Net wor k Wor ki ng Group S. Bl ake- W1 son
Request for Comments: 4366 BCl
osol et es: 3546 M Nystrom
Updat es: 4346 RSA Security
Cat egory: Standards Track D. Hopwood
| ndependent Consul t ant

J. M kkel sen

Transacti onwar e

T. Wight

Vodaf one

April 2006

Transport Layer Security (TLS) Extensions
Status of This Meno

Thi s document specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for

i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nenmo is unlimted.

Copyri ght Notice
Copyright (C The Internet Society (2006).
Abst r act

Thi s docunent describes extensions that nay be used to add
functionality to Transport Layer Security (TLS). It provides both
generi c extension mechani sms for the TLS handshake client and server
hel | os, and specific extensions using these generic nechanisns.

The extensions may be used by TLS clients and servers. The

ext ensi ons are backwards conpati bl e: communication is possible
between TLS clients that support the extensions and TLS servers that
do not support the extensions, and vice versa.

Bl ake-W I son, et al. St andards Track [Page 1]

RFC 4366 TLS Ext ensions April 2006

Tabl e
1

2.

o0k

7.
8.
9.
10.

11.

of Contents
INtrodUuCti ON 3
1.1. Conventions Used in This Documentc. . 5
Ceneral Extension Mechani SnB i 5
2.1. Extended Cient Hello 5
2.2. Extended Server Hello i 6
2.3. Hell o EXtensi ONSttt e e e e e 6
2.4. Extensions to the Handshake Protocol 8
Specific EXteNnsi ONS 8
3.1. Server Nane Indication 9
3.2 Maxi mum Fragment Length Negotiation 11
3.3. dient Certificate URLS 12
3.4. Trusted CAIndication 15
3.5. Truncated HVAC e 16
3.6. Certificate Status Request 17
Error Al ert s ... 19
Procedure for Defining New Extensions 20
Security Considerati ONS 21
6.1. Security of server_name 22
6.2. Security of max_fragnment_length 22
6.3. Security of client_certificate url 22
6.4. Security of trusted_ca keys 24
6.5. Security of truncated hnmac 24
6.6. Security of status request 25
Internationalization Considerations iiiuuunnunn.. 25
IANA Considerati ONSot e e e e 25
Acknow edgemBnt S 27
Normati ve Ref erences 27
Informative References i 28

Bl ake- W I son, et al. St andards Track [Page 2]

RFC 4366 TLS Ext ensions April 2006

1

| ntroducti on

Thi s docunent describes extensions that nay be used to add
functionality to Transport Layer Security (TLS). It provides both
generi c extensi on mechani snms for the TLS handshake client and server
hel | os, and specific extensions using these generic nechani sns.

TLS is now used in an increasing variety of operational environnents,
many of which were not envisioned when the original design criteria
for TLS were determned. The extensions introduced in this document
are designed to enable TLS to operate as effectively as possible in
new envi ronments such as wirel ess networks.

Wrel ess environnents often suffer froma nunber of constraints not
conmonly present in wired environnents. These constraints nay

i ncl ude bandwidth limtations, computational power limtations,
menory limtations, and battery life limtations.

The extensions described here focus on extending the functionality
provi ded by the TLS protocol nessage formats. Qher issues, such as
the addition of new cipher suites, are deferred.

Specifically, the extensions described in this docunent:

- Alow T TLS clients to provide to the TLS server the nane of the
server they are contacting. This functionality is desirable in
order to facilitate secure connections to servers that host
multiple "virtual’ servers at a single underlying network address.

- Alow TLS clients and servers to negotiate the maxi num fragnment
length to be sent. This functionality is desirable as a result of
menory constraints anong sone clients, and bandwi dth constraints
anpbng sonme access networks.

- Alow TLS clients and servers to negotiate the use of client
certificate URLs. This functionality is desirable in order to
conserve nenory on constrained clients.

- Alow TLS clients to indicate to TLS servers which CA root keys
they possess. This functionality is desirable in order to prevent
mul ti pl e handshake failures involving TLS clients that are only
able to store a small nunber of CA root keys due to nenory
limtations.

- Alow T TLS clients and servers to negotiate the use of truncated
MACs. This functionality is desirable in order to conserve
bandwi dt h in constrai ned access networks.

Bl ake- W I son, et al. St andards Track [Page 3]

RFC 4366 TLS Ext ensions April 2006

- Alow T TLS clients and servers to negotiate that the server sends
the client certificate status information (e.g., an Online
Certificate Status Protocol (OCSP) [OCSP] response) during a TLS
handshake. This functionality is desirable in order to avoid
sending a Certificate Revocation List (CRL) over a constrained
access network and therefore save bandwi dth.

In order to support the extensions above, general extension
mechani sns for the client hello nmessage and the server hell o nessage
are introduced.

The extensions described in this docunent may be used by TLS clients
and servers. The extensions are designed to be backwards conpati bl e,
nmeani ng that TLS clients that support the extensions can talk to TLS
servers that do not support the extensions, and vice versa. The
docunent therefore updates TLS 1.0 [TLS] and TLS 1.1 [TLSbis].

Backwards conpatibility is primarily achieved via two consi derations:

- Cdients typically request the use of extensions via the extended
client hello nessage described in Section 2.1. TLS requires
servers to accept extended client hello nessages, even if the
server does not "understand"” the extension

- For the specific extensions described here, no mandatory server
response is required when clients request extended functionality.

Essentially, backwards conpatibility is achieved based on the TLS
requi rement that servers that are not "extensions-aware" ignore data
added to client hellos that they do not recognize; for exanple, see
Section 7.4.1.2 of [TLS].

Not e, however, that although backwards conpatibility is supported,
some constrained clients may be forced to reject comruni cations with
servers that do not support the extensions as a result of the limted
capabilities of such clients.

Thi s docunent is a revision of the RFC3546 [RFC3546]. The only nmjor
change concerns the definition of new extensions. New extensions can
now be defined via the | ETF Consensus Process (rather than requiring
a standards track RFC). In addition, a few mnor clarifications and
editorial inprovenents were nade

The remai nder of this docunment is organized as follows. Section 2
descri bes general extension nechanisns for the client hello and
server hell o handshake messages. Section 3 describes specific
extensions to TLS. Section 4 describes new error alerts for use with

Bl ake- W I son, et al. St andards Track [Page 4]

RFC 4366 TLS Ext ensions April 2006

the TLS extensions. The final sections of the docunent address |PR
security considerations, registration of the application/pkix-pkipath
M ME type, acknow edgenents, and references.

1.1. Conventions Used in This Docunent

The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMMENDED', "MAY", and "OPTIONAL" in this
docunent are to be interpreted as described in BCP 14, RFC 2119

[KEYWORDS] .

2. General Extension Mechani sms

This section presents general extension mechanisnms for the TLS
handshake client hello and server hell o nmessages.

These general extension nmechanisns are necessary in order to enable
clients and servers to negotiate whether to use specific extensions,
and how to use specific extensions. The extension fornats described
are based on [MAI LI NGLI ST] .

Section 2.1 specifies the extended client hello nmessage fornat,
Section 2.2 specifies the extended server hello nessage format, and
Section 2.3 describes the actual extension fornmat used with the
extended client and server hell os.

2.1. Extended Client Hello

Clients MAY request extended functionality from servers by sending
the extended client hello nessage format in place of the client hello
nessage format. The extended client hello nmessage format is:

struct {
Pr ot ocol Versi on client_version;
Random r andom
Sessi onl D session_id;
Ci pher Sui te ci pher_suites<2..2"16-1>;
Conpr essi onMet hod conpressi on_net hods<l..278-1>;
Ext ensi on client_hell o_extension_|ist<0..2"16-1>;
} dientHello;

Here the new "client_hell o _extension_ |ist" field contains a |ist of
extensions. The actual "Extension" format is defined in Section 2.3.

In the event that a client requests additional functionality using

the extended client hello, and this functionality is not supplied by
the server, the client MAY abort the handshake

Bl ake- W I son, et al. St andards Track [Page 5]

RFC 4366 TLS Ext ensions April 2006

Note that [TLS], Section 7.4.1.2, allows additional information to be
added to the client hello nmessage. Thus, the use of the extended
client hello defined above shoul d not "break" existing TLS servers.

A server that supports the extensions mechani sm MJST accept only
client hello nessages in either the original or extended ClientHello
format and (as for all other nessages) MJST check that the anmount of
data in the nessage precisely matches one of these formats. |If it
does not, then it MJST send a fatal "decode error" alert. This
overrides the "Forward conpatibility note" in [TLS].

2.2. Extended Server Hello

The extended server hell o nessage format MAY be sent in place of the
server hell o message when the client has requested extended
functionality via the extended client hello nmessage specified in
Section 2.1. The extended server hello nmessage format is:

struct {

Pr ot ocol Versi on server_versi on;

Random r andom

Sessionl D session_id;

Ci pher Sui te ci pher_suite;

Conpr essi onMet hod conpr essi on_net hod,;

Ext ensi on server _hell o_extension_|ist<0..2"16-1>;
} ServerHell o;

Here the new "server_hello _extension_list" field contains a list of
extensions. The actual "Extension"” format is defined in Section 2.3.

Note that the extended server hello nessage is only sent in response
to an extended client hello nmessage. This prevents the possibility
that the extended server hello nmessage could "break" existing TLS
clients.

2.3. Hello Extensions

The extension format for extended client hell os and extended server
hell os is:

struct {
Ext ensi onType extensi on_type;
opaque extension_dat a<0..2"16-1>;
} Extension;

Bl ake- W I son, et al. St andards Track [Page 6]

RFC 4366 TLS Ext ensions April 2006

Her e:
"extension_type" identifies the particul ar extension type.

"extension_data" contains information specific to the particul ar
ext ensi on type.

The extension types defined in this docunment are:

enum {
server_nane(0), max_fragnment | ength(1),
client _certificate url(2), trusted ca keys(3),
truncated_hnac(4), status_request(5), (65535)
} Ext ensi onType;

The list of defined extension types is maintained by the | ANA. The
current list can be found at:

http://wwv. i ana. or g/ assi gnnent s/ tl s-extensi ontype-val ues. See
Sections 5 and 8 for nore informati on on how new val ues are added.

Note that for all extension types (including those defined in the
future), the extension type MJST NOT appear in the extended server
hell o unl ess the same extension type appeared in the correspondi ng
client hello. Thus clients MIST abort the handshake if they receive
an extension type in the extended server hello that they did not
request in the associ ated (extended) client hello.

Nonet hel ess, "server-oriented" extensions may be provided in the
future within this framework. Such an extension (say, of type x)
would require the client to first send an extension of type x in the
(extended) client hello with enpty extension data to indicate that it
supports the extension type. 1In this case, the client is offering
the capability to understand the extension type, and the server is
taking the client up on its offer.

Al so note that when multiple extensions of different types are
present in the extended client hello or the extended server hell o,
the extensions may appear in any order. There MJST NOT be nore than
one extension of the sane type.

Finally, note that an extended client hello nmay be sent both when
starting a new session and when requesting session resunption.

I ndeed, a client that requests resunpti on of a session does not in
general know whether the server will accept this request, and
therefore it SHOULD send an extended client hello if it would
normal ly do so for a new session. |n general the specification of
each extension type nust include a discussion of the effect of the
ext ensi on both during new sessions and during resuned sessions.

Bl ake- W I son, et al. St andards Track [Page 7]

RFC 4366 TLS Ext ensions April 2006
2.4. Extensions to the Handshake Protoco
Thi s docunent suggests the use of two new handshake messages,
"CertificateURL" and "CertificateStatus". These nmessages are
described in Section 3.3 and Section 3.6, respectively. The new

handshake nessage structure therefore becones:

enum {
hel | o_request (0),
certificate(1l),
certificate_request(13),
certificate verify(15),
fi ni shed(20),
(255)

} HandshakeType;

struct {
HandshakeType nsg_type; /*
ui nt 24 | engt h; /*

sel ect (HandshakeType) {
case hell o_request:
case client _hello:
case server_hell o:
case certificate:
case server_key_exchange:
case certificate_request:
case server_hel | o_done:
case certificate_verify:

case client_key_exchange:
case fini shed:
case certificate_url:
case certificate_status:
} body;
} Handshake;

3. Specific Extensions

client_hello(1),
server _key_exchange (12),
server_hel |l o_done(14),
client_key exchange(16),
certificate url (21),

server_hell o(2),

certificate_status(22),

handshake type */
bytes in nmessage */

Hel | oRequest ;
CientHello;
ServerHel | o;
Certificate;

Ser ver KeyExchange;
CertificateRequest;
Server Hel | oDone;
CertificateVerify;
d i ent KeyExchange;
Fi ni shed;
CertificateURL
CertificateStatus;

Thi s section describes the specific TLS extensions specified in this

docunent .

Note that any messages associated with these extensions that are sent
during the TLS handshake MUST be included in the hash cal cul ati ons

i nvol ved in "Finished" nessages.
Note al so that al

one or

the extensions defined in this section are
rel evant only when a session is initiated.
nore of the defined extension types in an extended client

VWhen a client includes

hell o while requesting session resunption:

Bl ake- W1 son, et al

St andards Track

[Page 8]

RFC 4366 TLS Ext ensions April 2006

- |If the resunption request is denied, the use of the extensions is
negoti ated as nor nal

- If, on the other hand, the ol der session is resuned, then the
server MJST ignore the extensions and send a server hello
contai ni ng none of the extension types. 1In this case, the
functionality of these extensions negotiated during the origina
session initiation is applied to the resunmed session

Section 3.1 describes the extension of TLS to allowa client to

i ndi cate which server it is contacting. Section 3.2 describes the
ext ensi on that provides maxi num fragnent |ength negotiation. Section
3.3 describes the extension that allows client certificate URLs.
Section 3.4 describes the extension that allows a client to indicate
whi ch CA root keys it possesses. Section 3.5 describes the extension
that allows the use of truncated HVAC. Section 3.6 describes the
extension that supports integration of certificate status information
nessages into TLS handshakes.

3.1. Server Nane |ndication

TLS does not provide a mechanismfor a client to tell a server the
nane of the server it is contacting. It may be desirable for clients
to provide this information to facilitate secure connections to
servers that host multiple "virtual’' servers at a single underlying
net wor k addr ess.

In order to provide the server nanme, clients MAY include an extension
of type "server_name" in the (extended) client hello. The

"extension _data" field of this extension SHALL contain

" Server NanmeLi st" where:

struct {
NameType nane_type
sel ect (name_type) {
case host nane: Host Nane;
} nane;
} Server Nane;

enum {
host _nane(0), (255)
} NaneType;
opaque Host Name<1..2"16- 1>;
struct {

Server Nanme server_nane_list<l..2"16-1>
} Server NanelLi st ;

Bl ake- W I son, et al. St andards Track [Page 9]

RFC 4366 TLS Ext ensions April 2006

Currently, the only server nanmes supported are DNS host nanes;
however, this does not inply any dependency of TLS on DNS, and ot her
nane types may be added in the future (by an RFC that updates this
docunent). TLS MAY treat provided server names as opaque data and
pass the names and types to the application

"Host Nane" contains the fully qualified DNS hostnanme of the server,
as understood by the client. The hostnane is represented as a byte
string using UTF-8 encoding [UTF8], without a trailing dot.

If the hostnane | abels contain only US-ASCI| characters, then the
client MUST ensure that |abels are separated only by the byte O0x2E
representing the dot character U+002E (requirenent 1 in Section 3.1
of [IDNA] notwithstanding). |f the server needs to match the

Host Nanme agai nst names that contain non-US-ASCI| characters, it MJST
performthe conversion operation described in Section 4 of [IDNA],
treating the Host Nane as a "query string" (i.e., the Al owUnassigned
flag MIUST be set). Note that IDNA allows | abels to be separated by
any of the Unicode characters W002E, W+3002, W+FFOE, and U+FF61
therefore, servers MJST accept any of these characters as a | abe
separator. |If the server only needs to match t he Host Nane agai nst
nanes contai ni ng exclusively ASCI| characters, it MJST conpare ASCl
nanes case-insensitively.

Literal I1Pv4 and | Pv6 addresses are not permitted in "HostNane".

It is RECOWENDED that clients include an extension of type
"server_nanme" in the client hell o whenever they locate a server by a
supported nane type

A server that receives a client hello containing the "server_nane"
ext ensi on MAY use the information contained in the extension to guide
its selection of an appropriate certificate to return to the client,
and/ or other aspects of security policy. 1In this event, the server
SHALL include an extension of type "server_nanme" in the (extended)
server hello. The "extension_ data" field of this extension SHALL be

enpty.

If the server understood the client hello extension but does not
recogni ze the server nane, it SHOULD send an "unrecogni zed_name"
alert (which MAY be fatal).

If an application negotiates a server name using an application
protocol and then upgrades to TLS, and if a server_name extension is
sent, then the extension SHOULD contain the sanme nane that was
negotiated in the application protocol. |If the server_nane is
established in the TLS session handshake, the client SHOULD NOT
attenpt to request a different server nane at the application |ayer.

Bl ake- W I son, et al. St andards Track [Page 10]

RFC 4366 TLS Ext ensions April 2006

3.2. Maxi mum Fragnment Length Negoti ation

Wthout this extension, TLS specifies a fixed maxi mum pl ai nt ext
fragment | ength of 2714 bytes. It may be desirable for constrained
clients to negotiate a smaller maxi mum fragnent |ength due to nenory
limtations or bandwidth Iinmtations.

In order to negotiate smaller maxi mum fragnent |engths, clients MAY
i ncl ude an extension of type "max_fragment _length" in the (extended)
client hello. The "extension data" field of this extension SHALL
cont ai n:

enuni
279(1), 2710(2), 2~11(3), 2712(4), (255)
} MaxFragmnent Lengt h;

whose value is the desired maxi mum fragnent |ength. The all owed
values for this field are: 279, 27210, 2711, and 2712.

Servers that receive an extended client hello containing a
"max_fragnment | ength" extension MAY accept the requested nmaxi mum
fragment | ength by including an extension of type

"max_fragnment _length” in the (extended) server hello. The
"extension_data" field of this extension SHALL contain a
"MaxFragnment Lengt h" whose value is the sane as the requested maxi mum
fragment |ength.

If a server receives a maxi num fragnment |ength negotiation request
for a value other than the allowed values, it MJST abort the
handshake with an "illegal paraneter"” alert. Simlarly, if a client
receives a maxi mum fragnent |ength negotiation response that differs
fromthe length it requested, it MJST al so abort the handshake with
an "illegal _parameter” alert.

Once a maxi mum fragment |ength other than 2714 has been successfully
negoti ated, the client and server MJST i nmedi ately begin fragnenting
nessages (includi ng handshake nessages), to ensure that no fragnent

| arger than the negotiated length is sent. Note that TLS al ready
requires clients and servers to support fragnentati on of handshake
nmessages.

The negotiated |l ength applies for the duration of the session
i ncl udi ng sessi on resunptions.

The negotiated length limts the input that the record | ayer nay
process without fragnentation (that is, the nmaximum val ue of

TLSPI ai ntext.l ength; see [TLS], Section 6.2.1). Note that the output
of the record layer nay be larger. For exanple, if the negotiated

Bl ake- W I son, et al. St andards Track [Page 11]

RFC 4366 TLS Ext ensions April 2006

length is 2729=512, then for currently defined cipher suites (those
defined in [TLS], [KERB], and [AESSUI TES]), and when null conpression
is used, the record |l ayer output can be at nost 793 bytes: 5 bytes of
headers, 512 bytes of application data, 256 bytes of padding, and 20
bytes of MAC. This neans that in this event a TLS record | ayer peer
receiving a TLS record | ayer nessage | arger than 793 bytes my

di scard the nessage and send a "record_overflow' alert, without
decrypting the nessage.

3.3. dient Certificate URLs

Wthout this extension, TLS specifies that when client authentication
is performed, client certificates are sent by clients to servers
during the TLS handshake. It nay be desirable for constrained
clients to send certificate URLs in place of certificates, so that
they do not need to store their certificates and can therefore save
menory.

In order to negotiate sending certificate URLs to a server, clients
MAY i nclude an extension of type "client certificate url" in the
(extended) client hello. The "extension_data" field of this

ext ensi on SHALL be enpty.

(Note that it is necessary to negotiate use of client certificate
URLs in order to avoid "breaking" existing TLS servers.)

Servers that receive an extended client hello containing a

"client _certificate url" extension MAY indicate that they are willing
to accept certificate URLs by including an extension of type
"client _certificate url" in the (extended) server hello. The

"extension_data" field of this extension SHALL be enpty.

After negotiation of the use of client certificate URLS has been
successfully compl eted (by exchangi ng hell os incl uding
"client_certificate_url" extensions), clients MAY send a
"CertificateURL" nessage in place of a "Certificate" nessage:

enum {
i ndi vidual _certs(0), pkipath(1l), (255)
} Cert Chai nType;

enum {

false(0), true(l)
} Bool ean;

Bl ake- W I son, et al. St andards Track [Page 12]

RFC 4366 TLS Ext ensions April 2006

struct {

Cert Chai nType type

URLANdOpt i onal Hash url _and_hash_Ilist<1..2"16-1>;
} CertificateURL

struct {
opaque url <1..2"16-1>;
Bool ean hash_present;
sel ect (hash_present) {
case false: struct {};
case true: SHAlHash;
} hash;
} URLANndOpt i onal Hash;

opaque SHAlHash[20] ;

Here "url _and_hash_list" contains a sequence of URLs and optiona
hashes.

When X. 509 certificates are used, there are two possibilities:

- If CertificateURL.type is "individual _certs", each URL refers to a
singl e DER-encoded X. 509v3 certificate, with the URL for the
client’s certificate first.

- If CertificateURL.type is "pkipath", the Iist contains a single
URL referring to a DER-encoded certificate chain, using the type
Pki Pat h described in Section 8.

When any other certificate format is used, the specification that
descri bes use of that format in TLS should define the encoding format
of certificates or certificate chains, and any constraint on their
orderi ng.

The hash corresponding to each URL at the client’s discretion either
is not present or is the SHA-1 hash of the certificate or certificate
chain (in the case of X 509 certificates, the DER-encoded certificate
or the DER-encoded Pki Path).

Note that when a list of URLs for X 509 certificates is used, the
ordering of URLs is the same as that used in the TLS Certificate
nessage (see [TLS], Section 7.4.2), but opposite to the order in

whi ch certificates are encoded in PkiPath. In either case, the

sel f-signed root certificate MAY be onmitted fromthe chain, under the
assunption that the server nust already possess it in order to
validate it.

Bl ake- W I son, et al. St andards Track [Page 13]

RFC 4366 TLS Ext ensions April 2006

Servers receiving "CertificateURL" SHALL attenpt to retrieve the
client’s certificate chain fromthe URLs and then process the
certificate chain as usual. A cached copy of the content of any URL
in the chain MAY be used, provided that a SHA-1 hash is present for
that URL and it matches the hash of the cached copy.

Servers that support this extension MJST support the http: URL schene
for certificate URLs, and MAY support other schemes. Use of other
schenes than "http", "https", or "ftp" may create unexpected

pr obl emns.

If the protocol used is HITP, then the HTTP server can be configured
to use the Cache-Control and Expires directives described in [HTTP]
to specify whether and for how long certificates or certificate

chai ns shoul d be cached.

The TLS server is not required to follow HITP redirects when
retrieving the certificates or certificate chain. The URLs used in
this extension SHOULD therefore be chosen not to depend on such
redirects.

If the protocol used to retrieve certificates or certificate chains
returns a MMe-formatted response (as HTTP does), then the follow ng
M ME Cont ent - Types SHALL be used: when a single X 509v3 certificate
is returned, the Content-Type is "application/pkix-cert" [PKIOP], and
when a chain of X 509v3 certificates is returned, the Content-Type is
"appl i cati on/ pki x- pki pat h" (see Section 8).

If a SHA-1 hash is present for an URL, then the server MJST check
that the SHA-1 hash of the contents of the object retrieved fromthat
URL (after decoding any M ME Cont ent - Transf er- Encodi ng) matches the
given hash. |If any retrieved object does not have the correct SHA-1
hash, the server MJST abort the handshake with a

"bad _certificate hash value" alert.

Note that clients nay choose to send either "Certificate" or
"CertificateURL" after successfully negotiating the option to send
certificate URLs. The option to send a certificate is included to
provide flexibility to clients possessing nultiple certificates.

If a server encounters an unreasonabl e delay in obtaining

certificates in a given CertificateURL, it SHOULD time out and signa
a "certificate_unobtainable" error alert.

Bl ake- W I son, et al. St andards Track [Page 14]

RFC 4366 TLS Ext ensions April 2006

3.4. Trusted CA Indication

Constrained clients that, due to nenory linmitations, possess only a
smal | number of CA root keys may wish to indicate to servers which
root keys they possess, in order to avoid repeated handshake
failures.

In order to indicate which CA root keys they possess, clients MY
i ncl ude an extension of type "trusted ca _keys" in the (extended)
client hello. The "extension data" field of this extension SHALL
contain "TrustedAut horities" where:

struct {
TrustedAut hority trusted authorities |ist<0..2"16-1>;
} TrustedAut horiti es;

struct {
IdentifierType identifier_type;
select (identifier_type) {
case pre_agreed: struct {};
case key_shal hash: SHAlHash;
case x509_nane: Distingui shedName;
case cert_shal hash: SHAlHash;
} identifier;
} TrustedAut hority;

enum {
pre_agreed(0), key_shal hash(1l), x509 nane(2),
cert_shal_hash(3), (255)

} ldentifierType;

opaque Di stingui shedNane<l..2"16-1>;

Here "TrustedAuthorities" provides a list of CA root key identifiers
that the client possesses. Each CA root key is identified via
ei ther:

- "pre_agreed": no CA root key identity supplied.

- "key_shal hash": contains the SHA-1 hash of the CA root key. For
Digital Signature Algorithm (DSA) and Elliptic Curve Digita
Si gnature Al gorithm (ECDSA) keys, this is the hash of the
"subj ect Publ i cKey" value. For RSA keys, the hash is of the big-
endi an byte string representation of the nodul us without any
initial O-valued bytes. (This copies the key hash formats
depl oyed in other environnents.)

Bl ake- W I son, et al. St andards Track [Page 15]

RFC 4366 TLS Ext ensions April 2006

- "x509 nane": contains the DER-encoded X 509 Distingui shedName of
the CA

- "cert_shal hash": contains the SHA-1 hash of a DER-encoded
Certificate containing the CA root key.

Note that clients may include none, sonme, or all of the CA root keys
they possess in this extension.

Note also that it is possible that a key hash or a Distingui shed Nane
al one may not uniquely identify a certificate issuer (for exanple, if
a particular CA has nultiple key pairs). However, here we assune
this is the case following the use of Distinguished Nanmes to identify
certificate issuers in TLS

The option to include no CA root keys is included to allow the client
to indicate possession of sonme pre-defined set of CA root keys.

Servers that receive a client hello containing the "trusted _ca_keys"
ext ensi on MAY use the information contained in the extension to guide
their selection of an appropriate certificate chain to return to the
client. In this event, the server SHALL include an extension of type
"trusted_ca_keys" in the (extended) server hello. The
"extension_data" field of this extension SHALL be enpty.

3.5. Truncated HVMAC

Currently defined TLS ci pher suites use the MAC constructi on HVAC
with either MD5 or SHA-1 [HVAC] to authenticate record |ayer

conmuni cations. In TLS, the entire output of the hash function is
used as the MAC tag. However, it nmay be desirable in constrained
environnents to save bandwi dth by truncating the output of the hash
function to 80 bits when forming MAC t ags.

In order to negotiate the use of 80-bit truncated HVAC, clients MAY
i ncl ude an extension of type "truncated hmac" in the extended client
hell 0. The "extension_data" field of this extension SHALL be enpty.

Servers that receive an extended hell o containing a "truncated_hnac"
ext ensi on MAY agree to use a truncated HVAC by includi ng an extension
of type "truncated_hmac", with enpty "extension_data", in the
extended server hello.

Note that if new cipher suites are added that do not use HMAC, and

the session negotiates one of these cipher suites, this extension
will have no effect. It is strongly recommended that any new ci pher

Bl ake- W I son, et al. St andards Track [Page 16]

RFC 4366 TLS Ext ensions April 2006

sui tes using other MACs consider the MAC size an integral part of the
ci pher suite definition, taking into account both security and
bandwi dt h consi derati ons.

I f HMAC truncation has been successfully negotiated during a TLS
handshake, and the negoti ated ci pher suite uses HVAC, both the client
and the server pass this fact to the TLS record |ayer along with the
ot her negotiated security paraneters. Subsequently during the
session, clients and servers MJST use truncated HVACs, cal cul ated as
specified in [HMAC]. That is, G pherSpec.hash_size is 10 bytes, and
only the first 10 bytes of the HVAC output are transmtted and
checked. Note that this extension does not affect the cal cul ati on of
t he pseudo-random function (PRF) as part of handshaki ng or key
derivati on.

The negotiated HVAC truncation size applies for the duration of the
session including session resunptions.

3.6. Certificate Status Request

Constrained clients nay wish to use a certificate-status protoco
such as OCSP [OCSP] to check the validity of server certificates, in
order to avoid transm ssion of CRLs and therefore save bandw dth on
constrained networks. This extension allows for such information to
be sent in the TLS handshake, saving roundtrips and resources.

In order to indicate their desire to receive certificate status
i nformation, clients MAY include an extension of type
"status_request” in the (extended) client hello. The
"extension _data" field of this extension SHALL contain
"CertificateStatusRequest" where:

struct {
CertificateStatusType status_type;
sel ect (status_type) {
case ocsp: OCSPSt at usRequest ;
} request;
} CertificateStatusRequest;

enum { ocsp(1l), (255) } CertificateStatusType;
struct {
Responder | D responder _id |ist<0..2"16-1>;
Ext ensi ons request _ext ensi ons;
} OCSPSt at usRequest ;

opaque Responder| D<1..2"16-1>;
opaque Extensions<0..2"16-1>;

Bl ake- W I son, et al. St andards Track [Page 17]

RFC 4366 TLS Ext ensions April 2006

In the OCSPSt at usRequest, the "Responderl Ds" provides a |ist of OCSP
responders that the client trusts. A zero-length "responder _id |ist"
sequence has the special neaning that the responders are inplicitly
known to the server, e.g., by prior arrangenent. "Extensions" is a
DER encodi ng of OCSP request extensions.

Bot h "Responder| D' and "Extensions" are DER-encoded ASN. 1 types as
defined in [OCSP]. "Extensions" is inported from[PKIX . A zero-
 ength "request_extensions" value nmeans that there are no extensions
(as opposed to a zero-length ASN. 1 SEQUENCE, which is not valid for
the "Extensions" type).

In the case of the "id-pkix-ocsp-nonce" OCSP extension, [OCSP] is
uncl ear about its encoding; for clarification, the nonce MIST be a
DER- encoded OCTET STRI NG, which is encapsul ated as anot her OCTET
STRING (note that inplenentations based on an existing OCSP client
will need to be checked for conformance to this requirenent).

Servers that receive a client hello containing the "status_request"”
extension MAY return a suitable certificate status response to the
client along with their certificate. If OCSP is requested, they
SHOULD use the information contained in the extension when sel ecting
an OCSP responder and SHOULD i ncl ude request_extensions in the OCSP
request.

Servers return a certificate response along with their certificate by
sending a "CertificateStatus" nessage i mediately after the
"Certificate" message (and before any "ServerKeyExchange" or
"CertificateRequest" messages). |If a server returns a

"CertificateStatus" nessage, then the server MJST have incl uded an
extension of type "status_request" with enpty "extension_data" in the
ext ended server hello.

struct {
CertificateStatusType status_type
sel ect (status_type) {
case ocsp: OCSPResponse;
} response;
} CertificateStatus;

opaque OCSPResponse<l..2”24- 1>,
An "ocsp_response" contains a conplete, DER-encoded OCSP response

(using the ASN. 1 type OCSPResponse defined in [OCSP]). Note that
only one OCSP response may be sent.

Bl ake- W I son, et al. St andards Track [Page 18]

RFC 4366 TLS Ext ensions April 2006

The "CertificateStatus" nessage is conveyed using the handshake
nessage type "certificate status".

Note that a server MAY al so choose not to send a "CertificateStatus”
nmessage, even if it receives a "status_request"” extension in the
client hell o nessage.

Note in addition that servers MJST NOT send the "CertificateStatus"
nmessage unless it received a "status_request" extension in the client
hel | o message.

Clients requesting an OCSP response and receiving an OCSP response in
a "CertificateStatus" nessage MJUST check the OCSP response and abort
t he handshake if the response is not satisfactory.

4. Error Alerts

This section defines new error alerts for use with the TLS extensions
defined in this docunent.

The following new error alerts are defined. To avoid "breaking"
existing clients and servers, these alerts MJUST NOT be sent unless
the sending party has received an extended hello nmessage fromthe
party they are comunicating wth.

"unsupported_extension": this alert is sent by clients that
recei ve an extended server hello containing an extension that they
did not put in the corresponding client hello (see Section 2.3).
This message is always fatal.

- "unrecogni zed nanme": this alert is sent by servers that receive a
server_nane extension request, but do not recognize the server
nane. This nmessage MAY be fatal.

- "certificate_unobtainable": this alert is sent by servers who are
unable to retrieve a certificate chain fromthe URL supplied by
the client (see Section 3.3). This nmessage MAY be fatal; for
exanple, if client authentication is required by the server for
t he handshake to continue and the server is unable to retrieve the
certificate chain, it my send a fatal alert.

- "bad_certificate status response": this alert is sent by clients
that receive an invalid certificate status response (see Section
3.6). This nmessage is always fatal.

- "bad_certificate_hash value": this alert is sent by servers when a

certificate hash does not match a client-provided
certificate _hash. This nmessage is always fatal.

Bl ake- W I son, et al. St andards Track [Page 19]

RFC 4366 TLS Ext ensions April 2006

5.

These error alerts are conveyed using the follow ng syntax:

enum {
cl ose_notify(0),
unexpect ed_message(10),
bad record_nac(20),
decryption_failed(21),
record_overfl ow 22),
deconpression_fail ure(30),
handshake_fail ure(40),
/* 41 is not defined, for historical reasons */
bad certificate(42),
unsupported certificate(43),
certificate revoked(44),
certificate_expired(45),
certificate_unknown(46),
illegal _paranmeter(47),
unknown_ca(48),
access_deni ed(49),
decode_error(50),
decrypt _error(51),
export_restriction(60),
pr ot ocol _version(70),
i nsufficient_security(71),
i nternal _error(80),
user _cancel ed(90),
no_renegoti ati on(100),

unsupport ed_ext ensi on(110), [* new */
certificate_unobtainabl e(111), /[* new */
unr ecogni zed_nane(112), /[* new */
bad certificate_status response(113), /* new */
bad certificate_hash_value(114), [* new */
(255)

} AlertDescription;
Procedure for Defining New Extensions

The list of extension types, as defined in Section 2.3, is maintained
by the Internet Assigned Nunmbers Authority (I1ANA). Thus, an
application needs to be made to the 1ANA in order to obtain a new
extension type value. Since there are subtle (and not-so-subtle)
interactions that may occur in this protocol between new features and
existing features that may result in a significant reduction in
overal|l security, new values SHALL be defined only through the | ETF
Consensus process specified in [1ANA].

(This means that new assignments can be made only via RFCs approved
by the | ESG)

Bl ake- W I son, et al. St andards Track [Page 20]

RFC 4366 TLS Ext ensions April 2006

6.

The foll owi ng considerations should be taken into account when
desi gni ng new ext ensi ons:

- Al of the extensions defined in this docunment followthe
convention that for each extension that a client requests and that
the server understands, the server replies with an extension of
the sane type

- Sone cases where a server does not agree to an extension are error
conditions, and sonme sinply a refusal to support a particul ar
feature. In general, error alerts should be used for the former,
and a field in the server extension response for the latter.

- Extensions should as far as possible be designed to prevent any
attack that forces use (or non-use) of a particular feature by
mani pul ati on of handshake nessages. This principle should be
foll owed regardl ess of whether the feature is believed to cause a
security problem

Oten the fact that the extension fields are included in the
inputs to the Finished nessage hashes will be sufficient, but
extreme care i s needed when the extension changes the neani ng of
messages sent in the handshake phase. Designers and inplementors
shoul d be aware of the fact that until the handshake has been

aut henticated, active attackers can nodify nessages and insert,
renove, or replace extensions.

- It would be technically possible to use extensions to change naj or
aspects of the design of TLS; for exanple, the design of cipher
suite negotiation. This is not recommended; it would be nore
appropriate to define a new version of TLS, particularly since the
TLS handshake al gorithns have specific protection against version
rol | back attacks based on the version nunber. The possibility of
version rol |l back should be a significant consideration in any
maj or desi gn change.

Security Considerations

Security considerations for the extension mechanismin general and
for the design of new extensions are described in the previous
section. A security analysis of each of the extensions defined in
this docunment is given bel ow

In general, inplenenters should continue to nonitor the state of the
art and address any weaknesses identified.

Addi tional security considerations are described in the TLS 1.0 RFC
[TLS] and the TLS 1.1 RFC [TLShi s].

Bl ake- W I son, et al. St andards Track [Page 21]

RFC 4366 TLS Ext ensions April 2006

6.1. Security of server_nane

If a single server hosts several domains, then clearly it is
necessary for the owners of each domain to ensure that this satisfies
their security needs. Apart fromthis, server_nanme does not appear
to introduce significant security issues.

| npl enent ati ons MJST ensure that a buffer overfl ow does not occur
what ever the values of the length fields in server_nane.

Al t hough this docunent specifies an encoding for internationalized
host nanes in the server_nane extension, it does not address any
security issues associated with the use of internationalized
hostnanmes in TLS (in particular, the consequences of "spoofed" nanes
that are indistinguishable from another nane when di splayed or
printed). It is recommended that server certificates not be issued
for internationalized hostnames unl ess procedures are in place to
mtigate the risk of spoofed hostnanes.

6.2. Security of nmax_fragnent_I| ength

The maxi mum fragment |length takes effect i mediately, including for
handshake nessages. However, that does not introduce any security
conplications that are not already present in TLS, since TLS requires
i npl enentations to be abl e to handl e fragnented handshake nessages.

Note that as described in Section 3.2, once a non-null cipher suite
has been activated, the effective maxi mum fragment |ength depends on
the ci pher suite and conpression nmethod, as well as on the negotiated
max_fragment | ength. This nust be taken into account when si zing

buf fers, and checking for buffer overflow.

6.3. Security of client_certificate_url
There are two nmmjor issues with this extension.

The first major issue is whether or not clients should include
certificate hashes when they send certificate URLs.

When client authentication is used *w thout* the

client _certificate url extension, the client certificate chain is
covered by the Finished nessage hashes. The purpose of including
hashes and checki ng them against the retrieved certificate chain is
to ensure that the sane property holds when this extension is used,
i.e., that all of the information in the certificate chain retrieved
by the server is as the client intended.

Bl ake- W I son, et al. St andards Track [Page 22]

RFC 4366 TLS Ext ensions April 2006

On the other hand, onmitting certificate hashes enables functionality
that is desirable in some circunstances; for exanple, clients can be
issued daily certificates that are stored at a fixed URL and need not
be provided to the client. dients that choose to onit certificate
hashes shoul d be aware of the possibility of an attack in which the
attacker obtains a valid certificate on the client’s key that is
different fromthe certificate the client intended to provide.

Al 't hough TLS uses both MD5 and SHA-1 hashes in several other places,
this was not believed to be necessary here. The property required of
SHA-1 is second pre-image resistance.

The second major issue is that support for client _certificate_ur

i nvol ves the server’'s acting as a client in another URL protocol
The server therefore becones subject to nany of the same security
concerns that clients of the URL schene are subject to, with the
added concern that the client can attenpt to pronpt the server to
connect to some (possibly weird-1ooking) URL.

In general, this issue nmeans that an attacker might use the server to
indirectly attack another host that is vulnerable to sone security
flaw. It also introduces the possibility of denial of service
attacks in which an attacker makes many connections to the server,
each of which results in the server’s attenpting a connection to the
target of the attack.

Note that the server may be behind a firewall or otherwi se able to
access hosts that would not be directly accessible fromthe public
Internet. This could exacerbate the potential security and denial of
service probl ens described above, as well as allow the existence of
internal hosts to be confirnmed when they woul d otherw se be hidden

The detailed security concerns involved will depend on the URL
schenes supported by the server. |In the case of HITP, the concerns
are simlar to those that apply to a publicly accessible HITP proxy
server. In the case of HITPS, |oops and deadl ocks may be creat ed,
and this should be addressed. In the case of FTP, attacks arise that
are simlar to FTP bounce attacks.

As a result of this issue, it is RECOWENDED that the
client_certificate_url extension should have to be specifically
enabl ed by a server adm nistrator, rather than be enabled by default.
It is also RECOWENDED that URI protocols be enabled by the

adm nistrator individually, and only a mniml set of protocols be
enabl ed. Unusual protocols that offer linmted security or whose
security is not well-understood SHOULD be avoi ded.

Bl ake- W I son, et al. St andards Track [Page 23]

RFC 4366 TLS Ext ensions April 2006

As discussed in [URI], URLs that specify ports other than the default
may cause problens, as nmay very long URLs (which are nore likely to
be useful in exploiting buffer overflow bugs).

Al so note that HTTP caching proxies are conmon on the Internet, and
sone proxies do not check for the |latest version of an object
correctly. |If a request using HTTP (or another cachi ng protocol)
goes through a m sconfigured or otherw se broken proxy, the proxy nmay
return an out-of-date response.

6.4. Security of trusted_ca_keys

It is possible that which CA root keys a client possesses could be
regarded as confidential information. As a result, the CA root key
i ndi cati on extension should be used with care.

The use of the SHA-1 certificate hash alternative ensures that each
certificate is specified unanbi guously. As for the previous
extension, it was not believed necessary to use both MD5 and SHA-1
hashes.

6.5. Security of truncated_hmac

It is possible that truncated MACs are weaker than "un-truncated"
MACs. However, no significant weaknesses are currently known or
expected to exist for HVAC with MD5 or SHA-1, truncated to 80 bits.

Note that the output [ength of a MAC need not be as long as the

l ength of a symmetric cipher key, since forging of MAC val ues cannot
be done off-line: in TLS, a single failed MAC guess will cause the

i medi ate termination of the TLS session

Since the MAC algorithmonly takes effect after all handshake
messages that affect extension paraneters have been authenticated by
the hashes in the Finished nessages, it is not possible for an active
attacker to force negotiation of the truncated HVAC extensi on where
it woul d not otherwi se be used (to the extent that the handshake

aut hentication is secure). Therefore, in the event that any security
probl em were found with truncated HVAC in the future, if either the
client or the server for a given session were updated to take the
probleminto account, it would be able to veto use of this extension

Bl ake- W I son, et al. St andards Track [Page 24]

RFC 4366 TLS Ext ensions April 2006

6.6. Security of status_request

If a client requests an OCSP response, it must take into account that
an attacker’s server using a conprom sed key could (and probably
woul d) pretend not to support the extension. |In this case, a client
that requires OCSP validation of certificates SHOULD either contact
the OCSP server directly or abort the handshake.

Use of the OCSP nonce request extension (id-pkix-ocsp-nonce) may
i mprove security against attacks that attenpt to replay OCSP
responses; see Section 4.4.1 of [OCSP] for further details.

7. Internationalization Considerations

None of the extensions defined here directly use strings subject to
| ocalization. Domain Name System (DNS) hostnames are encoded using
UTF-8. If future extensions use text strings, then

i nternationalization should be considered in their design

8. | ANA Consi derati ons

Sections 2.3 and 5 describe a registry of ExtensionType values to be
mai nt ai ned by the | ANA. ExtensionType values are to be assigned via
| ETF Consensus as defined in RFC 2434 [IANA]. The initial registry
corresponds to the definition of "ExtensionType" in Section 2.3.

The M ME type "application/ pki x- pki path" has been registered by the
|ANA with the follow ng tenplate:

To: ietf-types@ana.org
Subj ect: Registration of MM nedia type application/pkix-pkipath

M ME medi a type nane: application
M ME subt ype nane: pki x-pki path
Requi red paraneters: none

Optional parameters: version (default value is "1")

Encodi ng consi derati ons:

This M ME type is a DER encoding of the ASN. 1 type Pki Pat h,

defined as foll ows:
Pki Path ::= SEQUENCE OF Certificate
Pki Path is used to represent a certification path. Wthin the
sequence, the order of certificates is such that the subject of
the first certificate is the issuer of the second certificate,
etc.

Bl ake- W I son, et al. St andards Track [Page 25]

RFC 4366 TLS Ext ensions April 2006

This is identical to the definition published in [X509-4th-TCl];
note that it is different fromthat in [X509-4th].

Al Certificates MIST conformto [PKIX]. (This should be
interpreted as a requirement to encode only PKI X-confor mant
certificates using this type. It does not necessarily require
that all certificates that are not strictly PKIX-confornmant nust
be rejected by relying parties, although the security consequences
of accepting any such certificates should be considered

careful ly.)

DER (as opposed to BER) encoding MJUST be used. |If this type is
sent over a 7-bit transport, base64 encodi ng SHOULD be used.

Security considerations:
The security considerations of [X509-4th] and [PKI X] (or any
updates to them apply, as well as those of any protocol that uses
this type (e.g., TLS)

Note that this type only specifies a certificate chain that can be
assessed for validity according to the relying party' s existing
configuration of trusted CAs; it is not intended to be used to
specify any change to that configuration

Interoperability considerations:
No specific interoperability problens are known with this type,
but for reconmendations relating to X 509 certificates in general
see [PKIX].

Publ i shed specification: RFC 4366 (this nmeno), and [PKI X]

Applications which use this nedia type: TLS. It may al so be used by
ot her protocols, or for general interchange of PKIX certificate
chai ns.

Addi tional information:

Magi ¢ nunber(s): DER-encoded ASN. 1 can be easily recogni zed.
Further parsing is required to distinguish it fromother ASN 1
types.

File extension(s): .pkipath

Maci ntosh File Type Code(s): not specified

Person & email address to contact for further information:
Magnus Nystrom <magnus@ sasecurity.conp

I nt ended usage: COVMON

Bl ake- W I son, et al. St andards Track [Page 26]

RFC 4366

TLS Ext ensions April 2006

Change controller
| ESG <i esg@etf.org>

9. Acknow edgenent s

The authors wish to thank the TLS Wirking Group and the WAP Security
Group. This docunent is based on discussion within these groups.

10. Nornmtive References

[HVAC]

[HTTP]

[1 ANA]

[| DNA]

[KEYWORDS]

[OCSP]

[PKI OP]

[PKI X]

[TLS]

Bl ake- W1 son,

Krawczyk, H., Bellare, M, and R Canetti, "HMAC
Keyed- Hashi ng for Message Authentication", RFC 2104,
February 1997.

Fielding, R, Cettys, J., Mgul, J., Frystyk, H
Masinter, L., Leach, P., and T. Berners-Lee,
"Hypertext Transfer Protocol -- HITP/1.1", RFC 2616,
June 1999.

Narten, T. and H Al vestrand, "Cuidelines for Witing
an | ANA Consi derations Section in RFCs", BCP 26, RFC
2434, Cctober 1998.

Faltstrom P., Hoffman, P., and A. Costell o,
“Internationalizing Domain Nanes in Applications
(IDNA) ", RFC 3490, March 2003.

Bradner, S., "Key words for use in RFCs to I ndicate
Requi renment Level s", BCP 14, RFC 2119, WMarch 1997.

MWers, M, Ankney, R, Milpani, A, Glperin, S., and
C. Adanms, "X. 509 Internet Public Key Infrastructure
Online Certificate Status Protocol - OCSP', RFC 2560,
June 1999.

Housl ey, R and P. Hoffrman, "Internet X 509 Public Key
Infrastructure Qperational Protocols: FTP and HTTP",
RFC 2585, May 1999.

Housley, R, Polk, W, Ford, W, and D. Sol o,
"Internet X 509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile", RFC
3280, April 2002.

Dierks, T. and C. Allen, "The TLS Protocol Version
1. 0", RFC 2246, January 1999.

et al. St andards Track [Page 27]

RFC 4366

[TLSbi s]

[URI]

[UTF8]

[X509- 4t h]

[X509- 4t h- TC1]

TLS Ext ensions April 2006

Dierks, T. and E. Rescorla, "The Transport Layer
Security (TLS) Protocol Version 1.1", RFC 4346, April
2006.

Berners-Lee, T., Fielding, R, and L. Masinter,
"Uni form Resource ldentifier (URI): Generic Syntax",
STD 66, RFC 3986, January 2005.

Yergeau, F., "UTF-8, a transformation format of 1SO
10646", STD 63, RFC 3629, Noverber 2003.

| T T Recommendation X. 509 (2000) | ISQ1IEC
9594-8: 2001, "Information Systens - Open Systens
I nterconnection - The Directory: Public key and
attribute certificate frameworks."

| TUT Recommendati on X. 509(2000) Corrigendum 1(2001) |
| SO' | EC 9594- 8: 2001/ Cor. 1: 2002, Technical Corri gendum
1 to I SO EC 9594: 8: 2001.

11. Informati ve References

[AESSUI TES]

[KERB]

[MAI LI NGLI ST]

[RFC3546]

Chown, P., "Advanced Encryption Standard (AES)
Ci phersuites for Transport Layer Security (TLS)", RFC
3268, June 2002.

Medvi nsky, A. and M Hur, "Addition of Kerberos G pher
Suites to Transport Layer Security (TLS)", RFC 2712,
Oct ober 1999.

J. Mkkelsen, R Eberhard, and J. Kistler, "GCeneral
ClientHell o extension nmechanismand virtual hosting,"
ietf-tls mailing list posting, August 14, 2000.

Bl ake-WIson, S., Nystrom M, Hopwood, D., M kkel sen,
J., and T. Wight, "Transport Layer Security (TLS)
Ext ensi ons", RFC 3546, June 2003.

Bl ake- W I son, et al. St andards Track [Page 28]

RFC 4366 TLS Ext ensions April 2006

Aut hors’ Addr esses

Si nron Bl ake- W | son
BCI

EMai | : sbl akewi | son@oci sse. com
Magnus Nystrom

RSA Security

EMai | : magnus@ sasecurity.com
Davi d Hopwood

| ndependent Consul t ant

EMai | : davi d. hopwood@l ueyonder. co. uk
Jan M kkel sen

Transacti onwar e

EMai | : janm@ransacti onware. com
Ti m Wi ght

Vodaf one

EMai | : tinothy.wight @odaf one. com

Bl ake- W I son, et al. St andards Track [Page 29]

RFC 4366 TLS Ext ensions April 2006

Ful | Copyright Statenent
Copyright (C The Internet Society (2006).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED,

| NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the infornation to the |IETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is provided by the |IETF
Admi ni strative Support Activity (1ASA).

Bl ake- W I son, et al. St andards Track [Page 30]

