia
to be released. |f GSS_C_NO CREDENTI AL
is supplied, the routine will conplete
successfully, but will do nothing.

m nor _st at us I nteger, nodify
Mechani sm specific status code

Function val ue: GSS status code
GSS_S COWPLETE Successful conpletion

GSS S NO CRED Credentials could not be accessed.

W ay St andards Track [Page 73]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

5.28. gss_rel ease_nane
OM ui nt 32 gss_rel ease_nane (
OM uint32 *m nor_status,
gss_hanme_t *nane)
Pur pose:
Free GSSAPI -al |l ocated storage associated with an internal-form nane.
| mpl ement ati ons are encouraged to set the name to GSS_C _NO NAME on
successful conpletion of this call.
Par anmet er s:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

nanme gss_nanme_t, nodify
The nane to be del eted

Functi on val ue: GSS status code
GSS_ S COVPLETE Successful compl etion
GSS_S BAD NAME The nane paraneter did not contain a valid nane
5.29. gss_rel ease_oid_set

OM ui nt 32 gss_rel ease_oi d_set (

OM ui nt 32 *m nor _st at us,

gss_O D set *set)
Pur pose:
Free storage associated with a GSSAPI -generated gss_O D set object.
The set parameter nust refer to an O D-set that was returned froma
GSS- APl routine. gss release oid set() will free the storage
associ ated with each individual menber O D, the QD set’'s elenents
array, and the gss_QO D set_desc.

| mpl ement ati ons are encouraged to set the gss_O D set paraneter to
GSS C NO O D _SET on successful conpletion of this routine.

Par anet er s:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

W ay St andards Track [Page 74]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

set Set of Object IDs, nodify
The storage associated with the gss_O D set
will be del eted.

Functi on val ue: GSS status code

GSS S COWPLETE Successful conpletion
5.30. gss_test_oid_set_nenber

OM ui nt 32 gss_test_oid_set_nenber (

OM ui nt 32 *m nor _st at us,
const gss_AD menber,
const gss_Q D set set,
i nt *present)
Pur pose:

Interrogate an Cbject ldentifier set to determ ne whether a specified
ohject ldentifier is a nmenber. This routine is intended to be used
with O D sets returned by gss_indicate_nechs(), gss_acquire_cred(),
and gss_inquire_cred(), but will also work with user-generated sets.

Par anet ers:

m nor _stat us I nteger, nodify
Mechani sm speci fic status code

menber nject 1D, read
The object identifier whose presence
is to be tested.

set Set of bject ID, read
The Object Identifier set.

pr esent Bool ean, nodify
non-zero if the specified ADis a nmenber
of the set, zero if not.

Function val ue: GSS status code

GSS_S COWPLETE Successful conpletion

W ay St andards Track [Page 75]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

5.31. gss_unw ap

OM_ui nt 32 gss_unw ap (
OM ui nt 32 *m nor _st at us,
const gss_ctx_id_t context_handl e,
const gss_buffer_t input_nessage buffer,

gss_buffer t out put _nessage buffer,
i nt *conf _state,
gss_qop_t *gop_state)

Pur pose:

Converts a message previously protected by gss wap back to a usable
form verifying the enbedded M C. The conf_state paraneter indicates
whet her the nmessage was encrypted; the qop_state paraneter indicates
the strength of protection that was used to provide the
confidentiality and integrity services.

Si nce sone application-level protocols may wish to use tokens enitted
by gss wap() to provide "secure fram ng", inplenmentations mnust
support the wrapping and unw appi ng of zero-Iength nessages.

Par anmet er s:

m nor _st at us I nteger, nodify
Mechani sm specific status code

cont ext _handl e gss_ctx_id_t, read
Identifies the context on which the nessage
arrived

i nput _nessage_buffer buffer, opaque, read
prot ected nessage

out put _nessage_buffer buffer, opaque, nodify
Buf fer to recei ve unw apped nessage.
St orage associated with this buffer nust
be freed by the application after use use
with a call to gss_release buffer().

conf_state bool ean, nodify, optiona
Non-zero - Confidentiality and integrity
protection were used
Zero - Integrity service only was used
Specify NULL if not required

W ay St andards Track [Page 76]

RFC 2744 GSS- APl V2: G- bi ndi ngs

gop_state gss_qop_t, nodify, optiona

Quality of protection provided.

Specify NULL if not required
Function val ue: GSS status code

GSS S COWPLETE Successful conpletion

GSS_S DEFECTI VE_TOKEN The token fail ed consistency checks

GSS_S BAD SI G The M C was incorrect

January 2000

GSS S DUPLI CATE_TOKEN The token was valid, and contai ned a correct

M C for the nessage, but
processed

it had al ready been

GSS S OLD TOKEN The token was valid, and contained a correct MC
for the nessage, but it is too old to check for

dupl i cati on.

GSS_S UNSEQ TOKEN The token was valid, and contained a correct MC
for the nessage, but has been verified out of
sequence; a later token has already been

recei ved.

GSS S GAP_TCOKEN The token was valid, and contained a correct MC
for the nessage, but has been verified out of
sequence; an earlier expected token has not yet

been received.

GSS S CONTEXT_EXPI RED The context has al ready expired

GSS_S NO CONTEXT The context _handl e paraneter did not

a val id context
5.32. gss_verify mec

OM uint32 gss verify mc (
OM _ui nt 32 *m nor _st at us,
const gss_ctx_id_t context_handl e,
const gss_buffer_t message_buffer,
const gss_buffer_t token_ buffer,
gss_qop_t *qop_state)

W ay St andards Track

identify

[Page 77]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Pur pose:

Verifies that a cryptographic MC, contained in the token paraneter,
fits the supplied nmessage. The qop_state paranmeter allows a nessage
recipient to determne the strength of protection that was applied to
t he nessage.

Since sonme application-level protocols may wish to use tokens enitted

by gss_wap() to provide "secure fram ng", inplenmentations mnust
support the calculation and verification of MCs over zero-length
nmessages.

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code.

cont ext _handl e gss ctx_id t, read
Identifies the context on which the nessage
arrived

nmessage_buf fer buf fer, opaque, read

Message to be verified

t oken_buf fer buf fer, opaque, read
Token associ ated with nessage

gop_state gss_qop_t, nodify, optiona
quality of protection gained fromMC
Specify NULL if not required

Functi on val ue: GSS status code

GSS_ S COVPLETE Successful conmpl etion

GSS_S DEFECTI VE_TOKEN The token fail ed consistency checks

GSS S BAD SIG The M C was i ncorrect

GSS_S DUPLI CATE_TOKEN The token was valid, and contained a correct
M C for the nmessage, but it had al ready been
processed

GSS S OLD TOKEN The token was valid, and contained a correct MC

for the nessage, but it is too old to check for
dupl i cati on.

W ay St andards Track [Page 78]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

GSS S UNSEQ TOKEN The token was valid, and contained a correct MC
for the nessage, but has been verified out of
sequence; a |l ater token has al ready been received.

GSS S GAP_TOKEN The token was valid, and contained a correct MC
for the nessage, but has been verified out of
sequence; an earlier expected token has not yet
been received.

GSS_S CONTEXT_EXPI RED The context has al ready expired

GSS_S NO CONTEXT The context handl e paraneter did not identify a
val i d cont ext

5.33. gss_wap

OM ui nt 32 gss_wap (

OM ui nt 32 *m nor _st at us,

const gss_ctx id t context handl e,

i nt conf _req_f1 ag,

gss_gop_t gop_req

const gss_buffer_t input_nessage buffer,

i nt *conf _state,

gss_buffer t out put _nessage buffer)
Pur pose:

Attaches a cryptographic MC and optionally encrypts the specified
i nput _message. The out put _nmessage contains both the MC and the
nessage. The qop_req paraneter allows a choice between severa
cryptographic algorithns, if supported by the chosen nechani sm

Since some application-level protocols may wi sh to use tokens enitted
by gss_wap() to provide "secure fram ng", inplementations mnust
support the wrapping of zero-length messages.

Par anmet er s:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code.

cont ext _handl e gss ctx_id t, read
Identifies the context on which the nessage
will be sent

W ay St andards Track [Page 79]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

conf _req flag bool ean, read
Non-zero - Both confidentiality and integrity
services are requested
Zero - Only integrity service is requested

gop_req gss_qop_t, read, optiona
Specifies required quality of protection. A
mechani sm specific default nmay be requested by
setting qop_req to GSS_C QOP_DEFAULT. If an
unsupported protection strength is requested,
gss_wap will return a major_status of
GSS_S BAD_(QOP

i nput _nessage_buffer buffer, opaque, read
Message to be protected

conf_state bool ean, nodify, optiona
Non-zero - Confidentiality, data origin
aut hentication and integrity
servi ces have been applied
Zero - Integrity and data origin services only
has been appli ed.
Specify NULL if not required

out put _nessage buffer buffer, opaque, nodify
Buf fer to receive protected nessage.
St orage associated with this nmessage mnust
be freed by the application after use with
a call to gss_release_buffer().

Functi on val ue: GSS status code

GSS_S COWPLETE Successful conpl etion

GSS_S CONTEXT_EXPI RED The context has al ready expired

GSS_S NO CONTEXT The context handl e paraneter did not identify a
val i d cont ext

GSS_S BAD QOP The specified QOP is not supported by the
mechani sm

W ay St andards Track [Page 80]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

5.34. gss_wap_size limt

OM uint32 gss wap_size limt (

OM ui nt 32 *m nor _st at us,

const gss_ctx_id_t context_handl e,

i nt conf_req_fI ag,

gss_qop_t qop_req,

OM ui nt 32 req_out put _size,

OM _ui nt 32 *max_i nput _si ze)
Pur pose:

Allows an application to determ ne the maxi mum nessage size that, if
presented to gss wap with the sanme conf_req_flag and qop_req
parameters, will result in an output token containing no nore than
req_out put _si ze bytes.

This call is intended for use by applications that comruni cate over
protocol s that inpose a nmaxi num nessage size. It enables the
application to fragment nmessages prior to applying protection

GSS- APl i npl ement ations are recomended but not required to detect

i nvalid QOP val ues when gss_wap_size limt() is called. This routine
guarantees only a maxi num nessage size, not the availability of

speci fic QOP values for nessage protection

Successful conpletion of this call does not guarantee that gss_wap
will be able to protect a nessage of |ength max_i nput_size bytes,
since this ability may depend on the availability of system resources
at the tine that gss wap is called. However, if the inplenentation
itself inposes an upper lint on the | ength of nessages that may be
processed by gss wap, the inplenmentation should not return a val ue
via max_i nput _bytes that is greater than this |ength.

Par anet ers:

m nor _st at us I nteger, nodify
Mechani sm speci fic status code

cont ext _handl e gss_ctx_id_t, read
A handle that refers to the security over
whi ch the nessages will be sent.

conf _req flag Bool ean, read
I ndi cat es whether gss_wap will be asked

to apply confidentiality protection in

W ay St andards Track [Page 81]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

addition to integrity protection. See
the routine description for gss_wap
for nore details.

gop_req gss_qop_t, read
I ndi cates the | evel of protection that
gss_ wap will be asked to provide. See

the routine description for gss_ wap for
nore details.

req_out put _size I nt eger, read
The desired maxi mum size for tokens enitted
by gss_wr ap.

max_i nput _si ze I nteger, nodify

The maxi mum i nput message size that may
be presented to gss wap in order to
guarantee that the enmtted token shal
be no larger than req_output_size bytes.
Functi on val ue: GSS status code
GSS_ S COVPLETE Successful compl etion
GSS S NO CONTEXT The referenced context could not be accessed.

GSS_S CONTEXT_EXPI RED The cont ext has expired.

GSS_S BAD QOP The specified QOP is not supported by the
mechani sm
6. Security Considerations

Thi s docunent specifies a service interface for security facilities
and services; as such, security considerations appear throughout the
specification. Nonetheless, it is appropriate to sunmarize certain
specific points relevant to GSS-APlI inplenmentors and calling
applications. Usage of the GSS-API interface does not in itself
provi de security services or assurance; instead, these attributes are
dependent on the underlying nechani sn(s) which support a GSS-API

i mpl enentation. Callers nmust be attentive to the requests nmade to
GSS-API calls and to the status indicators returned by GSS-API, as
these specify the security service characteristics which GSS-API will
provi de. Wien the interprocess context transfer facility is used,
appropriate local controls should be applied to constrain access to

i nterprocess tokens and to the sensitive data which they contain.

W ay St andards Track [Page 82]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Appendi x A. GSS-API C header file gssapi.h

C-l anguage GSS- APl inpl enmentations should include a copy of the
foll owi ng header-file.

#i f ndef GSSAPI _H_
#def i ne GSSAPI _H_

/*
* First, include stddef.h to get size t defined.
*/

#i ncl ude <stddef. h>

/*
* |f the platform supports the xomh header file, it should be
* included here.
*/

#i ncl ude <xom h>

/*
* Now define the three inplenmentation-dependent types.
*/

typedef <platformspecific> gss ctx id t;

typedef <platformspecific> gss_cred_id_t;

typedef <pl atformspecific> gss_nane_t;

/*
* The following type nust be defined as the snallest natura
* unsigned integer supported by the platformthat has at |east
* 32 bits of precision
*/
typedef <pl atform specific> gss_uint 32;

#i f def OM_STRI NG

/-k
* We have included the xomh header file. Verify that OM uint32
* is defined correctly.
*/

#if sizeof (gss_uint32) !'= sizeof (OM uint32)

#error Inconpatible definition of OM uint32 fromxomh

#endi f

typedef OM object identifier gss O D desc, *gss_Q D

W ay St andards Track [Page 83]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

#el se

/-k
* W can’t use X/ Open definitions, so roll our own.
*/

typedef gss_uint32 OM uint 32;

typedef struct gss_O D desc_struct {
OM ui nt 32 | engt h;
voi d *el enent s;

} gss_OA D desc, *gss_Q D,

#endi f

typedef struct gss_O D set_desc_struct ({
size_t count;
gss_ O D el ement s;

} gss_OAO D set_desc, *gss_OD set;

typedef struct gss_buffer_desc_struct {
size_t |ength;
voi d *val ue;

} gss_buffer_desc, *gss buffer t;

typedef struct gss_channel bindings_struct {
OM uint32 initiator_addrtype;
gss_buffer_desc initiator_address;
OM ui nt 32 accept or _addrtype;
gss_buffer_desc acceptor_address;
gss_buffer_desc application_data;

} *gss_channel _bindings_t;

/*

* For now, define a QOP-type as an OM uint 32
*/

typedef OM uint32 gss_qop_t;

typedef int gss_cred_usage t;
/*

* Flag bits for context-level services.
*/

W ay St andards Track [Page 84]

RFC 2744

#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

* Credentia

*/

ne
ne
ne
ne
ne
ne
ne
ne
ne

GSS- API

GSS_C_DELEG FLAG

GSS_C_MUTUAL_FLAG
GSS_C_REPLAY_FLAG
GSS_C_SEQUENCE_FLAG

GSS_C_CONF_FLAG
GSS_C_I NTEG FLAG
GSS_C_ANON_FLAG

GSS_C_PROT_READY_

GSS_C_TRANS_FLAG

#define GSS_C BOTH 0
#define GSS_C I NI TIATE 1
#define GSS_C ACCEPT 2

/*

FLAG

usage options

V2: C- bi ndi ngs

A NE

16
32
64
128
256

* Status code types for gss_display_status

*/

#define GSS_C GSS_CODE 1
#defi ne GSS_C_MECH_CODE 2

/*

January 2000

* The constant definitions for channel -bindings address famlies

*/
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

W ay

ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne
ne

GSS_C_AF_UNSPEC
GSS_C_AF_LOCAL
GSS_C_AF_I NET
GSS_C_AF_I MPLI NK
GSS_C_AF_PUP
GSS_C_AF_CHACS
GSS_C_AF_NS
GSS_C_AF_NBS
GSS_C_AF_ECMA
GSS_C_AF_DATAKI T
GSS_C_AF_CCI TT
GSS_C_AF_SNA
GSS_C_AF_DECnet
GSS_C_AF_DLI
GSS_C_AF_LAT
GSS_C_AF_HYLI NK

OCO~NOOUITA~WNEO

el ol
WN RO

14
15

GSS_C_AF_APPLETALK 16

GSS_C_AF_BSC
GSS_C_AF_DSS
GSS_C_AF_Osl

GSS_C_AF_X25

17
18
19
21

St and

ards Track

[Page 85]

RFC 2744

GSS- APl V2: G- bi ndi ngs

#define GSS_C AF_NULLADDR 255

/*

* Various Null val ues

*/
#def i
#def i
#def i
#def i
#def i
#def i
#def i
#def i

/*

ne
ne
ne
ne
ne
ne
ne
ne

GSS C NO NAME ((gss_nane_t) 0)

GSS _C NO BUFFER ((gss_buffer_t) 0)

GSS CNOAOD ((gss_ QD 0)

GSS C NO OD SET ((gss_O D set) 0)
GSS_C NO CONTEXT ((gss_ctx_id_t) 0)
GSS_C NO CREDENTI AL ((gss_cred_id_t) 0)

GSS_C NO CHANNEL_BI NDI NGS ((gss_channel _

GSS_C_EMPTY_BUFFER {0, NULL}

January 2000

bi ndings_t) 0)

* Sone alternate nanes for a couple of the above

* val ues.

*/

#define GSS_C NULL_O D GSS_C_NO O D
#define GSS_C NULL_O D SET GSS_C_NO O D_SET

/

E o A

servi ces.

interpreted by a GSS- API

Define the default Quality of Protection for
Note that an inplenentation that offers nmultiple
| evel s of QOP may define GSS C QOP_DEFAULT to be either zero
(as done here) to nean "default protection”,
explicit QOP value. However, a value of 0 should al ways be
i mpl enentati on as a request for the

* default protection |evel.

*/

#defi ne GSS_C QOP_DEFAULT 0

/*

* Expiration time of

* credential or security context

*/

#define GSS _C I NDEFINI TE Oxffffffffu

/

¥ 0% ok 3k X Xk X X *

W ay

The i npl enent ati on nust
gss_QO D desc object containing the value
{10,
"\ x01\ x02\ x01\ x01"},
corresponding to an object-identifier value of

{iso(1) nenmber-body(2) United States(840) mt(113554)

i nfosys(1) gssapi(2) generic(1l) user_nane(1l)}. The constant
GSS_C NT_USER NAME shoul d be initialized to point

to that gss_O D desc.

(void *)"\x2a\ x86\ x48\ x86\ xf 7\ x12"

St andards Track

These are defined for V1 conpatibility.

per - nessage

or to a specific

2732-1 seconds neans infinite lifetine for a

reserve static storage for a

[Page 86]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

*/
extern gss_O D GSS_C _NT_USER _NAME;

/
The i npl enentati on nust reserve static storage for a
gss_O D desc object containing the value
{10, (void *)"\x2a\x86\x48\x86\ xf 7\ x12"

"\ x01\ x02\ x01\ x02"},
corresponding to an object-identifier value of
{iso(1) nember-body(2) United States(840) mt(113554)
i nfosys(1) gssapi(2) generic(l) machine_uid_nane(2)}.
The constant GSS C NT_MACH NE_Ul D NAME shoul d be
initialized to point to that gss_QO D desc.

/

extern gss_O D GSS_C_NT_MACHI NE_UI D_NAME;

* %k X S kX 3k X X kX

/
The i npl enentati on nust reserve static storage for a
gss_QO D desc object containing the val ue
{10, (void *)"\x2a\x86\x48\ x86\ xf 7\ x12"

"\ x01\ x02\ x01\ x03"},
corresponding to an object-identifier value of
{iso(1) nenber-body(2) United States(840) mt(113554)
i nfosys(1) gssapi(2) generic(1l) string uid nane(3)}.
The constant GSS C NT_STRI NG U D NAME shoul d be
initialized to point to that gss_O D desc.

/

extern gss_O D GSS_C NT_STRI NG_Ul D_NAME;

L B A

/
The i npl enentati on nust reserve static storage for a

gss_O D desc object containing the val ue

{6, (void *)"\x2b\x06\x01\ x05\ x06\ x02"},

corresponding to an object-identifier value of

{iso(1) org(3) dod(6) internet(1l) security(5)

nanet ypes(6) gss-host-based-services(2)). The constant

GSS _C NT_HOSTBASED SERVI CE_X should be initialized to point
to that gss_ OD desc. This is a deprecated O D val ue, and
i mpl enentati ons w shing to support hostbased-service nanes
shoul d i nstead use the GSS _C NT_HOSTBASED SERVI CE Q D,
defined below, to identify such names;

GSS _C NT_HOSTBASED SERVI CE_X shoul d be accepted a synonym
for GSS_C NT_HOSTBASED SERVI CE when presented as an input
paraneter, but should not be emtted by GSS-API

i mpl ement ati ons

E B A R . SN B N N N

~

extern gss_O D GSS_C _NT_HOSTBASED SERVI CE_X;

W ay St andards Track [Page 87]

RFC 2744 GSS- APl V2: G- bi ndi ngs

E B S S R T R

/
ext

/

* % X X 3k X Xk X %

~

ext

~

¥ 0% ok 3k X Xk X X *

/
ext

/*

The inplenentati on nmust reserve static storage for a
gss_O D desc object containing the val ue
{10, (void *)"\x2a\x86\x48\x86\ xf 7\ x12"

"\ x01\ x02\ x01\ x04"}, corresponding to an
object-identifier value of {iso(1) nmenber-body(2)
Unites States(840) mit(113554) infosys(1l) gssapi(2)
generic(1l) service_nane(4)}. The constant
GSS_C_NT_HOSTBASED _SERVI CE should be initialized
to point to that gss_O D desc.

ern gss_O D GSS_C_NT_HOSTBASED_SERVI CE;

The inplenentati on nmust reserve static storage for a
gss_QO D desc object containing the val ue

{6, (void *)"\x2b\x06\ 01\ x05\ x06\ x03"},

corresponding to an object identifier value of
{1(iso), 3(org), 6(dod), 1(internet), 5(security),
6(nanetypes), 3(gss-anonynous-nane)}. The constant
and GSS_C _NT_ANONYMOUS shoul d be initialized to point
to that gss_O D desc.

ern gss_QO D GSS_C_NT_ANONYMOUS;

The i npl enentati on nust reserve static storage for a
gss_QO D desc object containing the value

{6, (void *)"\x2b\x06\x01\ x05\ x06\ x04"},

corresponding to an object-identifier value of
{1(iso), 3(org), 6(dod), 1(internet), 5(security),
6(nanetypes), 4(gss-api-exported-nane)}. The constant
GSS_C NT_EXPORT_NAME should be initialized to point

to that gss_O D desc.

ern gss_QO D GSS_C _NT_EXPORT_NANMNE;

Maj or status codes */

#define GSS_S_COWPLETE 0

/*

January 2000

* Sone "hel per" definitions to make the status code macros obvi ous.

*/

#define GSS_C CALLI NG ERROR OFFSET 24
#defi ne GSS_C_ROUTI NE_ERROR_OFFSET 16

W ay

St andards Track

[Page 88]

RFC 2744

#def i ne
#def i ne
#def i ne
#def i ne

/*
*
* only
*/
#defi ne

GSS- APl V2: G- bi ndi ngs

GSS_C_SUPPLEMENTARY_OFFSET 0
GSS_C_CALLI NG_ERROR_MASK 0377ul
GSS_C_ROUTI NE_ERROR_MASK 0377ul

GSS_C_SUPPLEMENTARY _MASK 0177777ul

The macros that test status codes for

once.

GSS_CALLI NG_ERROR(X) \

error

January 2000

condi tions.
Note that the GSS_ERROR() macro has changed slightly from
the V1 GSS-API so that it now evaluates its argunent

(x & (GSS_C CALLI NG ERROR MASK << GSS_C CALLI NG ERROR OFFSET))

#def i ne

GSS_ROUTI NE_ERROR(X) \

(x & (GSS_C_ROUTI NE_ERROR MASK << GSS_C_ROUTI NE_ERROR OFFSET))

#def i ne

GSS_SUPPLEMENTARY_I NFQ(x) \

(x & (GSS_C_SUPPLEMENTARY MASK << GSS_C_SUPPLEMENTARY OFFSET))

#def i ne

GSS_ERROR(x) \

(x & ((GSS_C CALLI NG ERROR MASK << GSS_C CALLI NG ERROR OFFSET) | \
(GSS_C_ROUTI NE_ERROR_MASK << GSS_C_ROUTI NE_ERROR_OFFSET)))

/*

* Now t he actual status code definition

*/
| *

* Calling errors:

*/
#define GSS_S CALL_I NACCESSI BLE_READ \
(1ul << GSS_C CALLI NG_ERROR_OFFSET)
#define GSS_S CALL_I| NACCESSI BLE WRI TE \
(2ul << GSS_C CALLI NG_ERROR_OFFSET)
#define GSS_S CALL_BAD STRUCTURE \
(3ul << GSS_C CALLI NG_ERROR_OFFSET)
/ *

* Routine errors:

*/
#define GSS S BAD MECH (1ul
GSS_C_ROUTI NE_ERROR_OFFSET)
#define GSS_S _BAD_NAME (2ul
GSS_C_ROUTI NE_ERROR_OFFSET)
#define GSS_S BAD NAMETYPE (3ul
GSS_C_ROUTI NE_ERROR_OFFSET)
#define GSS_S BAD_BI NDI NGS (4ul
GSS_C_ROUTI NE_ERROR_OFFSET)
#define GSS_S_BAD_STATUS (5ul

W ay St andards Track

S

<<

<<

<<

<<

<<

[Page 89]

RFC 2744 GSS- APl V2: G- bi ndi ngs

GSS_C_ROUTI NE_ERROR_OFFSET)
#defi ne GSS_S BAD SI G
GSS_C _ROUTI NE_ERROR_OFFSET)

(6ul

#define GSS_S BAD M C GSS_S BAD SI G

#defi ne GSS_S NO _CRED
GSS_C_ROUTI NE_ERROR_CFFSET)
#def i ne GSS_S NO CONTEXT
GSS_C_ROUTI NE_ERROR_OFFSET)
#defi ne GSS_S DEFECTI VE_TOKEN
GSS_C_ROUTI NE_ERROR_CFFSET)

#def i ne GSS_S DEFECTI VE_CREDENTI AL
GSS_C_ROUTI NE_ERROR_CFFSET)
#defi ne GSS_S CREDENTI ALS_EXPI RED
GSS_C_ROUTI NE_ERROR_OFFSET)
#defi ne GSS_S CONTEXT_EXPI RED
GSS_C_ROUTI NE_ERROR_CFFSET)
#define GSS_S FAI LURE
GSS_C_ROUTI NE_ERROR_CFFSET)
#defi ne GSS_S BAD QOP
GSS_C_ROUTI NE_ERROR_OFFSET)
#define GSS_S UNAUTHORI ZED
GSS_C_ROUTI NE_ERROR_CFFSET)
#defi ne GSS_S UNAVAI LABLE
GSS_C_ROUTI NE_ERROR_CFFSET)
#define GSS_S DUPLI CATE_ELEMENT
GSS_C_ROUTI NE_ERROR_OFFSET)
#define GSS_S NAME _NOT_MWN
GSS_C_ROUTI NE_ERROR_CFFSET)

/*
* Suppl ementary info bits:
*/
#defi ne GSS_S CONTI NUE_NEEDED \

(1ul << (GSS_C_SUPPLEMENTARY_COFFSET

#define GSS_S _DUPLI CATE_TOKEN \

(1ul << (GSS_C_SUPPLEMENTARY_OFFSET

#define GSS_ S OLD TOKEN \

(1ul << (GSS_C_SUPPLEMENTARY_ OFFSET

#define GSS_S UNSEQ TOKEN \

(1ul << (GSS_C_SUPPLEMENTARY_COFFSET

#define GSS_S_GAP_TOKEN \

(1ul << (GSS_C_SUPPLEMENTARY_OFFSET

/*

* Finally, function prototypes for the GSS-API

*/

W ay St andards Track

(7ul

(8ul

(9ul

(10ul
(11ul
(12ul
(13ul
(14ul
(15ul
(16ul
(17ul

(18ul

<<

<<

<<

<<

<<

<<

<<

<<

<<

0))
1)
2))
3))
4))

routines.

January 2000

[Page 90]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

OM ui nt 32 gss_acquire_cred

(OM ui nt 32 /* mnor_status */
const gss_nane_t, [* desired_nane */
OM ui nt 32, [* time_req */
const gss_Q D set, /* desired_nmechs */
gss_cred _usage t, /* cred_usage */
gss cred id t , /* output_cred_handle */
gss_O D set , /* actual mechs */
OM ui nt 32 * [* time_rec */

);

OM ui nt 32 gss_rel ease_cred

(OM ui nt 32 /* mnor_status */
gss cred id t * /* cred_handle */

)

OM ui nt 32 gss_init_sec_cont ext

(OM ui nt 32 /* mnor_status */
const gss_cred_ id_t, /[* initiator_cred_handle */
gss_ctx_ id t , /* context _handle */
const gss_nane_t, /* target _name */
const gss_Q D, /[* mech_type */

OM _ui nt 32, /* req_flags */
OM ui nt 32, /* time_req */

const gss_channel _bindings_t,
/* input_chan_bindi ngs */

const gss_buffer _t, [* input_token */
gss_QAO D, /* actual _nmech_type */
gss_buffer_t, /* out put _token */
OM ui nt 32 , /* ret _flags */
OM uint32 * /* time_rec */

)

OM ui nt 32 gss_accept _sec_cont ext

(OM_ui nt32 /* mnor_status */
gss ctx_id t |, /* context _handle */
const gss_cred_id_t, /* acceptor_cred_handl e */
const gss_buffer t, [* input_token buffer */

const gss_channel _bi ndi ngs_t,
[* input_chan_bi ndi ngs */

gss_hane_t /* src_name */

gss_ O D, /* mech_type */

gss_buffer _t, /* output _token */

OM uint32 , /* ret _flags */

OM ui nt 32 , [* time_rec */

gss_cred_id t * /* del egated_cred_handl e */
);

W ay St andards Track [Page 91]

RFC 2744

OM ui nt 32

OM ui nt 32

OM ui nt 32

OM ui nt 32

OM _ui nt 32

OM ui nt 32

W ay

GSS- API

gss_process_cont ext _token

(OM ui nt 32
const gss_ctx_id_t,
const gss_buffer_t

);

gss_del ete_sec_cont ext

(OM ui nt 32
gss_ctx_id_t
gss_buffer _t
);

gss_context _tine

(OM ui nt 32

const gss_ctx_id_t,
OM uint32 *

)

gss_get _mc

(OM ui nt 32

const gss_ctx_id_t,
gss_qop_t,

const gss_buffer _t,
gss_buffer t

)

gss_verify_nic

(OM_ui nt 32
const gss_ctx_id_t,
const gss_buffer t,
const gss_buffer t,
gss_gop_t *

gss_wrap

(OM_ui nt 32

const gss ctx id t,
int,

gss_qop_t,

const gss_buffer _t,
int ,
gss_buffer t
)

V2: C- bi ndi ngs

~ ~
*

m nor _status */

* context _handl e */

* token_buffer */

~ ~
*

m nor _status */

* context _handl e */

* out put _t oken */

m nor _status */

* context _handl e */

* time_rec */

~ ~
*

m nor _status */

* context _handl e */

/* qop_req */
*

/*
/*
/*
/*
/*

message_buffer */
nessage_t oken */

m nor_status */
context _handle */
nmessage _buffer */
token_buffer */
gop_state */

m nor _status */
context _handl e */

* conf_req flag */
* qop_req */

i nput _message_buffer */

* conf_state */

/* out put _nmessage_buffer */

St andards Track

[Page 92]

January 2000

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

OM _ui nt 32 gss_unw ap

(OM ui nt 32 /* mnor_status */

const gss_ctx_id_t, /* context_handle */

const gss_buffer _t, [* input_message_buffer */
gss_buffer_t, /* out put _nmessage_buffer */
int , /* conf_state */

gss_qop_t * /* qop_state */

OM ui nt 32 gss_displ ay_status

(OM ui nt 32 /* mnor_status */
OM ui nt 32, /* status_val ue */
int, [* status_type */
const gss_Q D, /[* mech_type */
OM uint32 , /* message_context */
gss_buffer t /* status_string */
)
OM_ui nt 32 gss_i ndi cat e_nechs
(OM_ui nt32 /* mnor_status */
gss_O D set * /* mech_set */
)
OM ui nt 32 gss_conpar e_namne
(OM_ui nt 32 /* mnor_status */
const gss_nane_t, /* namel */
const gss_nane_t, /* name2 */
int * /* nanme_equal */
)
OM ui nt 32 gss_di spl ay_nane
(OM_ui nt32 /* mnor_status */
const gss_nane_t, [* input_nanme */
gss_buffer t, /* output _nane_buffer */
gss QD * /* output _nanme_type */
)
OM ui nt 32 gss_i nport_nane
(OM_ui nt32 /* mnor_status */
const gss_buffer t, /* input_nane_buffer */
const gss_Q D, /[* input_nanme_type */
gss_hane_t * /* output_nanme */
)

W ay St andards Track [Page 93]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

OM ui nt 32 gss_export_nane

(OM_ui nt 32, /* mnor_status */
const gss_nane_t, [* input_nane */
gss_buffer _t /* exported_nanme */

);

OM ui nt 32 gss_rel ease_nane

(OM_ ui nt32 *, /* mnor_status */
gss_nanme_t * [* input_name */

);

OM ui nt 32 gss_rel ease_buffer

(OM ui nt 32 /* mnor_status */
gss_buffer t [* buffer */

)

OM ui nt 32 gss_rel ease_oi d_set

(OM ui nt 32 /* mnor_status */
gss_O D set * [* set */

)

OM ui nt32 gss_inquire_cred

(OM_ui nt32 /* mnor_status */
const gss_cred id_t, /* cred_handle */
gss_hame_t /[* nanme */

OM uint32 , [* lifetime */
gss_cred_usage_t , /* cred_usage */
gss_O D set * /* mechani sms */

);

OM ui nt 32 gss_inquire_context (
OM uint32 , /* mnor_status */
const gss_ctx_id_t, /* context_handle */
gss_hame_t /* src_name */
gss_hane_t [* targ_nanme */
OM ui nt 32 , [* lifetime_rec */
gss_ O D, /* mech_type */
OM uint32 , [* ctx_flags */
int , /* locally_ initiated */
int * [* open */

);

W ay St andards Track [Page 94]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

OM uint32 gss wap_size limt (

OM uint32 , /* mnor_status */
const gss_ctx_id_t, /* context_handle */
int, /* conf_req_flag */
gss_qop_t, /* qop_req */
OM ui nt 32, /* req_output_size */
OM uint32 * /* max_input_size */
)
OM ui nt 32 gss_add_cred (
OM uint32 , /* mnor_status */
const gss_cred_ id_t, /* input_cred_handle */
const gss_nane_t, /* desired_nane */
const gss_Q D, /* desired_nech */
gss_cred_usage_t, /* cred_usage */
OM ui nt 32, [* initiator_time_req */
OM ui nt 32, /* acceptor_time_req */
gss cred id t , /* output_cred_handle */
gss_O D set , /* actual nmechs */
OM uint32 , [* initiator _time_rec */
OM uint32 * /* acceptor_time_rec */
);
OM uint32 gss_inquire_cred by nech (
OM uint32 , /* mnor_status */
const gss_cred_ id_t, /* cred_handle */
const gss_Q D, /[* mech_type */
gss_hame_t /* name */
OM uint32 , [* initiator _lifetime */
OM ui nt 32 , /* acceptor _lifetinme */
gss_cred _usage t * /* cred_usage */
)
OM ui nt 32 gss_export_sec_context (
OM uint32 , /* mnor_status */
gss ctx_id t |, /* context _handle */
gss_buffer t /* interprocess_token */
)
OM ui nt 32 gss_inport_sec_context (
OM uint32 , /* mnor_status */
const gss_buffer t, /* interprocess_token */
gss ctx_ id t * /* context _handle */
)

W ay St andards Track [Page 95]

RFC 2744

OM ui nt 32

OM ui nt 32

OM ui nt 32

OM ui nt 32

OM ui nt 32

OM ui nt 32

OM ui nt 32

L A

W ay

gss_verify mec,
provi ded by GSS-API
conpatibility with V1 applications.

GSS- API

OM uint32 ,
gss_QA D set *
)

OM uint32 ,
const gss_Q D,
gss_QA D set *

int *

);

OM uint32 ,

const gss_Q D,
gss_OA D set *
)

OM uint32 ,

const gss_nane_

gss_OA D set *
);

OM uint32 ,

const gss_nane_

const gss_Q D,
gss_nanme_t *

);

gss_duplicate_name (

OM ui nt 32 ,

const gss_nane_

gss_nanme_t *

);

V2: C- bi ndi ngs

gss_create_enpty oid_set (

~ ~
*

gss_add_oi d_set nenber (

~ ~
*

);
gss_test oid_set nember (
OM uint32 , /*
const gss_Q D, /*
const gss_Q D set, /*
*

gss_inquire_nanes_for_nech (

~ ~
* ok

gss_inquire_nechs_for_nanme (

t, [*
| *

gss_canoni cal i ze_nane (

t, [*
| *
| *

t, /*
| *

St andards Track

m nor _status */

* oid_set */

m nor _status */
menber _oid */
oi d_set */

m nor _status */
menber */

set */

present */

m nor _status */
mechani sm */
nane_t ypes */

m nor _status */
i nput _nane */
mech_t ypes */

m nor _status */
i nput _nane */
mech_type */
out put _nane */

m nor _status */
src_nane */
dest _nanme */

They shoul d
backwar ds

January 2000

The follow ng routines are obsolete variants of gss_get_mc,
gss_wrap and gss_unwr ap.
V2 i mpl enentations for

be

Di stinct entrypoints

[Page 96]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

* (as opposed to #defines) should be provided, both to allow
* GSS-API V1 applications to |link agai nst GSS- APl V2
i mpl ement ati ons,
* and to retain the slight paranmeter type differences between the
* obsol ete versions of these routines and their current fornmns.

OM_ui nt 32 gss_sign
(OM_ui nt 32 /* mnor_status */
/

gss_ctx_id_t, * context _handl e */

int, /* qop_req */

gss_buffer t, /* nmessage buffer */

gss_buffer t /* nmessage_t oken */
)

OM ui nt 32 gss_verify

(OM ui nt 32 /* mnor_status */
gss_ctx_id_t, /* context_handl e */
gss_buffer t, /* message buffer */
gss_buffer _t, [* token_buffer */
int * * gop_state */

)

OM ui nt 32 gss_sea

(OM ui nt 32 /* mnor_status */
gss_ctx_id_t, /* context_handle */
int, /* conf_req_flag */
int, /* qop_req */
gss_buffer t, /* input_message buffer */
int , * conf_state */
gss_buffer t /* output _nessage buffer */

)

OM ui nt 32 gss_unsea

(OM ui nt 32 /* mnor_status */
gss ctx_id_ t, /* context handle */
gss_buffer _t, [* input_message_buffer */
gss_buffer _t, [* out put _message_buffer */
int /* conf_state */
int * /* qop_state */

)

#endi f /* GSSAPI _H_ */

W ay St andards Track [Page 97]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Appendi x B. Additional constraints for application binary portability

The purpose of this C bindings docunent is to encourage source-l|eve
portability of applications across GSS-APlI inplenmentations on
different platforns and atop different mechani sms. Additional goals
that have not been explicitly addressed by this docunent are |ink-
time and run-tinme portability.

Link-time portability provides the ability to conpile an application
agai nst one inmplenentation of GSS-API, and then link it against a
different inplenentation on the same platform It is a stricter
requi renment than source-level portability.

Run-time portability differs fromlink-tine portability only on those
platforns that inplenent dynamcally | oadabl e GSS-API

i mpl enent ati ons, but do not offer |oad-tine synbol resolution. On
such platforms, run-tinme portability is a stricter requirenent than
link-time portability, and will typically include the precise

pl acenent of the various GSS-API routines within library entrypoint

vect ors.

I ndi vi dual platforms will inpose their own rules that nust be
followed to achieve link-tinme (and run-tinme, if different)
portability. |In order to ensure either formof binary portability,

an ABI specification nust be witten for GSS-API inplenentations on
that platform However, it is recognized that there are some issues
that are likely to be common to all such ABlI specifications. This
appendi x is intended to be a repository for such conmon issues, and
contai ns some suggestions that individual ABI specifications my
choose to reference. Since machine architectures vary greatly, it my
not be possible or desirable to follow these suggestions on al

pl at f or s.

B.1. Pointers

Wil e ANSI-C provides a single pointer type for each declared type,
plus a single (void *) type, sone platforns (notably those using
segnented nmenory architectures) augnent this with various nodified
poi nter types (e.g. far pointers, near pointers). These | anguage

bi ndi ngs assune ANSI-C, and thus do not address such non-standard

i mpl enent ati ons. GSS-API inplenentations for such platformnms nust
choose an appropriate nenory nodel, and should use it consistently
throughout. For exanple, if a nenory nodel is chosen that requires
the use of far pointers when passing routine paraneters, then far
poi nters should al so be used within the structures defined by GSS-
API .

W ay St andards Track [Page 98]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

B.2. Internal structure alignnent

GSS- APl defines several data-structures containing differently-sized
fields. An ABI specification should include a detailed description
of how the fields of such structures are aligned, and if there is any
i nternal padding in these data structures. The use of conpiler
defaults for the platformis reconmended.

B. 3. Handl e types

The C bindings specify that the gss_cred_id_t and gss_ctx_id_ t types
shoul d be inplenented as either pointer or arithnetic types, and that
if pointer types are used, care should be taken to ensure that two
handl es may be conpared with the == operator. Note that ANSI-C does
not guarantee that two pointer values may be conpared with the ==
operator unless either the two pointers point to nmenbers of a single
array, or at |east one of the pointers contains a NULL val ue.

For binary portability, additional constraints are required. The
following is an attenpt at defining platformindependent constraints.

The size of the handle type nmust be the same as sizeof (void *), using
the appropriate nenory nodel

The == operator for the chosen type nust be a sinple bit-w se
conparison. That is, for two in-nenory handl e objects hl and h2, the
bool ean val ue of the expression

(hl1 == h2)
shoul d al ways be the sane as the bool ean val ue of the expression
(menctnp(&hl, &h2, sizeof(hl)) == 0)

The actual use of the type (void *) for handle types is discouraged,
not for binary portability reasons, but since it effectively disables
much of the conpile-tinme type-checking that the conpil er can

ot herwi se perform and is therefore not "progranmer-friendly". If a
poi nter inplementation is desired, and if the platfornis

i mpl enentati on of pointers permts, the handl es should be inpl enented
as pointers to distinct inplementation-defined types.

B.4. The gss_nhane_t type
The gss_nane_t type, representing the internal nanme object, should be
i mpl enented as a pointer type. The use of the (void *) type is

di scouraged as it does not allow the conmpiler to perform strong
type-checki ng. However, the pointer type chosen should be of the

W ay St andards Track [Page 99]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

sanme size as the (void *) type. Provided this rule is obeyed, ABI
specifications need not further constrain the inplementation of
gss_hame_t objects.

B.5. The int and size_t types

Sone platforns nmay support differently sized inplenmentations of the
"int" and "size t" types, perhaps chosen through conpiler switches,
and perhaps dependent on nmenory nodel. An ABI specification for such
a platformshould include required inplenentations for these types.

It is recormended that the default inplenmentation (for the chosen
nmenory nodel, if appropriate) is chosen

B. 6. Procedure-calling conventions

Sone platforns support a variety of different binary conventions for
calling procedures. Such conventions cover things |ike the format of
the stack franme, the order in which the routine paraneters are pushed
onto the stack, whether or not a paranmeter count is pushed onto the
stack, whether sone argunent(s) or return values are to be passed in
regi sters, and whether the called routine or the caller is
responsi ble for renoving the stack frame on return. For such

pl atforms, an ABI specification should specify which calling
convention is to be used for GSS-APlI inplenentations.

Ref er ences

[GSSAPI] Linn, J., "Generic Security Service Application Program
Interface Version 2, Update 1", RFC 2743, January 2000.

[XoM OGSl Obj ect Managenent APl Specification, Version 2.0 t"
X. 400 APl Association & X/ Open Conpany Limited, August
24, 1990 Specification of datatypes and routines for
mani pul ating i nformation objects.

Aut hor’ s Addr ess

John Way

Iris Associates

5 Technol ogy Park Drive,
Westford, MA 01886

USA

Phone: +1-978-392-6689
EMai | : John_Way@ris.com

W ay St andards Track [Page 100]

RFC 2744 GSS- APl V2: G- bi ndi ngs January 2000

Ful | Copyright Statenent
Copyright (C The Internet Society (2000). Al Rights Reserved.

Thi s docunent and translations of it may be copied and furnished to
ot hers, and derivative works that conment on or otherwi se explain it
or assist inits inplenentation may be prepared, copied, published
and distributed, in whole or in part, without restriction of any

ki nd, provided that the above copyright notice and this paragraph are
i ncluded on all such copies and derivative works. However, this
docunent itself may not be nodified in any way, such as by renoving
the copyright notice or references to the Internet Society or other
I nternet organi zati ons, except as needed for the purpose of
devel opi ng Internet standards in which case the procedures for
copyrights defined in the Internet Standards process nust be
followed, or as required to translate it into |anguages ot her than
Engl i sh.

The Iimted perm ssions granted above are perpetual and will not be
revoked by the Internet Society or its successors or assigns.

Thi s docunent and the information contained herein is provided on an
"AS | S" basis and THE | NTERNET SOCI ETY AND THE | NTERNET ENG NEERI NG
TASK FORCE DI SCLAI M5 ALL WARRANTI ES, EXPRESS OR | MPLI ED, | NCLUDI NG
BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE | NFORVATI ON
HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED WARRANTI ES OF
MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Acknowl edgenent

Funding for the RFC Editor function is currently provided by the
I nternet Society.

W ay St andards Track [Page 101]

