Net wor k Wor ki ng Group M Eisler, Ed.
Request for Comments: 4506 Net wor k Appl i ance, Inc.
STD: 67 May 2006
Obsol etes: 1832

Cat egory: Standards Track

XDR: External Data Representation Standard
Status of This Meno
Thi s document specifies an Internet standards track protocol for the
Internet conmunity, and requests discussion and suggestions for
i nprovenents. Please refer to the current edition of the "Internet
O ficial Protocol Standards" (STD 1) for the standardization state
and status of this protocol. Distribution of this nmenmo is unlimted.
Copyri ght Notice
Copyright (C The Internet Society (2006).
Abst r act
Thi s docunent describes the External Data Representation Standard

(XDR) protocol as it is currently deployed and accepted. This
docurent obsol etes RFC 1832.

Ei sl er St andards Track [Page 1]

RFC 4506 XDR: External Data Representation Standard May 2006

Tabl e

PwnNE

7.
8.
9.
10.
11.
12.
13.
14.

Ei sl er

of Contents
[Nt roducCti ON ... 3
Changes from RFC 1832 e 3
Basi C Bl OCK Size 3
XDR Dat a TYPES . oottt 4
e R I 1 <o = 4
4.2. Unsigned Integer 4
4.3, EnUMBrati ON 5
4.4, B0Ol €an 5
4.5. Hyper Integer and Unsigned Hyper Integer 5
4.6. Floating-Point e 6
4.7. Double-Precision Floating-Point 7
4.8. Quadruple-Precision Floating-Point 8
4.9. Fixed-Length Opaque Data 9
4.10. Variable-Length Opaque Data 9
A 11, SEriNg oot 10
4.12. Fixed-Length Array 11
4.13. Variable-Length Array iy 11
4. 1A, SETUCTLUI E .. e e e e e 12
4.15. Discrimnated Union 12
4,16, VoI A .o 13
4.17. Constant 13
4. 18. Typedef ... e 13
4.19. Optional-Data e 14
4.20. Areas for Future Enhancenent 16
DI SCUSST ON .. o e 16
The XDR Language Specification 17
6.1. Notational Conventions 17
6.2. Lexical Notes 18
6.3. Syntax Information 18
6.4. Syntax NOteS 20
An Example of an XDR Data Description 21
Security Considerati ONS 22
FANA Considerati ONS e e 23
Trademarks and OMIErS it e 23
ANSI /1 EEE Standard 754-1985 24
Normative References e 25
Informative References 25
Acknow edgenmBnt S 26
St andards Track [Page 2]

RFC 4506 XDR: External Data Representation Standard May 2006

1

| ntroducti on

XDR is a standard for the description and encoding of data. It is
useful for transferring data between different conputer

architectures, and it has been used to conmuni cate data between such
di verse machi nes as the SUN WORKSTATI ON*, VAX*, | BM PC*, and Cray*.
XDR fits into the |1 SO presentation |ayer and is roughly anal ogous in
purpose to X 409, |1SO Abstract Syntax Notation. The nmgjor difference
bet ween these two is that XDR uses inplicit typing, while X 409 uses
explicit typing.

XDR uses a | anguage to describe data formats. The | anguage can be
used only to describe data; it is not a programmi ng | anguage. This
| anguage allows one to describe intricate data formats in a concise
manner. The alternative of using graphical representations (itself
an informal | anguage) quickly becomes inconprehensi bl e when faced
with conplexity. The XDR | anguage itself is simlar to the C

| anguage [KERN], just as Courier [COUR] is simlar to Msa.
Protocol s such as ONC RPC (Renote Procedure Call) and the NFS*
(Network File System) use XDR to describe the format of their data.

The XDR standard makes the foll owi ng assunption: that bytes (or
octets) are portable, where a byte is defined as 8 bits of data. A
gi ven hardware devi ce shoul d encode the bytes onto the various nedi a
in such a way that other hardware devices nay decode the bytes

wi thout | oss of nmeaning. For exanple, the Ethernet* standard
suggests that bytes be encoded in "little-endian" style [COHE], or

| east significant bit first.

Changes from RFC 1832

Thi s docunent nakes no techni cal changes to RFC 1832 and is published
for the purposes of noting | ANA considerations, augmenting security
consi derations, and distinguishing normative frominformative

ref erences.

Basi c Bl ock Size

The representation of all items requires a nultiple of four bytes (or
32 bits) of data. The bytes are nunbered O through n-1. The bytes
are read or witten to sone byte stream such that byte m al ways
precedes byte mtl. |If the n bytes needed to contain the data are not
a nultiple of four, then the n bytes are foll owed by enough (0 to 3)
resi dual zero bytes, r, to nmake the total byte count a nultiple of 4.

We include the familiar graphic box notation for illustration and
conparison. In nost illustrations, each box (delimted by a plus
sign at the 4 corners and vertical bars and dashes) depicts a byte.

Ei sl er St andards Track [Page 3]

RFC 4506 XDR: External Data Representation Standard May 2006

Ellipses (...) between boxes show zero or nore additional bytes where

required.
I I T R I T R +
| byte O | byte 1 |...|byte n-1] 0 [...] 0 | BLOCK
Fomm oo Fomm oo +, - m - - - Fomm oo +, Fomm oo +
| <----------- n bytes---------- >/ <------ r bytes------ >
| <-----e-m--- n+r (where (n+r) md 4 = 0)>----------- >

4. XDR Data Types

Each of the sections that foll ow describes a data type defined in the
XDR standard, shows how it is declared in the | anguage, and incl udes
a graphic illustration of its encoding.

For each data type in the | anguage we show a general paradi gm
declaration. Note that angle brackets (< and >) denote vari abl e-

| engt h sequences of data and that square brackets ([and]) denote
fi xed-1ength sequences of data. "n", "n', and "r" denote integers.
For the full | anguage specification and nore formal definitions of
terms such as "identifier" and "declaration", refer to Section 6,
"The XDR Language Specification".

For sone data types, nore specific exanples are included. A nore
ext ensi ve exanple of a data descriptionis in Section 7, "An Exanple
of an XDR Data Description".

4.1. Integer
An XDR signed integer is a 32-bit datumthat encodes an integer in
the range [-2147483648, 2147483647]. The integer is represented in
two’s conpl enment notation. The nbst and |east significant bytes are
0 and 3, respectively. Integers are declared as follows:

int identifier;

(MSB) (LSB)
Fommm o - Fommm o - Fommm o - Fommm o - +
| byte O |[byte 1 |byte 2 |byte 3 | | NTEGER
S S S S +
S 32 bits------------ >

4.2. Unsigned Integer

An XDR unsigned integer is a 32-bit datumthat encodes a non-negative
integer in the range [0,4294967295]. It is represented by an

unsi gned bi nary nunber whose npbst and | east significant bytes are O
and 3, respectively. An unsigned integer is declared as foll ows:

Ei sl er St andards Track [Page 4]

RFC 4506 XDR: External Data Representation Standard May 2006

unsigned int identifier

(MsB) (LSB)

S S S S +

|byte O |byte 1 |byte 2 |byte 3 | UNSI GNED | NTEGER
R, R, R, R, +

S R 32 bits------------ >

4.3. Enuneration
Enumer ati ons have the same representation as signed integers.
Enuner ati ons are handy for describing subsets of the integers.
Enunerated data is declared as follows:
enum { nane-identifier = constant, ... } identifier

For exanple, the three colors red, yellow, and blue could be
descri bed by an enunerated type:

enum{ RED = 2, YELLOW= 3, BLUE = 5} colors;

It is an error to encode as an enum any integer other than those that
have been given assignnments in the enum decl aration

4. 4. Bool ean
Bool eans are inmportant enough and occur frequently enough to warrant
their own explicit type in the standard. Bool eans are decl ared as
fol | ows:
bool identifier;
This is equivalent to:
enum { FALSE = 0, TRUE = 1 } identifier
4.5. Hyper Integer and Unsigned Hyper |nteger
The standard al so defines 64-bit (8-byte) numbers called hyper
i ntegers and unsi gned hyper integers. Their representations are the
obvi ous extensions of integer and unsigned integer defined above.
They are represented in twd’'s conpl enent notation. The npbst and
| east significant bytes are 0 and 7, respectively. Their
decl arat i ons:

hyper identifier; unsigned hyper identifier

Ei sl er St andards Track [Page 5]

RFC 4506 XDR: External Data Representation Standard May 2006

(MSB) (LSB)
Fommm o - Fommm o - Fommm o - Fommm o - Fommm o - Fommm o - Fommm o - Fommm o - +
| byte O |[byte 1 |byte 2 |byte 3 |byte 4 |byte 5 |byte 6 |byte 7 |
S S S S S S S S +
e 64 bits--------------------o - >

HYPER | NTEGER
UNSI GNED HYPER | NTEGER

4.6. Fl oating- Poi nt
The standard defines the floating-point data type "float" (32 bits or
4 bytes). The encoding used is the | EEE standard for nornalized
singl e-precision floating-point nunbers [IEEE]. The follow ng three
fields describe the single-precision floating-point nunmber

S: The sign of the number. Values 0 and 1 represent positive and
negative, respectively. One bit.

E: The exponent of the nunber, base 2. 8 bits are devoted to this
field. The exponent is biased by 127.

F: The fractional part of the number’s nantissa, base 2. 23 bits
are devoted to this field.

Therefore, the floating-point nunber is described by:
(-1)**S * 2**(E-Bias) * 1.F
It is declared as foll ows:

float identifier;

Fommma - Fommma - Fommma - Fommma - +
| byte O |[byte 1 |byte 2 |byte 3 | SI NGLE- PRECI SI ON
S| E | F | FLOATI NG PO NT NUMBER
R, R, R, R, +
1| <- 8 ->|<------- 23 bits------ >|
S 32 bits------------ >

Just as the nmpbst and |l east significant bytes of a nunmber are 0 and 3,
the nmost and | east significant bits of a single-precision floating-
poi nt nunber are 0 and 31. The beginning bit (and nost significant
bit) offsets of S, E, and F are 0, 1, and 9, respectively. Note that
these nunbers refer to the mathematical positions of the bits, and
NOT to their actual physical locations (which vary from mediumto
medi unj .

Ei sl er St andards Track [Page 6]

RFC 4506 XDR: External Data Representation Standard May 2006

The | EEE specifications should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and denormalized nunbers
(underflow) [IEEE]. According to | EEE specifications, the "NaN' (not
a nunber) is system dependent and should not be interpreted wthin
XDR as anything other than "NaN'.

4.7. Doubl e-Precision Floating-Point
The standard defines the encoding for the doubl e-precision floating-
poi nt data type "double" (64 bits or 8 bytes). The encoding used is
the | EEE standard for normalized doubl e-precision floating-point
nunbers [IEEE]. The standard encodes the followi ng three fields,
whi ch descri be the doubl e-precision floating-point nunber:

S: The sign of the nunmber. Values 0 and 1 represent positive and
negative, respectively. One bit.

E: The exponent of the nunber, base 2. 11 bits are devoted to
this field. The exponent is biased by 1023.

F: The fractional part of the nunber’s mantissa, base 2. 52 bits
are devoted to this field.

Therefore, the floating-point nunber is described by:
(-1)**S * 2**(E-Bias) * 1.F
It is declared as foll ows:

doubl e identifier;

Fomm - - Fomm - - Fomm - - Fomm - - Fomm - - Fomm - - Fomm - - Fomm - - +
| byte O] byte 1| byte 2| byte 3| byte 4| byte 5| byte 6| byte 7|
S| E | F |
S R, S R, S R, S R, S R, S R, S R, S R, +
1] <--11-->|<-----mmmmm - - - 52 bits------------------- >
R R R 64 DitS----------mmmmieaa oo >

DOUBLE- PRECI SI ON FLQOATI NG PO NT

Just as the nmpbst and |l east significant bytes of a nunmber are 0 and 3,
the nmost and | east significant bits of a doubl e-precision floating-
poi nt nunber are 0 and 63. The beginning bit (and nost significant
bit) offsets of S, E, and F are 0, 1, and 12, respectively. Note
that these nunbers refer to the nathenatical positions of the bits,
and NOT to their actual physical |ocations (which vary frommediumto
medi unj .

Ei sl er St andards Track [Page 7]

RFC 4506 XDR: External Data Representation Standard May 2006

The | EEE specifications should be consulted concerning the encoding
for signed zero, signed infinity (overflow), and denormalized nunbers
(underflow) [IEEE]. According to | EEE specifications, the "NaN' (not
a nunber) is system dependent and should not be interpreted wthin
XDR as anything other than "NaN'.

4.8. Quadrupl e-Precision Floating-Point
The standard defines the encoding for the quadrupl e-precision
fl oati ng-point data type "quadruple"” (128 bits or 16 bytes). The
encodi ng used is designed to be a sinple anal og of the encodi ng used
for single- and doubl e-precision floating-point nunbers using one
form of | EEE doubl e extended precision. The standard encodes the
following three fields, which describe the quadrupl e-precision
fl oati ng- poi nt nunber:

S: The sign of the nunmber. Values 0 and 1 represent positive and
negative, respectively. One bit.

E: The exponent of the number, base 2. 15 bits are devoted to
this field. The exponent is biased by 16383.

F: The fractional part of the number’s nmantissa, base 2. 112 bits
are devoted to this field.

Therefore, the floating-point nunber is described by:
(-1)**S * 2**(E-Bias) * 1.F
It is declared as foll ows:

quadrupl e identifier;

[[[[[[+- B I g +
| byte O] byte 1| byte 2| byte 3| byte 4| byte 5| | byt e15]
| E |
S e S e S e S e S e S e B e +
1) <----15---->| <-----mmmmmnn-- 112 bitsS---------cceeem- >
Cmmm e e 128 bitS------cmm e >

QUADRUPLE- PRECI SI ON FLOATI NG PO NT

Just as the nobst and least significant bytes of a number are 0 and 3,
the nost and | east significant bits of a quadrupl e-precision

fl oati ng-point nunber are 0 and 127. The begi nning bit (and nost
significant bit) offsets of S, E, and F are 0, 1, and 16,
respectively. Note that these nunbers refer to the mathematica
positions of the bits, and NOT to their actual physical |ocations
(which vary fromnediumto nedium.

Ei sl er St andards Track [Page 8]

RFC 4506 XDR: External Data Representation Standard May 2006

The encoding for signed zero, signed infinity (overflow), and
denornal i zed nunbers are anal ogs of the correspondi ng encodi ngs for
si ngl e and doubl e-precision floating-point nunbers [SPAR], [HPRE].
The "NaN' encoding as it applies to quadrupl e-precision floating-
poi nt nunbers is system dependent and should not be interpreted
within XDR as anything other than "NaN'.

4.9. Fixed-Length Opaque Data

At tinmes, fixed-length uninterpreted data needs to be passed anong
machi nes. This data is called "opaque" and is declared as foll ows:

opaque identifier[n];

where the constant n is the (static) nunber of bytes necessary to
contain the opaque data. |If nis not a multiple of four, then the n
bytes are foll owed by enough (0 to 3) residual zero bytes, r, to nake
the total byte count of the opaque object a nmultiple of four

0 1 .
Fommmee-- Fommmee-- T Fommmee-- T +
| byte O | byte 1 |...]|byte n-1| 0 [... 0 |
Fomm e Fomm e +, e m e - Fomm e +, Fomm e +
| <----------- n bytes---------- > <------ r bytes------ >
| <----------- n+r (where (n+r) nod 4 = 0)------------ >

FI XED- LENGTH OPAQUE
4.10. Vari abl e-Length Opaque Data

The standard al so provides for variable-length (counted) opaque data,
defined as a sequence of n (nunbered 0 through n-1) arbitrary bytes
to be the nunber n encoded as an unsigned integer (as described

bel ow), and followed by the n bytes of the sequence.

Byte m of the sequence al ways precedes byte mtl of the sequence, and
byte 0 of the sequence always follows the sequence’s |length (count).
If nis not a multiple of four, then the n bytes are foll owed by
enough (0 to 3) residual zero bytes, r, to nake the total byte count
a multiple of four. Variable-length opaque data is declared in the
foll owi ng way:

opaque identifier<np;
or
opaque identifier<>;

The constant m denotes an upper bound of the number of bytes that the

sequence may contain. |If mis not specified, as in the second
declaration, it is assuned to be (2**32) - 1, the nmaxi mum | ength.

Ei sl er St andards Track [Page 9]

RFC 4506 XDR: External Data Representation Standard May 2006

The constant mwould normally be found in a protocol specification
For exanple, a filing protocol nay state that the maxi num data
transfer size is 8192 bytes, as foll ows:

opaque fil edat a<8192>;

0 1 2 3 4 5 ...
+--m-a +--m-a +--m-a +--m-a +o-m - - +----- I +--m-a I +
| [ength n | byt eO| bytel|...| n-2 | O |...|] O
+-- - - +-- - - +-- - - +-- - - +-- - - +-- - - +, ..+ +-- - - +, ..+ +
| <------- 4 bytes------- > <------ n bytes------ > <---1 bytes--->
| <----n+r (where (n+r) nod 4 = 0)---->

VARI ABLE- LENGTH OPAQUE

It is an error to encode a length greater than the maxi num descri bed
in the specification.

4.11. String

The standard defines a string of n (nunbered O through n-1) ASC
bytes to be the nunber n encoded as an unsigned i nteger (as described
above), and followed by the n bytes of the string. Byte mof the
string always precedes byte mtl of the string, and byte 0 of the
string always follows the string’s length. [If nis not a nultiple of
four, then the n bytes are foll owed by enough (0 to 3) residual zero
bytes, r, to nake the total byte count a nultiple of four. Counted
byte strings are declared as foll ows:

string object<np;
or
string object<>;

The constant m denotes an upper bound of the number of bytes that a
string may contain. If mis not specified, as in the second
declaration, it is assuned to be (2**32) - 1, the maxi num | ength.
The constant mwould normally be found in a protocol specification
For exanple, a filing protocol nay state that a file name can be no
| onger than 255 bytes, as foll ows:

string fil ename<255>;

0 1 2 3 4 5 C
S R S R S R S R S R S R T S S R T S +
| [ength n | byt eO| bytel|...| n-2 | O |...|] O
oo - oo m- T oo m- omom- I o oo - o +
| <------- 4 bytes------- >l <------ n bytes------ >| <---r bytes--->
| <----n+r (where (n+r) nmod 4 = 0)---->

STRI NG

Ei sl er St andards Track [Page 10]

RFC 4506 XDR: External Data Representation Standard May 2006

It is an error to encode a length greater than the maxi num descri bed
in the specification.

4.12. Fixed-Length Array

Decl arations for fixed-length arrays of honbgeneous el enents are in
the following form

type-nane identifier[n];

Fi xed-1ength arrays of el enents nunbered O through n-1 are encoded by
i ndividual ly encoding the elenments of the array in their natura
order, O through n-1. Each element’s size is a nmultiple of four
bytes. Though all elenments are of the sane type, the el enents may
have different sizes. For exanple, in a fixed-length array of
strings, all elements are of type "string", yet each elenent wll
vary in its |length.

A R S M S SR SR T SR SRR SR

| el enent O | el enent 1 |...| element n-1 |
T S SR E T I U TRRRES S SRR
R nelements------------------- >

FI XED- LENGTH ARRAY
4.13. Variable-Length Array

Counted arrays provide the ability to encode variable-length arrays
of hombgeneous el ements. The array is encoded as the el enent count n
(an unsigned integer) followed by the encodi ng of each of the array’s
el ements, starting with elenent 0 and progressing through el enent

n-1. The declaration for variable-length arrays follows this form

type-nane identifier<np;
or
type-nane identifier<>;

The constant m specifies the maxi mum acceptabl e el ement count of an
array; if mis not specified, as in the second declaration, it is
assuned to be (2**32) - 1

0O 1 2 3
R i R S i S I R S e TR e o
| n | elenent O | elenent 1 |...|elenment n-1|
R T e S e ol ST I SIS S SR S R e s 2
| <-4 bytes->|<-------------- n elements------------- >

COUNTED ARRAY

Ei sl er St andards Track [Page 11]

RFC 4506 XDR: External Data Representation Standard May 2006

It is an error to encode a value of n that is greater than the
maxi mum descri bed in the specification

4.14. Structure
Structures are declared as foll ows:

struct {
conponent - decl arati on- A;
conponent - decl arati on-B

} identifier:

The conponents of the structure are encoded in the order of their
declaration in the structure. Each conponent’s size is a nultiple of
four bytes, though the conponents nmay be different sizes.

| conmponent A | conponent B |::: STRUCTURE

4.15. Discrimnated Union

A discrimnated union is a type conposed of a discrimnant followed
by a type selected froma set of prearranged types according to the
val ue of the discrinmnant. The type of discrinmnant is either "int",
"unsigned int", or an enunerated type, such as "bool". The conponent
types are called "arns" of the union and are preceded by the val ue of
the discrimnant that inplies their encoding. Discrimnated unions
are declared as fol |l ows:

uni on switch (discrimnant-declaration) {
case di scrim nant-val ue- A

arm decl arati on- A;
case di scri mnant-val ue-B

arm decl arati on-B

défault: def aul t - decl arati on
} identifier;

Each "case" keyword is followed by a | egal value of the discrimnant.
The default armis optional. |If it is not specified, then a valid
encodi ng of the union cannot take on unspecified discrinmnant val ues.
The size of the inplied armis always a nultiple of four bytes.

The di scrimnated union is encoded as its discrimnant followed by
the encoding of the inplied arm

Ei sl er St andards Track [Page 12]

RFC 4506 XDR: External Data Representation Standard May 2006

0 1 2 3
A R S S

| discrimnant | inplied arm | DI SCRI M NATED UNI ON
L S e e e
| <---4 bytes--->

4.16. Void

An XDR void is a O-byte quantity. Voids are useful for describing
operations that take no data as input or no data as output. They are
al so useful in unions, where some arns may contain data and ot hers do
not. The declaration is sinply as follows:
voi d;
Voids are illustrated as foll ows:
++
|| VA D
++
--><-- 0 bytes

4.17. Constant

The data declaration for a constant follows this form

const name-identifier =n
"const" is used to define a synbolic name for a constant; it does not
decl are any data. The synbolic constant nay be used anywhere a
regul ar constant may be used. For exanple, the follow ng defines a
synbol i ¢ constant DOZEN, equal to 12.

const DQOZEN = 12;

4.18. Typedef

"typedef" does not declare any data either, but serves to define new
identifiers for declaring data. The syntax is:

typedef decl arati on;
The new type nanme is actually the variable nane in the declaration
part of the typedef. For exanple, the foll ow ng defines a new type
cal l ed "eggbox" using an existing type called "egg":

typedef egg eggbox[DOZEN] ;

Ei sl er St andards Track [Page 13]

RFC 4506 XDR: External Data Representation Standard May 2006

Vari abl es decl ared using the new type nane have the sane type as the
new type name woul d have in the typedef, if it were considered a
variable. For exanple, the follow ng two declarations are equival ent
in declaring the variable "fresheggs":

eggbox fresheggs; egg fresheggs[DOZEN ;
When a typedef involves a struct, enum or union definition, there is
anot her (preferred) syntax that may be used to define the sanme type.
In general, a typedef of the follow ng form

typedef <<struct, union, or enumdefinition>> identifier
may be converted to the alternative formby renoving the "typedef"
part and placing the identifier after the "struct", "union", or
"enunt keyword, instead of at the end. For exanple, here are the two
ways to define the type "bool"

typedef enum { /* using typedef */

FALSE = 0,
TRUE = 1
} bool
enum bool { /* preferred alternative */
FALSE = 0,
TRUE = 1

b

This syntax is preferred because one does not have to wait until the
end of a declaration to figure out the name of the new type.

4.19. Optional -Data

Optional -data is one kind of union that occurs so frequently that we

give it a special syntax of its own for declaring it. It is declared
as follows:

type-nane *identifier;
This is equivalent to the foll ow ng union:

uni on switch (bool opted) {
case TRUE:
type- nane el enent;
case FALSE:
voi d;
} identifier;

Ei sl er St andards Track [Page 14]

RFC 4506 XDR: External Data Representation Standard May 2006

It is also equivalent to the followi ng variable-length array
decl aration, since the boolean "opted" can be interpreted as the
l ength of the array:

type-nane identifier<1l>;

Optional-data is not so interesting in itself, but it is very usefu
for describing recursive data-structures such as linked-lists and
trees. For exanple, the follow ng defines a type "stringlist" that
encodes lists of zero or nore arbitrary length strings:

struct stringentry {
string itenk>;
stringentry *next;

H
typedef stringentry *stringlist;
It could have been equivalently declared as the follow ng union

union stringlist switch (bool opted) {
case TRUE:
struct {
string itenk>;
stringlist next;
} el enent;
case FALSE:
voi d;
b

or as a variable-length array:

struct stringentry {
string item<>;
stringentry next<1>;

b
typedef stringentry stringlist<1>;

Both of these declarations obscure the intention of the stringlist
type, so the optional-data declaration is preferred over both of
them The optional-data type also has a close correlation to how
recursive data structures are represented in high-Ievel |anguages
such as Pascal or C by use of pointers. 1In fact, the syntax is the
same as that of the C | anguage for pointers.

Ei sl er St andards Track [Page 15]

RFC 4506 XDR: External Data Representation Standard May 2006

4.20. Areas for Future Enhancenent

The XDR standard | acks representations for bit fields and bitnaps,
since the standard is based on bytes. Al so missing are packed (or
bi nary- coded) deci nal s.

The intent of the XDR standard was not to describe every kind of data
that people have ever sent or will ever want to send from machine to
machi ne. Rather, it only describes the nost commonly used data-types
of high-1evel |anguages such as Pascal or C so that applications
witten in these | anguages will be able to conmunicate easily over
some nmedi um

One coul d imagi ne extensions to XDR that would let it describe al nost
any existing protocol, such as TCP. The mi ni mum necessary for this
is support for different block sizes and byte-orders. The XDR

di scussed here could then be considered the 4-byte big-endi an nmenber
of a larger XDR famly.

5. Discussion

(1) Wiy use a |l anguage for describing data? What’'s wong with
di agrans?

There are nmany advantages in using a data-description | anguage such
as XDR versus using diagrans. Languages are nore formal than

di agrams and | ead to | ess anmbi guous descriptions of data. Languages
are al so easier to understand and all ow one to think of other issues
instead of the |owlevel details of bit encoding. Al so, thereis a
cl ose anal ogy between the types of XDR and a high-1level |anguage such
as C or Pascal. This nakes the inplenentation of XDR encodi ng and
decodi ng nodul es an easier task. Finally, the | anguage specification
itself is an ASCII string that can be passed from machi ne to machine
to performon-the-fly data interpretation.

(2) Wy is there only one byte-order for an XDR unit?

Supporting two byte-orderings requires a higher-1level protocol for
determ ning in which byte-order the data is encoded. Since XDR is
not a protocol, this can't be done. The advantage of this, though,
is that data in XDR format can be witten to a nagnetic tape, for
exanpl e, and any nmachine will be able to interpret it, since no

hi gher-1evel protocol is necessary for determning the byte-order

(3) Wy is the XDR byte-order big-endian instead of little-endian?

Isn't this unfair to little-endi an machi nes such as the VAX(r),
whi ch has to convert fromone formto the other?

Ei sl er St andards Track [Page 16]

RFC 4506 XDR: External Data Representation Standard May 2006

6.

6.

Yes, it is unfair, but having only one byte-order nmeans you have to
be unfair to sonebody. Many architectures, such as the Mtorola
68000* and | BM 370*, support the big-endi an byte-order

(4) Wy is the XDR unit four bytes w de?

There is a tradeoff in choosing the XDR unit size. Choosing a snall

size, such as two, makes the encoded data small, but causes alignnent
probl ems for nmachines that aren’t aligned on these boundaries. A
| arge size, such as eight, means the data will be aligned on

virtually every machi ne, but causes the encoded data to grow too big.
We chose four as a conpromise. Four is big enough to support nost
architectures efficiently, except for rare nachi nes such as the

ei ght-byte-aligned Cray*. Four is also small enough to keep the
encoded data restricted to a reasonabl e size.

(5) Why must variable-length data be padded with zeros?

It is desirable that the sane data encode into the sane thing on al
machi nes, so that encoded data can be meani ngfully conpared or
checksunmed. Forcing the padded bytes to be zero ensures this.

(6) Wy is there no explicit data-typing?

Data-typing has a relatively high cost for what snall advantages it
may have. One cost is the expansion of data due to the inserted type
fields. Another is the added cost of interpreting these type fields
and acting accordingly. And npost protocols already know what type
they expect, so data-typing supplies only redundant information
However, one can still get the benefits of data-typing using XDR

One way is to encode two things: first, a string that is the XDR data
description of the encoded data, and then the encoded data itself.
Another way is to assign a value to all the types in XDR, and then
define a universal type that takes this value as its discrimnant and
for each val ue, describes the corresponding data type.

The XDR Language Specification
1. Notational Conventions

Thi s specification uses an extended Back-Naur Form notation for
describing the XDR | anguage. Here is a brief description of the
not ati on:

(1) The characters "', (', '")', '"[', ']1', """, and "*' are speci al
(2) Term nal synbols are strings of any characters surrounded by
doubl e quotes. (3) Non-term nal synbols are strings of non-specia
characters. (4) Alternative itens are separated by a vertical bar

Ei sl er St andards Track [Page 17]

RFC 4506 XDR: External Data Representation Standard May 2006

6.

6.

("]"). (5) Optional items are enclosed in brackets. (6) Itens are
grouped together by enclosing themin parentheses. (7) A’'*’
following an itemmeans O or nore occurrences of that item

For exanple, consider the followi ng pattern

a "very" (",
("day" | "night")

"very")* [" cold " "and "] " rainy

An infinite nunber of strings match this pattern. A few of them are:

"a very rainy day"

"a very, very rainy day"

"a very cold and rainy day"

"a very, very, very cold and rainy night"

2. Lexical Notes

(1) Comments begin with '/*' and termnate with **/’". (2) Wite
space serves to separate itens and is otherwise ignored. (3) An
identifier is aletter followed by an optional sequence of letters,
digits, or underbar ('_'). The case of identifiers is not ignored.
(4) A decimal constant expresses a nunber in base 10 and is a
sequence of one or nore decinmal digits, where the first digit is not
a zero, and is optionally preceded by a minus-sign ('-"). (5 A
hexadeci mal constant expresses a nunber in base 16, and nust be
preceded by '0Ox’, followed by one or hexadecimal digits (A, 'B
'c, 'bp, £, '"F, 'a, 'b, '¢c’, 'd, e, 'f', 0, "1, "2, '3,
4, ', 6, "7, '8, "9). (6) An octal constant expresses a
nunber in base 8, always leads with digit 0, and is a sequence of one
or nore octal digits ("O’, "1, 2", '3, 4,5, 6, 7).

3. Syntax Information

decl arati on:
type-specifier identifier
| type-specifier identifier "[" value "]"
| type-specifier identifier "<" [value] ">"
| "opaque" identifier "[" value "]"
| "opaque" identifier "<" [value] ">"
| "string” identifier "<" [value] ">"
| type-specifier "*" identifier
| "void"

val ue:
const ant
| identifier

Ei sl er St andards Track [Page 18]

RFC 4506

XDR: Externa

const ant:
deci mal - const ant | hexadeci mal - const ant
type-specifier:

["unsigned”]
| ["unsigned"]
| "float"
| "double"
| "quadruple"
| "bool"
|
|
|
|

"int"
"hyper"

enumt ype- spec
struct-type-spec
uni on-type- spec
identifier

enum t ype- spec:
"enunt enum body

enum body:
II{II
(identifier "=" value)
(G val ue)*

oy

struct-type-spec:
"struct" struct-body

identifier "=

struct - body:

(declaration ";")
(declaration ";")*

oy

on-t ype- spec:
"uni on" uni on- body

un

uni on- body:

"switch" "(" declaration ")" "{"
case- spec
case-spec *

["default" ":"

oy

case- spec:
("case" val ue
("case" val ue

decl aration ";

declaration ";"]

v
i)

St andards Track

Dat a Representation Standard

May 2006

oct al - const ant

[Page 19]

RFC 4506 XDR: External Data Representation Standard May 2006

6.

const ant - def :
"const" identifier "=" constant ";"

type-def:
"typedef" declaration ";"
| "enum identifier enumbody ";"
| "struct" identifier struct-body ";"

| "union" identifier union-body ";
definition:
type- def
| constant - def

speci fication:
definition *

Synt ax Not es

(1) The follow ng are keywords and cannot be used as identifiers:

"bool ", "case", "const", "default", "double", "quadruple", "enunt
“float", "hyper", "int", "opaque", "string", "struct", "swtch",
"typedef", "union", "unsigned", and "void".

(2) Only unsigned constants nay be used as size specifications for
arrays. |If an identifier is used, it nust have been decl ared
previously as an unsigned constant in a "const" definition

(3) Constant and type identifiers within the scope of a specification
are in the same name space and nust be declared uniquely within this
scope.

(4) Simlarly, variable names nust be unique within the scope of
struct and uni on declarations. Nested struct and uni on decl arati ons
create new scopes

(5) The discrimnant of a union nmust be of a type that evaluates to
an integer. That is, "int", "unsigned int", "bool", an enunerated
type, or any typedefed type that evaluates to one of these is |egal
Al so, the case val ues must be one of the |legal values of the
discrimnant. Finally, a case value may not be specified nore than
once within the scope of a union declaration

Ei sl er St andards Track [Page 20]

RFC 4506 XDR: External Data Representation Standard May 2006

7. An Exanple of an XDR Data Description

Here is a short XDR data description of a thing called a "file",
whi ch might be used to transfer files fromone nachi ne to another.

const NMAXUSERNAME = 32; /* max length of a user nane */
const MAXFI LELEN = 65535; /* max length of a file */
const MAXNAMELEN = 255; /* max length of a file nane */
/*
* Types of files:
*/
enum filekind {

TEXT = 0, /* ascii data */

DATA = 1, /* raw data */

EXEC = 2 /* executable */
3
/*
* File information, per kind of file:
*/
union filetype switch (filekind kind) {
case TEXT:

voi d; /* no extra information */
case DATA:

string creator <MAXNAVELEN>; /* data creator */
case EXEC:

string interpretor<MAXNAMELEN>; /* programinterpretor */
3
/*
* A conplete file:
*/

struct file {
string fil ename<MAXNAMELEN>; /* name of file */
filetype type; /[* info about file */
string owner <MAXUSERNANME>; /* owner of file */
opaque dat a<MAXFI LELEN>; /* file data */

H
Suppose now that there is a user named "john" who wants to store his

lisp program"sillyprog" that contains just the data "(quit)". His
file would be encoded as follows:

Ei sl er St andards Track [Page 21]

RFC 4506 XDR: External Data Representation Standard May 2006

8.

OFFSET HEX BYTES ASCl | COMMVENTS

0 00 00 00 09 Cee -- length of filename = 9

4 73 69 6C 6C sill -- filenanme characters

8 79 70 72 6f ypro -- ... and nore characters ..
12 67 00 00 00 g... -- ... and 3 zero-bytes of fil
16 00 00 00 02 ce -- filekind is EXEC = 2

20 00 00 00 04 ce -- length of interpretor = 4
24 6c 69 73 70 lisp -- interpretor characters

28 00 00 00 04 cee -- length of owner = 4

32 6a 6f 68 6e j ohn -- owner characters

36 00 00 00 06 ce -- length of file data = 6
40 28 71 75 69 (qui -- file data bytes ..
44 74 29 00 00 t). -- ... and 2 zero-bytes of fil

Security Consi derations

XDR is a data description |anguage, not a protocol, and hence it does
not inherently give rise to any particular security considerations.
Protocols that carry XDR-formatted data, such as NFSv4, are
responsi bl e for providing any necessary security services to secure
the data they transport.

Care nmust be take to properly encode and decode data to avoid
attacks. Known and avoi dabl e risks include:

* Buf fer overflow attacks. Were feasible, protocols should be
defined with explicit limts (via the "<" [value] ">" notation
instead of "<" ">") on elenents with variable-length data types.
Regardl ess of the feasibility of an explicit limt on the
variable I ength of an elenent of a given protocol, decoders need
to ensure the incom ng size does not exceed the |length of any
provi si oned receiver buffers.

* Nul octets enbedded in an encoded val ue of type string. |If the
decoder’s native string format uses nul-term nated strings, then
the apparent size of the decoded object will be I ess than the
amount of nenory allocated for the string. Sone nenory
deal | ocation interfaces take a size argurment. The caller of the
deal | ocation interface would likely deternmine the size of the
string by counting to the location of the nul octet and addi ng
one. This discrepancy can cause nenory | eakage (because | ess
nmenory is actually returned to the free pool than allocated),
| eading to systemfailure and a denial of service attack

* Decodi ng of characters in strings that are | egal ASCl
characters but nonetheless are illegal for the intended
application. For exanple, sone operating systens treat the '/’

Ei sl er St andards Track [Page 22]

RFC 4506 XDR: External Data Representation Standard May 2006

character as a conponent separator in path nanes. For a
protocol that encodes a string in the argunent to a file
creation operation, the decoder needs to ensure that '/’ is not
i nsi de the conponent nane. Qherwise, a file with an illegal
/7 inits nane will be created, making it difficult to renpve,
and is therefore a denial of service attack.

* Deni al of service caused by recursive decoder or encoder
subroutines. A recursive decoder or encoder m ght process data
that has a structured type with a nenber of type optional data
that directly or indirectly refers to the structured type (i.e.,
alinked list). For exanple,

struct m{
int x;
struct m *next;
3
An encoder or decoder subroutine mght be witten to recursively
call itself each tine another elenment of type "struct m' is

found. An attacker could construct a long linked Iist of
"struct m' elements in the request or response, which then
causes a stack overflow on the decoder or encoder. Decoders and
encoders should be witten non-recursively or inpose a limt on
list |ength.

9. | ANA Consi derations

It is possible, if not likely, that new data types will be added to
XDR in the future. The process for adding new types is via a
standards track RFC and not registration of new types with | ANA
Standards track RFCs that update or replace this docunent shoul d be
documented as such in the RFC Editor’s database of RFCs.

10. Trademarks and Oaners

SUN WORKSTATI ON Sun M crosystens, |nc.

VAX Hewl et t - Packard Conpany

| BM PC I nt ernati onal Busi ness Machi nes Corporation
Cray Cray Inc.

NFS Sun M crosystens, Inc.

Et her net Xer ox Cor poration.

Mot or ol a 68000 Mot orol a, |nc.

| BM 370 I nt ernati onal Busi ness Machi nes Corporation

Ei sl er St andards Track [Page 23]

RFC 4506 XDR: External Data Representation Standard May 2006

11. ANSI/I EEE Standard 754-1985

The definition of NaNs, signed zero and infinity, and denormalized
nunbers from [l EEE] is reproduced here for convenience. The
definitions for quadruple-precision floating point nunbers are
anal ogs of those for single and doubl e-precision floating point
nunbers and are defined in [| EEE].

In the following, 'S
and 'F for the fractiona
undefined bit (0 or 1).

stands for the sign bit, 'E for the exponent,
part. The synbol 'u stands for an

For single-precision floating point nunbers:

Type S (1 bit) E (8 bhits) F (23 bits)
signal li ng NaN u 255 (max) . Quuuuu---u
(with at | east
one 1 bit)
qui et NaN u 255 (max) . luuuuu---u
negative infinity 1 255 (max) . 000000---0
positive infinity 0 255 (max) . 000000---0
negative zero 1 0 . 000000---0
positive zero 0 0 . 000000---0
For doubl e-precision floating point nunbers:
Type S (1 bit) E (11 bits) F (52 bits)
signal li ng NaN u 2047 (max) . Quuuuu- --u
(with at | east
one 1 bit)
qui et NaN u 2047 (max) . luuuuu---u
negative infinity 1 2047 (max) . 000000---0
positive infinity 0 2047 (max) . 000000---0
negative zero 1 0 . 000000---0
positive zero 0 0 . 000000---0
Ei sl er St andards Track [Page 24]

RFC 4506

XDR: Externa

Dat a Representation Standard

May 2006

For quadrupl e-precision floating point nunbers:

Type

signal li ng NaN

qui et NaN
negative infinity
positive infinity
negative zero
positive zero
Subnor mal

Pr eci si on

Quadrupl e

12. Normative Refere

[EEE] "IEEE Stan

ANS| / | EEE
El ectronic

13. I nformati ve Refe

[KERN]

Language",

[COHE]
Comput er,

[COUR] "Courier

Cor por ati on,

[SPAR]
| SBN 0- 13-

[HPRE]

Ei sl er

Danny Cohen,

"The SPARC Architecture Mnual

S (1 bit)

E (15

32767
32767
32767
1 0
0 0

Exponent

nces
dard for
St andard 754- 1985,
s Engi neers, August 1985.

rences

Brian W Kernighan & Dennis M Ritchie
Murray Hill,

Bel | Laboratories,

“"On Holy Wars and a P
Cct ober 1981.

The Renote Procedure Cal
XSI'S 038112, Decenber

825001- 4.

"HP Precision Architecture Handbook",

St andards Track

(-1)**S * 2%*(-126)
(-1)**S * 2%*(-1022)

(-1)**S * 2**(-16382)

Bi nary Fl oating-
Institute of Electrical

Ver si on 8",

F (112 bits)

. Ouuuuu---u

(with at | east
one 1 bit)

. luuuuu---u

. 000000---0

. 000000---0

. 000000---0

. 000000---0

nunbers are represented as foll ows:

*

0.F

*

0.F

*

0.F

Point Arithmetic",
and

"The C Programm ng
New Jer sey, 1978.

ea for Peace", | EEE

Prot ocol ", XEROX

1981.
Prentice Hall

June 1987, 5954-9906.

[Page 25]

RFC 4506 XDR: External Data Representation Standard May 2006

14.

Edi

Acknowl edgenent s

Bob Lyon was Sun’s visible force behind ONC RPC in the 1980s. Sun

M crosystens, Inc., is listed as the author of RFC 1014. Raj
Srinivasan and the rest of the old ONC RPC working group edited RFC
1014 into RFC 1832, from which this docunent is derived. M ke Eisler
and Bill Janssen subnmitted the inplenentation reports for this
standard. Kevin Cof frman, Benny Hal evy, and Jon Peterson revi ewed
thi s docunent and gave feedback. Peter Astrand and Bryan O son

poi nted out several errors in RFC 1832 which are corrected in this
docunent .

tor’s Address

M ke Ei sl er

5765 Chase Point Circle
Col orado Springs, CO 80919
USA

Phone: 719-599-9026
EMai | : email 2nre-rfc4506@ahoo. com

Pl ease address comments to: nfsvd@etf.org

Ei sl er St andards Track [Page 26]

RFC 4506 XDR: External Data Representation Standard May 2006

Ful | Copyright Statenent
Copyright (C The Internet Society (2006).

Thi s docunent is subject to the rights, licenses and restrictions
contained in BCP 78, and except as set forth therein, the authors
retain all their rights.

Thi s docunent and the information contained herein are provided on an
"AS | S' basis and THE CONTRI BUTOR, THE ORGANI ZATI ON HE/ SHE REPRESENTS
OR | S SPONSORED BY (I F ANY), THE | NTERNET SOCI ETY AND THE | NTERNET
ENG NEERI NG TASK FORCE DI SCLAI M ALL WARRANTI ES, EXPRESS OR | MPLI ED,

| NCLUDI NG BUT NOT LI M TED TO ANY WARRANTY THAT THE USE OF THE

I NFORMATI ON HEREI N W LL NOT | NFRI NGE ANY RI GHTS OR ANY | MPLI ED
WARRANTI ES OF MERCHANTABI LI TY OR FI TNESS FOR A PARTI CULAR PURPCSE

Intell ectual Property

The | ETF takes no position regarding the validity or scope of any
Intell ectual Property Rights or other rights that m ght be clained to
pertain to the inplenentation or use of the technol ogy described in
this document or the extent to which any |icense under such rights

m ght or mght not be available; nor does it represent that it has
made any independent effort to identify any such rights. Information
on the procedures with respect to rights in RFC docunents can be
found in BCP 78 and BCP 79.

Copi es of IPR disclosures made to the | ETF Secretariat and any
assurances of licenses to be nmade available, or the result of an
attenpt nade to obtain a general |icense or permission for the use of
such proprietary rights by inplenenters or users of this
specification can be obtained fromthe |ETF on-line | PR repository at
http://ww.ietf.org/ipr.

The 1ETF invites any interested party to bring to its attention any
copyrights, patents or patent applications, or other proprietary
rights that may cover technology that may be required to inpl enent
this standard. Pl ease address the infornation to the |IETF at
ietf-ipr@etf.org.

Acknowl edgenent

Funding for the RFC Editor function is provided by the |IETF
Admi ni strative Support Activity (1ASA).

Ei sl er St andards Track [Page 27]

