I nt ernet Engi neering Task Force (1 ETF) M Bj orklund, Ed
Request for Comments: 7950 Tail -f Systens
Cat egory: Standards Track August 2016
| SSN: 2070-1721

The YANG 1.1 Data Model i ng Language

Abstract

YANG i s a data nodel i ng | anguage used to nodel configuration data,
state data, Renote Procedure Calls, and notifications for network
managenment protocols. This docunment describes the syntax and
semantics of version 1.1 of the YANG | anguage. YANG version 1.1 is a
mai nt enance rel ease of the YANG | anguage, addressing anbiguities and
defects in the original specification. There are a small nunber of
backward inconpatibilities from YANG version 1. This docunent al so
speci fies the YANG nmappi ngs to the Network Configuration Protoco

(NETCONF) .

Status of This Meno
This is an Internet Standards Track docunent.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the IETF community. It has
recei ved public review and has been approved for publication by the
Internet Engineering Steering Goup (IESG. Further infornmation on
Internet Standards is available in Section 2 of RFC 7841.

I nformati on about the current status of this document, any errata,

and how to provide feedback on it may be obtained at
http://wwv. rfc-editor.org/info/rfc7950.

Bj or kl und St andards Track [Page 1]

RFC 7950 YANG 1.1 August 2016

Copyri ght Notice

Copyright (c) 2016 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect
to this docunment. Code Conponents extracted fromthis document nust
include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Thi s docunent nmay contain material from|ETF Documents or |ETF
Contri butions published or made publicly avail abl e before Novenber
10, 2008. The person(s) controlling the copyright in some of this
material may not have granted the IETF Trust the right to allow
nodi fi cati ons of such material outside the | ETF Standards Process.
Wt hout obtaining an adequate |icense fromthe person(s) controlling
the copyright in such materials, this docunent may not be nodified
out side the | ETF Standards Process, and derivative works of it may
not be created outside the | ETF Standards Process, except to format
it for publication as an RFC or to translate it into |anguages ot her
than Engli sh

Bj or kl und St andards Track [Page 2]

RFC 7950 YANG 1.1 August 2016

Tabl e of Contents

1

[Nt roducCti ON ... 9
1.1. Summary of Changes fromRFC 6020 10
Key VI ds .. 12
Term Nol OgY .. .o 12
3.1. ANote on Exanmples 16
YANG OVer Vi W . ottt e e e e e e e e 16
4.1. Functional OVervi ew 16
4.2. Language OVerVi BWottt e e e 18
4.2.1. Modules and Subnodules 18
4.2.2. Data Modeling BasicCsS 19
4.2.3. Configuration and State Data 23
4.2.4. Built-In Types 24
4.2.5. Derived Types (typedef) 25
4.2.6. Reusable Node Groups (grouping) 25
4.2.7. CNOI CBS ..ttt 27
4.2.8. Extending Data Mdels (augment) 28
4.2.9. Qperation Definitions 29
4.2.10. Notification Definitions 31
Language CoNnCePt St 32
5.1. Modules and Subnodules 32
5.1.1. Inmport and Include by Revision 33
5.1.2. Module Hierarchies 34
5.2, File Layout 36
5.3, XML NaMBSPACES . . .ottt e e 36
5.3. 1. YANG XM. NamBSpPacet 36
5.4. Resolving G ouping, Type, and ldentity Nanes 37
5.5. Nested Typedefs and G oupings 37
5.6. ConfOrmanCe 38
5.6.1. Basic Behavior 38
5.6.2. Optional Features 38
5.6.3. Deviations 39
5.6.4. Announci ng Conformance Information in NETCONF 40
5.6.5. Inmplenenting a Module 40
5.7. Datastore Mudification i 44
YANG SYNt aX .ottt e e 44
6.1. Lexical Tokenization 45
6.1.1. COMTENLS . .. e 45
6. 1. 2. TOKENS . .. 45
6.1.3. QUOLTI NG ...ttt 45
6.2. lden t|f|ers ... 47
6. 2. Identifiers and Their Nanespaces 47
6.3. Stat enents .. 48
6.3.1. Language EXtensionsc.iiiiiiiinina.. 48
6.4. XPath Evaluations 49
6.4.1. XPath Contexty 50
6.5. Scherma Node ldentifier 54

Bj or kl und St andards Track [Page 3]

RFC 7950 YANG 1.1 August 2016
7. YANG Stat emBNt S 55
7.1. The "nmodule" Statenment 55
7.1.1. The nodule’s Substatenents 56
7.1.2. The "yang-version" Statement 57
7.1.3. The "namespace"” Statenment 57
7.1.4. The "prefix" Statement 57
7.1.5. The "inport" Statenment 58
7.1.6. The "include" Statement 59
7.1.7. The "organization" Statenment 60
7.1.8. The "contact" Statenent 60
7.1.9. The "revision" Statement 60
7.1.10. Usage Exanple 61

7.2. The "subnodul e" Statenment 62
7.2.1. The subnodul e’s Substatenents 63
7.2.2. The "belongs-to" Statement 63
7.2.3. Usage Exanple 64

7.3. The "typedef" Statement 65
7.3.1. The typedef’s Substatenents 65
7.3.2. The typedef’'s "type" Statenent 65
7.3.3. The "units" Statement 0. ... 65
7.3.4. The typedef’s "default" Statement 66
7.3.5. Usage Exanple 66

7.4. The "type" Statement 66
7.4.1. The type’'s Substatements 67

7.5. The "container" Statement, 67
7.5.1. Containers with Presence, 67
7.5.2. The container’'s Substatenents 68
7.5.3. The "nmust" Statement 69
7.5.4. The nmust’s Substatements 70
7.5.5. The "presence" Statement 71
7.5.6. The container’'s Child Node Statenents 71
7.5.7. XML Encoding Rules i 71
7.5.8. NETCONF <edit-config> Operations 72
7.5.9. Usage Exanmple 72

7.6. The "leaf" Statement 73
7.6.1. The leaf’'s Default Value 74
7.6.2. The leaf’s Substatenments 75
7.6.3. The leaf’'s "type" Statenent 75
7.6.4. The leaf’'s "default" Statenent 75
7.6.5. The leaf’s "mandatory" Statement 76
7.6.6. XML Encoding Rules i 76
7.6.7. NETCONF <edit-config> Qperations 76
7.6.8. Usage Exanple e 77

7.7. The "leaf-list" Statenent 77
T.7. 1 Ordering ... 78
7.7.2. The leaf-list’s Default Values 79
7.7.3. The leaf-list’s Substatenments 80
7.7.4. The leaf-list’s "default" Statement 80

Bj or kl und St andards Track [Page 4]

RFC 7950

Bj or kl und

NNNSNN

NNNNNNONNNNNNNONNNNNN
COOOOOD® OO®E®OOOOMDdNNNNNN

Uk wWNE

T
7.
7.
7.

T
7.
7.
7.
7.

T
7.
7.

T
7.
7.
7.

LI_

he

10
10
10
he
11
11
11
11
he
12
12
he
13
13
13

he

.14,
14.
14.
14.
.14,

HOo~No O

ze

SN AWM E

ch

"a
1.
. 2.
. 3.
4.
"a
1.
. 2.
. 3.
4.
"g
1.
. 2.
"u
1.
. 2.
. 3.
. 4.
"r

agkwNE

YANG 1.1 August 2016

The "min-elenments" Statement 80
The "max-elenments” Statement 81
The "ordered-by" Statenment 81
XML Encoding Rules 82
NETCONF <edit-config> Operations 82
Usage Exanple i 83

St" Statement 84
The list’s Substatements 85
The list’s "key" Statenment 85
The list’s "unique" Statement 86
The list’s Child Node Statenents 87
XML Encoding Rules i 88
NETCONF <edit-config> Qperations 88
Usage Exanmpl e 90
oi ce" Statement 93
The choice’'s Substatements 94
The choice’'s "case" Statement 94
The choice’'s "default" Statement 96
The choice’'s "mandatory" Statenent 98
XML Encoding Rules 98
Usage Exampl e 99
nydata" Statenment 100
The anydata’s Substatenents 100

XML Encoding Rules 101

NETCONF <edit-config> Qperations 101

Usage Exanmple 101

nyxm " Statement 102
The anyxm’'s Substatements 103

XML Encoding Rules 103

NETCONF <edit-config> Qperations 103

Usage Exanmpl e i 104

roupi ng" Statement 104
The grouping’ s Substatements 105

Usage Exanple 105

ses" Statement 106
The uses’s Substatements 106

The "refine" Statement 106

XML Encoding Rules i 107

Usage Example 107

pc" Statement 108
The rpc’s Substatenments 109

The "input" Statement 109

The "output" Statement 110

NETCONF XML Encoding Rules 111

Usage Example 112

St andards Track [Page 5]

RFC 7950 YANG 1.1 August 2016
7.15. The "action" Statement i 113
7.15.1. The action’s Substatenments 114
7.15.2. NETCONF XML Encoding Rules 114
7.15.3. Usage Exanple 115

7.16. The "notification"” Statenent 116
7.16.1. The notification's Substatenents 117
7.16.2. NETCONF XM. Encoding Rules 117
7.16.3. Usage Exanple 118

7.17. The "augment” Statement 119
7.17.1. The augnent’s Substatenents 121
7.17.2. XML Encoding Rules 121
7.17.3. Usage Exanple 122

7.18. The "identity" Statement 124
7.18.1. The identity's Substatenents 124
7.18.2. The "base" Statement 124
7.18.3. Usage Exanple 125

7.19. The "extension" Statement 126
7.19.1. The extension's Substatements 126
7.19.2. The "argunent" Statenent 127
7.19.3. Usage Exanple 127

7.20. Conformance-Related Statements 128
7.20.1. The "feature" Statement 128
7.20.2. The "if-feature" Statenment 130
7.20.3. The "deviation" Statement 131

7.21. CommDn StatementsS 134
7.21.1. The "config" Statement 134
7.21.2. The "status" Statement 135
7.21.3. The "description" Statement 136
7.21.4. The "reference” Statement 136
7.21.5. The "when" Statement 136

8. CONStrai Nt S ... 138
8.1. Constraints on Data i, 138
8.2. Configuration Data Mdifications 139
8.3. NETCONF Constraint Enforcement Model 139
8.3.1. Payload Parsing i, 139
8.3.2. NETCONF <edit-config> Processing 140
8.3.3. Validation 141

9. BUilt-1Nn TYPES . 141
9.1. Canonical Representation 141
9.2. The Integer Built-In Types 142
9.2.1. Lexical Representation 142
9.2.2. Canonical Form........ 143
9.2.3. RestricCtions 143
9.2.4. The "range" Statement, 143
9.2.5. Usage Exanmple 144

Bj or kl und St andards Track [Page 6]

RFC 7950

9.3.

Bj or kl und

YANG 1.1 August 2016

The decimal 64 Built-In Type 144
9.3.1. Lexical Representation 145
9.3.2. Canonical Form 145
9.3.3. Restrictions 145
9.3.4. The "fraction-digits" Statement 145
9.3.5. Usage Exanple 146
The string Built-In Type 146
9.4.1. Lexical Representation 146
9.4.2. Canonical Form 147
9.4.3. Restrictions 147
9.4.4. The "length" Statenment 147
9.4.5. The "pattern" Statement 148
9.4.6. The "modifier" Statement 148
9.4.7. Usage Exanmple 149
The boolean Built-In Type i 150
9.5.1. Lexical Representation 150
9.5.2. Canonical Form 150
9.5.3. Restrictions 150
The enunmeration Built-In Type 150
9.6.1. Lexical Representation 150
9.6.2. Canonical Form 151
9.6.3. Restrictions i 151
9.6.4. The "enuni Statement, 151
9.6.5. Usage Exanple 152
The bits Built-1n Type e 154
9.7.1. Restrictions 154
9.7.2. Lexical Representation 154
9.7.3. Canonical Form 154
9.7.4. The "bit" Statement 155
9.7.5. Usage Exanple 156
The binary Built-In Type 157
9.8.1. Restrictions 157
9.8.2. Lexical Representation 157
9.8.3. Canonical Form 157
The leafref Built-1n Type 157
9.9.1. RestricCtions e 158
9.9.2. The "path" Statenent 158
9.9.3. The "require-instance" Statement 159
9.9.4. Lexical Representation 159
9.9.5. Canonical Form 159
9.9.6. Usage Exanple 159
The identityref Built-In Type 163
9.10.1. ReStricCtions e 163
9.10.2. The identityref’'s "base" Statenent 163
9.10.3. Lexical Representation 163
9.10.4. Canonical Form 164
9.10.5. Usage Exanple 164
St andards Track [Page 7]

10.

11.

13.

14.
15.

RFC 7950 YANG 1.1 August
9.11. The enpty Built-In Type
9.11.1. ResStricCtions,
9.11.2. Lexical Representation
9.11.3. Canonical Form
9.11.4. Usage Exanple
9.12. The union Built-In Type
9.12.1. ReStricCtions
9.12.2. Lexical Representation
9.12.3. Canonical Form
9.12.4. Usage Exanple
9.13. The instance-identifier Built-In Type
9.13.1. ReStricCtions
9.13.2. Lexical Representation
9.13.3. Canonical Form i
9.13.4. Usage Exanple
XPath FunCtions
10. 1. Function for Node Sets
10. 1. 1. current () ...t
10.2. Function for Stringsc. ..
10.2. 1. re-match() ...

10. 3. Function for the YANG Types "leafref" and
"instance-identifier"
10.3. 1. deref () .o
10. 4. Functions for the YANG Type "identityref"
10.4. 1. derived-from() i
10.4.2. derived-fromor-self()
10.5. Function for the YANG Type "enumeration"
10.5.1. enumvalue()
10. 6. Function for the YANG Type "bits"
10.6. 1. bit-is-set() ...
Updating a Module e e
Coexistence with YANG Version 1o,
YN
13.1. Formal YIN Definition
13.1.1. Usage Exanple
YANG ABNF Grammmar
NETCONF Error Responses for YANG Related Errors

15.1. Error Message for Data That Violates a "uni que"

St At BIMBNt . .

15.2. Error Message for Data That Viol ates a

"max- el enents" Statenment

15.3. Error Message for Data That Viol ates a

"mn-elements" Statement

15.4. Error Message for Data That Violates a "nust

St At BIMBNt . L

15.5. Error Message for Data That Viol ates a

"require-instance” Statement

Bj or kl und St andards Track [Page 8]

RFC 7950 YANG 1.1 August 2016

15.6. Error Message for Data That Viol ates a Mandatory

"choice" Statement 212

15.7. Error Message for the "insert" Operation 212
16. 1T ANA Considerati ONSt i e e e 213
17. Security Considerati oOns 213
18. Ref BrBNCES . .. o 214
18. 1. Normative References 214
18.2. Informative References 215
ACKNOW edgement S 217
Contri bUL Or S .. e 217
AUt hor’ s Addr €SS e e 217

1. Introduction

YANG i s a data nodel i ng | anguage originally designed to nodel
configuration and state data mani pul ated by the Network Configuration
Prot ocol (NETCONF), NETCONF Renote Procedure Calls, and NETCONF
notifications [RFC6241]. Since the publication of YANG version 1

[RFC6020], YANG has been used or proposed to be used for other
protocols (e.g., RESTCONF [RESTCONF] and the Constrained Application
Prot ocol (CoAP) Managenent Interface (CoM) [CoM]). Further

encodi ngs ot her than XM. have been proposed (e.g., JSON [RFC7951]).

Thi s docunent describes the syntax and semantics of version 1.1 of
the YANG | anguage. It also describes how a data nodel defined in a
YANG nodul e i s encoded in the Extensible Markup Language (XM.) [XM]
and how NETCONF operations are used to mani pulate the data. O her
prot ocol s and encodi ngs are possible but are out of scope for this
speci fication.

In terns of devel opi ng YANG data nodel s, [YANG Cui del i nes] provides
some gui delines and recomrendati ons.

Note that this document does not obsol ete RFC 6020 [RFC6020] .

Bj or kl und St andards Track [Page 9]

RFC 7950 YANG 1.1 August 2016

1.1.

Sunmary of Changes from RFC 6020

Thi s docunent defines version 1.1 of the YANG | anguage. YANG
version 1.1 is a maintenance rel ease of the YANG | anguage, addressing
ambiguities and defects in the original specification [RFC6020].

The foll owi ng changes are not backward conpati ble with YANG
version 1:

(0]

Changed the rules for the interpretati on of escaped characters in
doubl e-quoted strings. This is a backward-inconpatible change
from YANG version 1. Wen updating a YANG version 1 nodule to 1.1
and the nodul e uses a character sequence that is nowillegal, the
string must be changed to match the new rules. See Section 6.1.3
for details.

An unquoted string cannot contain any single or double quote
characters. This is a backward-inconpati ble change from YANG
version 1. Wen updating a YANG version 1 nodule to 1.1 and the
nodul e uses such quote characters, the string nmust be changed to
match the new rules. See Section 6.1.3 for details.

Made "when" and "if-feature"” illegal on list keys. This is a
backwar d-i nconpati bl e change from YANG version 1. Wen updating a
YANG version 1 nmodule to 1.1 and the nodul e uses these constructs,
they nust be renmoved to natch the new rul es.

Defined the |l egal characters in YANG nmodul es. Wen updating a
YANG version 1 module to 1.1, any characters that are nowillega
nust be renoved. See Section 6 for details.

Made noncharacters illegal in the built-in type "string". This
change affects the runtime behavi or of YANG based protocols.

The foll owi ng additional changes have been done to YANG

o

o

Changed the YANG version from"1" to "1.1".
Made t he "yang-version" statement mandatory in YANG version "1.1".

Extended the "if-feature” syntax to be a bool ean expression over
feature nanes.

Allow "if-feature" in "bit", "enun, and "identity".

Allow "if-feature" in "refine".

Bj or kl und St andards Track [Page 10]

RFC 7950 YANG 1.1 August 2016
o Allow "choice" as a shorthand "case" statenent (see
Section 7.9.2).

0 Added a new substatenment "nodifier" to the "pattern" statenent
(see Section 9.4.6).

o Alow"nmust" in "input", "output", and "notification".
o Allow"require-instance" in leafref.

o Allow "description” and "reference” in "inport" and "incl ude".
o Alowinports of nultiple revisions of a nodule.

o Allow "augnment" to add conditionally mandatory nodes (see
Section 7.17).

o Added a set of new XM. Pat h Language (XPath) functions in
Section 10.

o Carified the XPath context’s tree in Section 6.4.1

o Defined the string value of an identityref in XPath expressions
(see Section 9.10).

o Carified what unprefixed nanmes nean in |leafrefs in typedefs (see
Sections 6.4.1 and 9.9.2).

o Alowidentities to be derived frommultiple base identities (see
Sections 7.18 and 9. 10).

o Allow enunerations and bits to be subtyped (see Sections 9.6
and 9.7).

o Alowleaf-lists to have default values (see Section 7.7.2).

o Allow non-unique values in non-configuration leaf-lists (see
Section 7.7).

o Use syntax for case-sensitive strings (as per [RFC7405]) in the
grammar .

o Changed the nodul e adverti senent nechani sm (see Section 5.6.4).
0 Changed the scoping rules for definitions in subnodules. A

subnmodul e can now reference all definitions in all subnpdul es that
bel ong to the same nmodul e, w thout using the "include" statenent.

Bj or kl und St andards Track [Page 11]

RFC 7950 YANG 1.1 August 2016

o Added a new statenent "action", which is used to define operations
tied to data nodes.

o Allownotifications to be tied to data nodes.

o Added a new data definition statement "anydata" (see
Section 7.10), which is RECOWENDED to be used instead of "anyxm "
when the data can be nodel ed in YANG

o Alowtypes "enpty" and "leafref"” in unions.

o Alowtype "enpty" in a key.

0o Renobved the restriction that identifiers could not start with the
characters "xm".

The foll owi ng changes have been done to the NETCONF mappi ng:
o A server advertises support for YANG 1.1 nodul es by using

ietf-yang-library [RFC7895] instead of listing them as
capabilities in the <hell o> nmessage.

2. Key Wrds
The key words "MJST", "MJST NOT", "REQU RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOMMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in
BCP 14 [RFC2119].

3. Term nol ogy
The following terns are used within this docunent:

o action: An operation defined for a node in the data tree.

0 anydata: A data node that can contain an unknown set of nodes that
can be nodel ed by YANG except anyxm .

o anyxnml: A data node that can contain an unknown chunk of XM. dat a.

o augrent: Adds new schenma nodes to a previously defined schema
node.

o base type: The type from which a derived type was derived, which
may be either a built-in type or another derived type.

o built-in type: A YANG data type defined in the YANG | anguage, such
as uint32 or string.

Bj or kl und St andards Track [Page 12]

RFC 7950 YANG 1.1 August 2016

o choice: A schema node where only one of a nunber of identified
alternatives is valid.

o client: An entity that can access YANG defined data on a server,
over sone networ k managenent protocol

o conformance: A nmeasure of how accurately a server follows a data
nodel .

0o container: An interior data node that exists in at nbst one
instance in the data tree. A container has no value, but rather a
set of child nodes.

o data definition statement: A statenent that defines new data
nodes. One of "container", "leaf", "leaf-list", "list", "choice",
"case", "augnent", "uses", "anydata", and "anyxm ".

o data nodel: A data nodel describes how data is represented and
accessed.

o data node: A node in the schema tree that can be instantiated in a
data tree. One of container, leaf, leaf-list, list, anydata, and
anyxm .

o data tree: An instantiated tree of any data nodel ed with YANG
e.g., configuration data, state data, comnbined configuration and
state data, RPC or action input, RPC or action output, or
notification.

o derived type: Atype that is derived froma built-in type (such as
ui nt 32) or another derived type.

o extension: An extension attaches non- YANG semantics to statenments.
The "extension" statenment defines new statenents to express these
semanti cs.

o feature: A nmechanismfor narking a portion of the nodel as
optional. Definitions can be tagged with a feature nane and are
only valid on servers that support that feature.

0 grouping: A reusable set of schema nodes, which may be used
locally in the nodul e and by other nodules that inport fromit.
The "groupi ng" statement is not a data definition statenent and,
as such, does not define any nodes in the schena tree.

o identifier: Astring used to identify different kinds of YANG
items by name.

Bj or kl und St andards Track [Page 13]

RFC 7950 YANG 1.1 August 2016

o identity: A globally unique, abstract, and untyped nane.

o instance identifier: A mechanismfor identifying a particular node
in a data tree.

o interior node: Nodes within a hierarchy that are not |eaf nodes.

o leaf: A data node that exists in at npbst one instance in the data
tree. A leaf has a value but no child nodes.

o leaf-list: Like the | eaf node but defines a set of uniquely
identifiable nodes rather than a single node. Each node has a
val ue but no child nodes.

o list: An interior data node that may exist in nultiple instances
in the data tree. A list has no value, but rather a set of child
nodes.

o mandatory node: A mandatory node is one of:

* A leaf, choice, anydata, or anyxml node with a "nandatory"
statement with the value "true".

* Alist or leaf-list node with a "mn-el enents" statenment with a
val ue greater than zero.

* A container node without a "presence" statenent and that has at
| east one nandatory node as a child.

o nodule: A YANG nodul e defines hierarchies of schema nodes. Wth
its definitions and the definitions it inports or includes from
el sewhere, a nodule is self-contained and "conpil abl e".

0 non-presence container: A container that has no neaning of its
own, existing only to contain child nodes.

0 presence container: A container where the presence of the
container itself carries sone meaning.

o0 RPC. A Renpte Procedure Call
o RPC operation: A specific Renote Procedure Call
o schemn node: A node in the schenmm tree. One of action, container

leaf, leaf-list, list, choice, case, rpc, input, output,
notification, anydata, and anyxm .

Bj or kl und St andards Track [Page 14]

RFC 7950 YANG 1.1 August 2016

schema node identifier: A mechanismfor identifying a particular
node in the schenma tree.

schema tree: The definition hierarchy specified within a nodul e.

server: An entity that provides access to YANG defined data to a
client, over sone network managerent protocol

server deviation: A failure of the server to inplenent a nodul e
faithfully.

subnodul e: A partial nmodule definition that contributes derived
types, groupings, data nodes, RPCs, actions, and notifications to
a nodule. A YANG nodul e can be constructed froma nunber of
subnodul es.

top-1evel data node: A data node where there is no other data node
between it and a "nodul e" or "subnmodul e" statenent.

uses: The "uses" statenent is used to instantiate the set of
schema nodes defined in a "grouping" statement. The instantiated
nodes may be refined and augnented to tailor themto any specific
needs.

val ue space: For a data type; the set of values pernmitted by the
data type. For a leaf or leaf-list instance; the val ue space of
its data type

The following terns are defined in [RFC6241]:

o

o

o

o

configuration data
confi guration datastore
dat astore

state data

When nodel ed with YANG a datastore is realized as an instantiated
data tree.

When nodel ed with YANG a configuration datastore is realized as an
instantiated data tree with configuration data.

Bj or kl und St andards Track [Page 15]

RFC 7950 YANG 1.1 August 2016

3.1. A Note on Exanples

Thr oughout this document, there are many exanpl es of YANG statenents.
These exanpl es are supposed to illustrate certain features and are
not supposed to be conplete, valid YANG nodul es.

4. YANG Overvi ew

This non-normative section is intended to give a high-Ilevel overview
of YANGto first-time readers.

4.1. Functional Overview

YANG i s a | anguage originally designed to nodel data for the NETCONF
protocol. A YANG nodul e defines hierarchies of data that can be used
for NETCONF- based operations, including configuration, state data,
RPCs, and notifications. This allows a conplete description of al
data sent between a NETCONF client and server. Although out of scope
for this specification, YANG can also be used with protocols ot her

t han NETCONF.

YANG nodel s the hierarchical organization of data as a tree in which
each node has a name, and either a value or a set of child nodes.
YANG provi des cl ear and conci se descriptions of the nodes, as well as
the interaction between those nodes.

YANG structures data nodels into nodul es and subnodul es. A nodul e
can inport definitions from other external nmodul es and can include
definitions from subnodul es. The hierarchy can be augnented,

al l owi ng one nodule to add data nodes to the hierarchy defined in
anot her nodule. This augnentation can be conditional, wth new nodes
appearing only if certain conditions are net.

YANG dat a nodel s can describe constraints to be enforced on the data,
restricting the presence or value of nodes based on the presence or
val ue of other nodes in the hierarchy. These constraints are
enforceabl e by either the client or the server.

YANG defines a set of built-in types and has a type mechani smthrough
whi ch additional types may be defined. Derived types can restrict
their base type’'s set of valid values using mechanisns |ike range or
pattern restrictions that can be enforced by clients or servers.

They can al so define usage conventions for use of the derived type,
such as a string-based type that contains a hostnane.

Bj or kl und St andards Track [Page 16]

RFC 7950 YANG 1.1 August 2016

YANG permits the definition of reusable groupings of nodes. The
usage of these groupings can refine or augnent the nodes, allowing it
to tailor the nodes to its particular needs. Derived types and
groupi ngs can be defined in one nodul e and used in either the sane
nodul e or anot her nodule that inports it.

YANG data hi erarchy constructs include defining |ists where |ist
entries are identified by keys that distinguish themfrom each other.
Such lists may be defined as either sorted by user or automatically
sorted by the system For user-sorted lists, operations are defined
for mani pulating the order of the list entries.

YANG nodul es can be translated into an equival ent XM. syntax call ed
YANG | ndependent Notation (YIN) (Section 13), allow ng applications
using XML parsers and Extensi ble Styl esheet Language Transformations
(XSLT) scripts to operate on the nodels. The conversion from YANG to
YINis semantically | ossless, so content in YIN can be round-tri pped
back i nto YANG

YANG i s an extensible | anguage, allow ng extensions to be defined by
st andards bodi es, vendors, and individuals. The statenent syntax

all ows these extensions to coexist with standard YANG statenents in a
natural way, while extensions in a YANG nodul e stand out sufficiently
for the reader to notice them

YANG resists the tendency to solve all possible problens, liniting
the probl em space to all ow expression of data nodels for network
management protocols such as NETCONF, not arbitrary XM. docunents or
arbitrary data nodels.

To the extent possible, YANG mai ntains conpatibility with the Sinple
Net wor k Managenent Protocol’'s (SNW's) SMv2 (Structure of Managenent
I nformation version 2 [RFC2578] [RFC2579]). SMv2-based M B nodul es
can be automatically translated into YANG nodul es for read-only
access [RFC6643]. However, YANG is not concerned with reverse
translation from YANG to SM v2.

Bj or kl und St andards Track [Page 17]

RFC 7950 YANG 1.1 August 2016

4.2. Language Overview

This section introduces some inportant constructs used in YANG t hat
will aid in the understandi ng of the | anguage specifics in |later
secti ons.

4.2.1. Modul es and Subnpdul es

YANG data nodels are defined in nbdules. A npdule contains a
collection of related definitions.

A nmodul e contains three types of statenents: nodul e header
statenents, "revision" statenents, and definition statenents. The
nodul e header statenents describe the nodul e and give infornation
about the nodule itself, the "revision" statenents give information
about the history of the nodule, and the definition statenents are
the body of the nodul e where the data nodel is defined.

A server may inplenent a nunber of nodules, allowing nmultiple views
of the sane data or nultiple views of disjoint subsections of the
server’'s data. Alternatively, the server may inplenment only one
nodul e that defines all avail abl e dat a.

A nmodul e may have portions of its definitions separated into
subnodul es, based on the needs of the npbdul e designer. The externa
view remai ns that of a single nodule, regardl ess of the presence or
size of its subnodul es.

The "inport" statenment allows a nodule or subnodule to reference
definitions defined in other nodules.

The "include" statenent is used in a nodule to identify each
submodul e that belongs to it.

Bj or kl und St andards Track [Page 18]

RFC 7950 YANG 1.1 August 2016

4.2.2. Data Mdeling Basics

YANG defines four main types of data nodes for data nodeling. In
each of the followi ng subsections, the exanples show the YANG synt ax
as well as a correspondi ng XM encodi ng. The syntax of YANG
statenents is defined in Section 6.3.

4.2.2.1. Leaf Nodes

A leaf instance contains sinple data |ike an integer or a string. It
has exactly one value of a particular type and no child nodes.

YANG Exanpl e:
| eaf host-nanme {
type string;
description
"Hostnane for this system?";
}
XM. Encodi ng Exanpl e:
<host - name>ny. exanpl e. conx/ host - name>
The "leaf" statenment is covered in Section 7.6.
4.2.2.2. Leaf-List Nodes
A leaf-list defines a sequence of values of a particular type.
YANG Exanpl e:
| eaf -1i st domai n-search {
type string;
description
"List of domain names to search.";
}
XM. Encodi ng Exanpl e:
<domai n- sear ch>hi gh. exanpl e. conx/ domai n- sear ch>
<donmi n- sear ch>l ow. exanpl e. conk/ domai n- sear ch>

<donmi n- sear ch>ever ywher e. exanpl e. conx/ donai n- sear ch>

The "leaf-list" statenent is covered in Section 7.7.

Bj or kl und St andards Track [Page 19]

RFC 7950 YANG 1.1 August 2016

4.2.2.3. Contai ner Nodes

A container is used to group related nodes in a subtree. A container
has only child nodes and no value. A container may contain any

nunber of child nodes of any type (leafs, lists, containers,
| eaf-lists, actions, and notifications).

YANG Exanpl e:

cont ai ner system {
container login {
| eaf nessage {
type string;
description

"Message given at start of login session.";
}
}
}

XML Encodi ng Exanpl e:

<systenr
<l ogi n>
<nmessage>Good nor ni ng</ nessage>
</l ogi n>
</ syst enp

The "container" statenent is covered in Section 7.5.

Bj or kl und St andards Track [Page 20]

RFC 7950 YANG 1.1 August 2016

4.2.2.4. List Nodes

A list defines a sequence of list entries. Each entry is like a
container and is uniquely identified by the values of its key leafs
if it has any key leafs defined. A list can define nultiple key

| eafs and may contain any nunber of child nodes of any type
(including leafs, lists, containers, etc.).

YANG Exanpl e:

[ist user {
key "name";
| eaf nane {
type string;

| eaf full-name {
type string;

| eaf class {
type string;
}

}
XM. Encodi ng Exanpl e:

<user >
<nane>gl ocks</ name>
<ful |l -name>Col di e Locks</full -nanme>
<cl ass>i ntruder </ cl ass>

</ user >

<user >
<nane>snowey</ name>
<ful | - name>Snow Wi t e</ful |l - nane>
<cl ass>free-| oader </ cl ass>

</ user>

<user >
<name>r zel | </ nanme>
<full - name>Rapun Zel | </full -nanme>
<cl ass>t ower </ cl ass>

</ user >

The "list" statenment is covered in Section 7.8.

Bj or kl und St andards Track [Page 21]

RFC 7950 YANG 1.1 August 2016

4.2.2.5. Exanpl e Mdul e
These statenents are conbined to define the nodul e:

/1 Contents of "exanpl e-system yang"
nodul e exanpl e-system {
yang-version 1.1;
namespace "urn: exanpl e: syst ent
prefix "sys";

organi zati on "Exanple Inc.";
contact "joe@xanpl e. conf
description
"The nmodul e for entities inplenenting the Exanple system";

revi sion 2007-06-09 {
description "lnitial revision."”;

}

cont ai ner system {
| eaf host-name {
type string;
description
"Hostnane for this system?";

}
| eaf -1i st domai n-search {
type string;
description
"List of domain names to search.";
}

container login {
| eaf nessage {
type string;
description
"Message given at start of login session.";

Bj or kl und St andards Track [Page 22]

RFC 7950 YANG 1.1 August 2016

list user {
key "name";
| eaf nanme {
type string;

| eaf full-name {
type string;

| eaf class {
type string;

}
}
}
}

4.2.3. Configuration and State Data

YANG can npdel state data, as well as configuration data, based on
the "config" statenent. Wen a node is tagged with "config fal se"
its subhierarchy is flagged as state data. If it is tagged with
"config true", its subhierarchy is flagged as configuration data.
Parent containers, lists, and key leafs are reported al so, giving the
context for the state data.

In this exanple, two leafs are defined for each interface, a
configured speed and an observed speed.

list interface {
key "name";
config true

| eaf nanme {
type string;

| eaf speed {
type enuneration {
enum 10m
enum 100m
enum aut o;
}
}

| eaf observed-speed {
type uint 32;
config fal se
}
}

Bj or kl und St andards Track [Page 23]

RFC 7950 YANG 1.1 August 2016

The "config" statenent is covered in Section 7.21.1.
4.2.4. Built-In Types

YANG has a set of built-in types, simlar to those of many
progranm ng | anguages, but with some differences due to specia
requi renents of network managenment. The followi ng table sumari zes
the built-in types discussed in Section 9:

o m e e e e aa o - oo e e e e e e e e e ema e o +
| Name | Description

T o e m e e e e e e e e e e e e e e e oo - +
binary	Any binary data
bits	A set of bits or flags
bool ean	"true" or "false"
deci nal 64	64-bit signed deci mal numnber

| enpty | A leaf that does not have any val ue

| enuneration | One of an enunerated set of strings

| identityref | A reference to an abstract identity |
| instance-identifier | Areference to a data tree node

| int8 | 8-bit signed integer

| int16 | 16-bit signed integer |
| int32 | 32-bit signed integer

| int64 | 64-bit signed integer

| leafref | A reference to a |eaf instance |
| string | A character string

| uint8 | 8-bit unsigned integer

| uintl6 | 16-bit unsigned integer

| uint32 | 32-bit unsigned integer

| uint64 | 64-bit unsigned integer

| union | Choice of nenber types |
o e e e e e oo oo e e e e e e e e e ee e +

The "type" statement is covered in Section 7.4.

Bj or kl und St andards Track [Page 24]

RFC 7950 YANG 1.1 August 2016

4.2.5. Derived Types (typedef)
YANG can define derived types from base types using the "typedef"
statenment. A base type can be either a built-in type or a derived
type, allowi ng a hierarchy of derived types.

A derived type can be used as the argunent for the "type" statenent.

YANG Exanpl e:
typedef percent {
type uint8 {
range "0 .. 100";
}

}

| eaf conpleted {
type percent;
XM. Encodi ng Exanpl e:
<conpl et ed>20</ conpl et ed>
The "typedef" statenent is covered in Section 7.3.
4.2.6. Reusabl e Node G oups (grouping)
Groups of nodes can be assenbled into reusable collections using the
"groupi ng" statenent. A grouping defines a set of nodes that are
instantiated with the "uses" statement.
YANG Exanpl e:
groupi ng target {
| eaf address {
type inet:ip-address;
description "Target |IP address.";
| eaf port {

type inet: port-nunber;
description "Target port nunber.";

Bj or kl und St andards Track [Page 25]

RFC 7950 YANG 1.1 August 2016

cont ai ner peer {
cont ai ner destination {
uses target;

}
}

XM. Encodi ng Exampl e:

<peer >
<destinati on>
<addr ess>2001: db8: : 2</ addr ess>
<port >830</ port >
</ destination>

</ peer >
The grouping can be refined as it is used, allow ng certain
statenments to be overridden. In this exanple, the description is
refined:

cont ai ner connection {
cont ai ner source {
uses target {

refine "address" {
description "Source | P address.";

}

refine "port" {
description "Source port nunber.";

}
}
}

cont ai ner destination {
uses target {
refine "address" {
description "Destination |IP address.";
}
refine "port" {
description "Destination port nunber.";
}
}
}
}

The "groupi ng" statement is covered in Section 7.12.

Bj or kl und St andards Track [Page 26]

RFC 7950 YANG 1.1 August 2016

4.2.7. Choices

YANG al | ows the data nodel to segregate inconpatible nodes into

di stinct choices using the "choice" and "case" statements. The
"choi ce" statenment contains a set of "case" statenents that define
sets of schema nodes that cannot appear together. Each "case" my
contain nultiple nodes, but each node nay appear in only one "case"
under a "choice".

The choi ce and case nodes appear only in the schema tree and not in
the data tree. The additional |evels of hierarchy are not needed
beyond the conceptual schena. The presence of a case is indicated by
the presence of one or nore of the nodes within it.

Since only one of the choice' s cases can be valid at any tine, when a
node fromone case is created in the data tree, all nodes from al
other cases are inplicitly deleted. The server handles the
enforcenent of the constraint, preventing inconpatibilities from
existing in the configuration

YANG Exanpl e:

cont ai ner food ({
choi ce snack {
case sports-arena {
| eaf pretzel {

type enpty;

| eaf beer {
type enpty;

case |l ate-night {
| eaf chocol ate {
type enuneration {
enum dark;
enum m | k;
enum first-avail abl e;

Bj or kl und St andards Track [Page 27]

RFC 7950 YANG 1.1 August 2016

XM. Encodi ng Exampl e:

<f ood>
<pretzel/>
<beer/ >

</ f ood>

The "choice" statenent is covered in Section 7.9.
4.2.8. Extending Data Mdel s (augnent)

YANG al l ows a nodule to insert additional nodes into data nodel s,
i ncludi ng both the current nodule (and its subnodul es) and an
external nodule. This is useful, for exanple, for vendors to add
vendor-specific parameters to standard data nodels in an

i nt eroperabl e way.

The "augment" statenent defines the |location in the data nodel
hi erarchy where new nodes are inserted, and the "when" statenent
defines the conditions when the new nodes are valid.

VWhen a server inplenents a nodul e containing an "augment" statenent,
that inplies that the server’s inplenmentation of the augnmented nodul e
contai ns the additional nodes.

YANG Exanpl e:
augment /system | ogi n/user {
when "class = "wheel " ";
leaf uid {

type uintl1l6 {
range "1000 .. 30000";
}

}
}

Thi s exanple defines a "uid" node that is valid only when the user’s
"class" is not "wheel".

Bj or kl und St andards Track [Page 28]

RFC 7950 YANG 1.1 August 2016

I f a nodul e augnents anot her nodul e, the XM. el enents that are added
to the encoding are in the nanespace of the augnenting nodule. For
exanple, if the above augnentation were in a nodule with prefix
"other", the XML would | ook |ike:

XM. Encodi ng Exanpl e:

<user >
<name>al i cew</ nane>
<full -name>Alice N. Wonder| and</ ful | - name>
<cl ass>dr op- out </ cl ass>
<ot her: ui d>1024</ ot her: ui d>

</ user >

The "augrment" statenent is covered in Section 7.17.
4.2.9. (Operation Definitions

YANG al | ows the definition of operations. The operations’ nanes,

i nput paraneters, and output paraneters are nodel ed usi ng YANG data
definition statements. Operations on the top level in a nodule are
defined with the "rpc" statenent. Operations can also be tied to a
container or list data node. Such operations are defined with the
"action" statenent.

YANG Exanpl e for an operation at the top |evel:

rpc activate-software-inmage {
i nput {
| eaf i mage-nane {
type string;
}

out put {
| eaf status {
type string;

Bj or kl und St andards Track [Page 29]

RFC 7950 YANG 1.1 August

NETCONF XM. Exanpl e:

<rpc message-i d="101"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0" >
<acti vat e-sof tware-i mage xm ns="http://exanpl e. conf systent >
<i mage- nane>exanpl e- f w 2. 3</i nage- nane>
</ activat e-software-i nage>
</rpc>

<rpc-reply nmessage-id="101"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0" >
<status xm ns="http://exanpl e. com systent >
The i mage exanple-fw 2.3 is being installed.
</status>
</rpc-reply>

YANG Exanpl e for an operation tied to a |ist data node:

list interface {
key "name";

| eaf name {
type string;

action ping {
i nput {
| eaf destination {
type inet:ip-address;

}
out put {
| eaf packet-1loss {
type uint8;
}

}
}
}

2016

Bj or kl und St andards Track [Page 30]

RFC 7950 YANG 1.1 August 2016

NETCONF XM. Exanpl e:

<rpc mnessage-i d="102"
xm ns="urn:ietf:parans: xm :ns: netconf: base: 1. 0" >
<action xm ns="urn:ietf:parans: xm:ns:yang:1">
<interface xm ns="http://exanpl e. com systeni >
<nane>et hl</ nanme>
<pi ng>
<destination>192. 0. 2. 1</ desti nati on>
</ pi ng>
</interface>
</ action>
</rpc>

<rpc-reply nmessage-id="102"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: sys="http://exanpl e. com syst eni >
<sys: packet - | 0ss>60</ sys: packet -1 oss>
</rpc-reply>

The "rpc" statement is covered in Section 7.14, and the "act
statement is covered in Section 7.15.

4.2.10. Notification Definitions

YANG al l ows the definition of notifications. YANG data defi

i on"

nition

statenents are used to npdel the content of the notification

YANG Exanpl e:

notification link-failure {

description

"Alink failure has been detected.";
| eaf if-nanme {

type leafref {

path "/interface/ name";

}

}

| eaf if-adm n-status {
type admi n- st at us;

| eaf if-oper-status {
type oper-status;

Bj or kl und St andards Track

[Page 31]

RFC 7950 YANG 1.1 August 2016

NETCONF XM. Exanpl e:

<notification
xm ns="urn:ietf:parans: netconf:capability:notification:1.0">
<event Ti me>2007- 09- 01T10: 00: 00Z</ event Ti me>
<link-failure xm ns="urn: exanpl e: systeni >
<i f-name>so-1/2/3.0</if-nanme>
<i f-adm n-status>up</if-adm n-status>
<i f-oper-status>down</if-oper-status>
</link-failure>
</notification>

The "notification" statenent is covered in Section 7.16.
5. Language Concepts
5.1. Mbdul es and Subnodul es

The nmodul e is the base unit of definition in YANG A nodul e defines
a single data nodel. A nodule can al so augnent an exi sting data
nmodel with additional nodes.

Subnodul es are partial nodules that contribute definitions to a
nodul e. A nodul e may include any nunber of subnopdul es, but each
subnodul e may bel ong to only one nodul e.

Devel opers of YANG nodul es and subnodul es are RECOMMENDED to choose
nanes for their nmodules that will have a | ow probability of colliding
with standard or other enterprise nodules, e.g., by using the
enterprise or organization nane as a prefix for the nodul e nane.
Wthin a server, all nodul e names MJST be uni que.

A nmodul e uses the "include" statenent to list all its subnodules. A
nodul e, or subnodul e bel onging to that nodule, can reference
definitions in the nodul e and all subnodul es included by the nodul e.

A nmodul e or subnodul e uses the "inport" statenent to reference
external nodules. Statements in the nodule or subnodul e can
reference definitions in the external nodul e using the prefix
specified in the "inport" statemnent.

For backward conpatibility with YANG version 1, a subnodul e MAY use
the "include" statenment to reference other subnodules within its
nodul e, but this is not necessary in YANG version 1.1. A subnodul e
can reference any definition in the nmodule it belongs to and in al
subnmodul es included by the nodule. A submpodul e MUST NOT i ncl ude

di fferent revisions of other subnodules than the revisions that its
modul e i ncl udes.

Bj or kl und St andards Track [Page 32]

RFC 7950 YANG 1.1 August 2016

A modul e or subnodul e MUST NOT incl ude submodul es from ot her nodul es,
and a subnodul e MJST NOT inport its own nodul e.

The "inport" and "include" statenents are used to nake definitions
avai |l abl e from ot her nodul es:

o For a nmodule or subnpdule to reference definitions in an externa
nodul e, the external mnodul e MUST be inported.

o A nodule MJST include all its subnpdul es.

o A nodul e, or subnodul e belonging to that nodule, MAY reference
definitions in the nodul e and all subnodul es included by the
nmodul e.

There MUST NOT be any circul ar chains of inmports. For exanple, if
nodul e "a" inmports nmodule "b", "b" cannot inport "

a .

When a definition in an external nodule is referenced, a locally
defined prefix MJST be used, followed by a colon (":") and then the
external identifier. References to definitions in the [ocal nodule
MAY use the prefix notation. Since built-in data types do not bel ong
to any nodul e and have no prefix, references to built-in data types
(e.g., int32) cannot use the prefix notation. The syntax for a
reference to a definition is formally defined by the rule
"identifier-ref" in Section 14.

5.1.1. Inport and Include by Revision

Publ i shed nodul es evol ve i ndependently over time. |In order to allow
for this evolution, nodules can be inmported using specific revisions.
Initially, a nodule inports the revisions of other nodules that are
current when the nodule is witten. As future revisions of the

i mported nodul es are published, the inporting nodule is unaffected
and its contents are unchanged. Wen the author of the nodule is
prepared to nmove to the nobst recently published revision of an

i mported nodul e, the nodule is republished with an updated "inmport"
statenment. By republishing with the new revision, the authors
explicitly indicate their acceptance of any changes in the inported
nodul e.

For subnodul es, the issue is related but sinmpler. A nodule or
subnodul e that includes subnodul es nay specify the revision of the

i ncl uded subnmodul es. |f a subnodul e changes, any nodul e or subnodul e
that includes it by revision needs to be updated to reference the new
revi sion.

Bj or kl und St andards Track [Page 33]

RFC 7950 YANG 1.1 August 2016

For exanple, nodule "b" inmports nodule "a".

nodul e a {
yang-version 1.1;
nanespace "urn: exanpl e:a";

prefix "a";
revision 2008-01-01 { ... }
groupi ng a {
leaf enh { }
}
}
nodul e b {

yang-version 1.1;
nanespace "urn: exanpl e: b";
prefix "b";

i mport a {

prefix "p";

revi si on-date 2008-01-01;
}

cont ai ner bee {
uses p:a;
}
}

VWhen the author of "a" publishes a new revision, the changes may not
be acceptable to the author of "b". |If the newrevisionis

acceptabl e, the author of "b" can republish with an updated revision
in the "inmport" statenent.

If a nodule is not inported with a specific revision, it is undefined
whi ch revision is used.

5.1.2. Mbdul e Hierarchies

YANG al | ows nodeling of data in nultiple hierarchies, where data my
have nore than one top-level node. Each top-level data node in a
nodul e defines a separate hierarchy. Mddels that have nultiple
top-1evel nodes are sonetines conveni ent and are supported by YANG

Bj or kl und St andards Track [Page 34]

RFC 7950 YANG 1.1 August 2016

5.1.2.1. NETCONF XM. Encodi ng

NETCONF i s capabl e of carrying any XM. content as the payload in the
<confi g> and <data> el enents. The top-level nodes of YANG nodul es
are encoded as child elenments, in any order, within these el enents.
Thi s encapsul ati on guarantees that the correspondi ng NETCONF nessages
are always wel |l -formed XML docunents.

For exanple, an instance of:

nodul e exanpl e-config {
yang-version 1.1;
nanespace "urn: exanpl e: config";
prefix "co";

contai ner system{ ... }
container routing { ... }

}

coul d be encoded in NETCONF as:

<rpc message-i d="101"
xm ns="urn:ietf:parans: xm : ns: net conf: base: 1. 0"
xm ns: nc="urn:ietf:parans: xm : ns: netconf: base: 1. 0" >
<edi t-config>
<t ar get >
<runni ng/ >
</target>
<confi g>
<system xm ns="ur n: exanpl e: confi g">
<l-- systemdata here -->
</ syst enp
<routing xm ns="urn: exanpl e: config">
<l-- routing data here -->
</routing>
</ config>
</edit-config>
</rpc>

Bj or kl und St andards Track [Page 35]

RFC 7950 YANG 1.1 August 2016

5.2. File Layout

YANG nodul es and subnmodul es are typically stored in files, one
"modul e" or "subnodul e" statement per file. The nane of the file
SHOULD be of the form

nodul e- or - subnodul e-nane [' @ revision-date] ('.yang [/ '.yin)

"nmodul e-or - subnodul e- nane" is the name of the nmodul e or subnodul e,
and the optional "revision-date" is the latest revision of the nodul e
or subnodul e, as defined by the "revision" statenment (Section 7.1.9).
The file extension ".yang" denotes that the contents of the file are
witten with YANG syntax (Section 6), and ".yin" denotes that the
contents of the file are witten with YIN syntax (Section 13).

YANG parsers can find inported nodul es and incl uded subnodul es vi a
t his conventi on.

5.3. XM Nanespaces

Al'l YANG definitions are specified within a nodule. Each nodule is
bound to a distinct XM. nanespace [XML.- NAMES], which is a globally
uni que URI [RFC3986]. A NETCONF client or server uses the nanespace
during XM. encodi ng of data.

XM. nanespaces for nodul es published in RFC streans [RFC4844] MJST be
assigned by | ANA; see Section 14 in [RFC6020].

XML nanespaces for private nodul es are assigned by the organi zation
owni ng the nodule without a central registry. Nanespace URIs MJST be
chosen so they cannot collide with standard or other enterprise
nanespaces -- for exanple, by using the enterprise or organization
nane in the namespace

The "namespace" statement is covered in Section 7.1.3.
5.3.1. YANG XM. Nanmespace
YANG defines an XM. nanespace for NETCONF <edit-config> operations,

<error-info> content, and the <action> elenent. The nane of this
nanespace is "urn:ietf:parans: xnl:ns:yang: 1".

Bj or kl und St andards Track [Page 36]

RFC 7950 YANG 1.1 August 2016

5.4. Resolving Grouping, Type, and ldentity Nanmes

Groupi ng, type, and identity nanes are resolved in the context in

whi ch they are defined, rather than the context in which they are
used. Users of groupings, typedefs, and identities are not required
to inport nmodul es or include subnobdules to satisfy all references
nmade by the original definition. This behaves |ike static scoping in
a conventional programmi ng | anguage.

For exanple, if a nodule defines a grouping in which a type is
ref erenced, when the grouping is used in a second nodule, the type is
resolved in the context of the original nodule, not the second
nodule. There is no anbiguity if both nodul es define the type.

5.5. Nested Typedefs and G oupi ngs

Typedefs and groupi ngs may appear nested under many YANG st at enments,
allowing these to be lexically scoped by the statenent hierarchy
under which they appear. This allows types and groupi ngs to be

defi ned near where they are used, rather than placing themat the
top level of the hierarchy. The close proximty increases
readability.

Scoping also allows types to be defined without concern for nam ng
conflicts between types in different subnodul es. Type nanmes can be
speci fied without adding | eading strings designed to prevent nane
collisions within | arge nodul es.

Finally, scoping allows the nodul e author to keep types and groupi ngs
private to their nmodul e or subnodul e, preventing their reuse. Since
only top-level types and groupings (i.e., those appearing as
substatenments to a "nodul e" or "subnobdul e" statenent) can be used

out side the nodul e or subnodul e, the devel oper has nore control over
what pieces of their nodule are presented to the outside world,
supporting the need to hide internal information and maintaining a
boundary between what is shared with the outside world and what is
kept private.

Scoped definitions MJUST NOT shadow definitions at a higher scope. A
type or grouping cannot be defined if a higher level in the statenent
hi erarchy has a definition with a matching identifier

A reference to an unprefixed type or grouping, or one that uses the
prefix of the current nodule, is resolved by |ocating the matching

"typedef" or "grouping" statement anong the i mediate substatenents
of each ancestor statenent.

Bj or kl und St andards Track [Page 37]

RFC 7950 YANG 1.1 August 2016

5.6. Conformnce

Conformance to a nodel is a neasure of how accurately a server
follows the nodel. Cenerally speaking, servers are responsible for

i mpl enenting the nodel faithfully, allow ng applications to treat
servers that inplenent the nodel identically. Deviations fromthe
nodel can reduce the utility of the nbodel and increase the fragility
of applications that use it.

YANG nodel ers have three nechani sns for conformance:
0o the basic behavior of the nodel
o optional features that are part of the node
o deviations fromthe node
We will consider each of these in sequence.
5.6.1. Basic Behavior

The nodel defines a contract between a YANG based client and server;
this contract allows both parties to have faith that the other knows
the syntax and semantics behind the nodel ed data. The strength of
YANG lies in the strength of this contract.

5.6.2. Optional Features

In many nodels, the nodeler will allow sections of the nodel to be
conditional. The server controls whether these conditional portions
of the nobdel are supported or valid for that particul ar server.

For exanple, a syslog data nodel may choose to include the ability to
save logs locally, but the nodeler will realize that this is only
possible if the server has local storage. |If there is no |oca
storage, an application should not tell the server to save | ogs.

YANG supports this conditional mechani smusing a construct called
"feature". Features give the nodel er a mechani smfor naking portions
of the nodule conditional in a manner that is controlled by the
server. The nodel can express constructs that are not universally
present in all servers. These features are included in the nodel
definition, allowing a consistent view and allow ng applications to

| earn which features are supported and tailor their behavior to the
server.

Bj or kl und St andards Track [Page 38]

RFC 7950 YANG 1.1 August 2016

A modul e may decl are any nunber of features, identified by sinple
strings, and may nake portions of the nodul e optional based on those
features. |If the server supports a feature, then the corresponding
portions of the module are valid for that server. |If the server
doesn’t support the feature, those parts of the nodule are not valid,
and applications shoul d behave accordingly.

Features are defined using the "feature" statenment. Definitions in
the nmodul e that are conditional to the feature are noted by the
"if-feature" statenent.

Further details are available in Section 7.20.1.
5.6.3. Deviations

In an ideal world, all servers would be required to inplenent the
nodel exactly as defined, and deviations fromthe nodel would not be
allowed. But in the real world, servers are often not able or
designed to inplenent the nodel as witten. For YANG based
automation to deal with these server deviations, a nechani sm nust
exi st for servers to informapplications of the specifics of such
devi ati ons.

For exanple, a BGP nodule nay all ow any nunber of BGP peers, but a
particul ar server nay only support 16 BGP peers. Any application
configuring the 17th peer will receive an error. Wile an error may
suffice to let the application know it cannot add another peer, it
woul d be far better if the application had prior know edge of this
[imtation and could prevent the user fromstarting down the path
that coul d not succeed.

Server deviations are declared using the "deviation" statenment, which
takes as its argument a string that identifies a node in the schena
tree. The contents of the statenent detail the manner in which the
server inplenmentation deviates fromthe contract as defined in the
nmodul e.

Further details are available in Section 7.20.3.

Bj or kl und St andards Track [Page 39]

RFC 7950 YANG 1.1 August 2016

5.6.4. Announci ng Confornmance Information in NETCONF

Thi s docunent defines the follow ng nmechani sm for announci ng
conformance informati on. O her mechani snms nay be defined by future
speci fications.

A NETCONF server MJST announce the nodules it inplenments (see
Section 5.6.5) by inmplenenting the YANG nodul e "ietf-yang-1library"
defined in [RFC7895] and listing all inplenented nodules in the

"/ modul es- st at e/ nodul e" 1ist.

The server al so MJST advertise the follow ng capability in the
<hel | o> nessage (line breaks and whitespaces are used for formatting
reasons only):

urn:ietf:parans: netconf:capability:yang-library:1.07?
revi si on=<dat e>&nodul e- set -i d=<i d>

The paraneter "revision" has the sane value as the revision date of
the "ietf-yang-library" nodule inplenmented by the server. This
par amet er MUST be present.

The paraneter "npodul e-set-id" has the sane val ue as the | eaf
"/ nodul es-state/ nodul e-set-id" from"ietf-yang-library". This
par amet er MUST be present.

Wth this mechanism a client can cache the supported nodules for a
server and only update the cache if the "nmpdul e-set-id" value in the
<hel | 0> message changes.

5.6.5. Inplenmenting a Mdul e

A server inmplements a nmodule if it inplenents the nodule’s data
nodes, RPCs, actions, notifications, and devi ations.

A server MJST NOT inplenment nore than one revision of a nodule.

If a server inplenents a nodule A that inports a nodule B, and A uses
any node fromB in an "augnent" or "path" statenent that the server
supports, then the server MJST inplement a revision of nmodul e B that
has these nodes defined. This is regardless of whether nodule B is

i nported by revision or not.

Bj or kl und St andards Track [Page 40]

RFC 7950 YANG 1.1 August 2016

If a server inplenments a nodule A that inports a nodule C without
specifying the revision date of nodule C and the server does not
implenent C (e.g., if Conly defines sone typedefs), the server MJST
list nodule Cin the "/nodul es-state/nmodule" list from
"ietf-yang-library" [RFC7/895], and it MJST set the |eaf
"confornance-type" to "inmport" for this nodule.

If a server lists a mbdule Cin the "/nodul es-state/nodule" |ist from
"ietf-yang-library" and there are other nodules Ms listed that inport
C without specifying the revision date of nodule C, the server MJST
use the definitions fromthe nbpst recent revision of Clisted for
nmodul es Ms.

The reason for these rules is that clients need to be able to know
the specific data nodel structure and types of all |eafs and
leaf-lists inplemented in a server.

For exanple, with these nodul es:

nodul e a {
yang-version 1.1;
nanespace "urn: exanpl e:a";
prefix "

a,

i mport b {
revi sion-date 2015-01-01;

}
i mport c;

revision 2015-01-01;
feature foo;

augrment "/ b:x" {
if-feature foo;

leaf y {
type b: myenum
}
}

container a {
| eaf x {
type c: bar;

Bj or kl und St andards Track [Page 41]

RFC 7950 YANG 1.1

nodul e b {

yang-version 1.1;
nanespace "urn: exanpl e: b";
prefix "b";

revision 2015-01-01;

typedef nyenum {
type enuneration {

enum zer o;
}
}
contai ner x {
}
}
nodule b {
yang-version 1.1;
nanespace "urn: exanpl e: b";
prefix "b";
revi sion 2015-04- 04;
revi sion 2015-01-01;
typedef nyenum {
type enuneration {
enum zero; // added in 2015-01-01
enum one; // added in 2015-04-04
}
}
container x { // added in 2015-01-01
container y; // added in 2015-04-04
}
}
nodul e ¢ {
yang-version 1.1;
nanespace "urn: exanpl e:c";
prefix "c";
revi si on 2015-02-02;
typedef bar {
}
}
Bj or kl und St andards Track

August 2016

[Page 42]

RFC 7950 YANG 1.1 August 2016

nodul e ¢ {
yang-version 1.1;
nanespace "urn:exanple:c";

prefix "c";

revision 2015-03-03;
revisi on 2015-02-02;

typedef bar {

}
}

A server that inplenments revision "2015-01-01" of nodule "a" and
supports feature "foo" can inplenent revision "2015-01-01" or
"2015-04- 04" of nodule "b". Since "b" was inported by revision, the
type of leaf "/b:x/a:y" is the same, regardl ess of which revision of
"b" the server inplenents.

A server that inplenents nodule "a" but does not support feature
"foo" does not have to inplenent nodule "b".

A server that inplenents revision "2015-01-01" of nodule "a
pi cks any revision of nmodule "c" and lists it in the

"/ nmodul es-state/ nodul e" list from"ietf-yang-library".

The foll owi ng XM. encodi ng exanpl e shows valid data for the
"/ modul es-state/ nodul e” list for a server that inplenments nodul e

a

<nodul es-state

xm ns="urn:ietf:parans: xm:ns:yang:ietf-yang-library">
<modul e-set -i d>eelecb017370caf d</ nodul e-set -i d>
<modul e>

<nane>a</ nane>

<revi si on>2015- 01- 01</ r evi si on>

<nanespace>ur n: exanpl e: a</ nanespace>

<f eat ur e>f oo</ f eat ur e>

<conf or mance-t ype>i npl enent </ conf or mance-t ype>
</ modul e>
<nodul e>

<name>b</ name>

<revi si on>2015- 04- 04</ r evi si on>

<nanespace>ur n: exanpl e: b</ nanespace>

<conf or mance-t ype>i npl enent </ conf or mance-t ype>
</ modul e>

Bj or kl und St andards Track [Page 43]

RFC 7950 YANG 1.1 August 2016

<nmodul e>
<name>c</ nane>
<revi si on>2015- 02- 02</ r evi si on>
<nanmespace>ur n: exanpl e: c</ nanespace>
<conf or mance-t ype>i nport </ conf or mance-t ype>
</ nodul e>
</ nodul es- st at e>

5.7. Datastore Mdification

Data nodels may allow the server to alter the configuration datastore
in ways not explicitly directed via network nmanagenment protoco
nessages. For exanple, a data nodel may define leafs that are

assi gned system generated val ues when the client does not provide
one. A formal nechani smfor specifying the circunstances where these
changes are allowed is out of scope for this specification.

6. YANG Synt ax

The YANG syntax is simlar to that of SMng [RFC3780] and progranm ng
| anguages like C and C++. This Clike syntax was chosen specifically
for its readability, since YANG values the tine and effort of the
readers of nodel s above those of nmodules witers and YANG t ool -chain
devel opers. This section introduces the YANG synt ax.

Legal characters in YANG nodul es are the Unicode and |1 SO | EC 10646
[1SO 10646] characters, including tab, carriage return, and line feed
but excluding the other CO control characters, the surrogate bl ocks,
and the noncharacters. The character syntax is formally defined by
the rule "yang-char" in Section 14.

YANG nodul es and subnodul es are stored in files using the UTF-8
[RFC3629] character encodi ng.

Lines in a YANG nodule end with a carriage return-line feed
conbination or with a line feed alone. A carriage return that is not
followed by a line feed nay only appear inside a quoted string
(Section 6.1.3). Note that carriage returns and |ine feeds that
appear inside quoted strings becone part of the value of the string

wi t hout nodification; the value of a nulti-line quoted string
contains the sane formof |line ends as those |ines of the YANG
nodul e.

Bj or kl und St andards Track [Page 44]

RFC 7950 YANG 1.1 August 2016

6.1. Lexical Tokenization

YANG nodul es are parsed as a series of tokens. This section details
the rules for recognizing tokens froman input stream YANG

tokeni zation rules are both sinple and powerful. The sinplicity is
driven by a need to keep the parsers easy to inplenent, while the
power is driven by the fact that nodel ers need to express their
nodel s in readable formats.

6.1.1. Comrent s

Comments are C++ style. A single line comment starts with "//" and
ends at the end of the line. A block comment starts with "/*" and
ends with the nearest following "*/".

Note that inside a quoted string (Section 6.1.3), these character
pairs are never interpreted as the start or end of a comment.

6.1.2. Tokens

A token in YANG is either a keyword, a string, a semicolon (";"), or
braces ("{" or "}"). A string can be quoted or unquoted. A keyword
is either one of the YANG keywords defined in this docunent, or a
prefix identifier, followed by a colon (":"), followed by a | anguage
ext ensi on keyword. Keywords are case sensitive. See Section 6.2 for
a formal definition of identifiers.

6.1.3. Quoting

An unquoted string is any sequence of characters that does not
contain any space, tab, carriage return, or line feed characters, a
singl e or double quote character, a senmicolon (";"), braces ("{" or
“}"), or comment sequences ("//", "/[*", or "*/").

Note that any keyword can |egally appear as an unquoted string.

Wthin an unquoted string, every character is preserved. Note that
this neans that the backslash character does not have any specia
meani ng in an unquoted string.

If a doubl e-quoted string contains a |ine break foll owed by space or
tab characters that are used to indent the text according to the
layout in the YANG file, this |eading whitespace is stripped fromthe
string, up to and including the colum of the starting double quote
character, or to the first non-whitespace character, whichever occurs
first. Any tab character in a succeeding |line that rmust be exam ned
for stripping is first converted into 8 space characters.

Bj or kl und St andards Track [Page 45]

RFC 7950 YANG 1.1 August 2016

I f a doubl e-quoted string contains space or tab characters before a
line break, this trailing whitespace is stripped fromthe string.

A single-quoted string (enclosed within ' ') preserves each character
within the quotes. A single quote character cannot occur in a
singl e-quoted string, even when preceded by a backsl ash.

Wthin a double-quoted string (enclosed within " "), a backsl ash
character introduces a representation of a special character, which
depends on the character that imrediately follows the backsl ash:

\n new i ne

\ 't a tab character

\ " a doubl e quote

\\ a single backsl ash

The backsl ash MJUST NOT be foll owed by any other character.

If a quoted string is followed by a plus character ("+"), followed by
anot her quoted string, the two strings are concatenated into one
string, allowing nultiple concatenations to build one string.

VWi t espace, |ine breaks, and comments are all owed between the quoted
strings and the plus character.

I n doubl e-quoted strings, whitespace trinmring is done before
substitution of backsl ash-escaped characters. Concatenation is
performed as the |ast step.

6.1.3.1. Quoting Exanpl es

The following strings are equival ent:

hel |l o
"hel | 0"
"hel | o’

uhel "4 ||| Ou
1 hel 1 + ||| Ou

The foll owi ng exanpl es show sone special strings:

"\"" - string containing a double quote

T - string containing a double quote

"\n" - string containing a newine character
"\n” - string containing a backslash foll owed

by the character n

Bj or kl und St andards Track [Page 46]

RFC 7950 YANG 1.1 August 2016

The foll owi ng exanpl es show sone illegal strings:
"’’’ - a single-quoted string cannot contain single quotes
- a doubl e quote nust be escaped in a doubl e-quoted string

The followi ng strings are equival ent:

"first line
second | i ne"

"first line\n" + second |ine"

6.2. ldentifiers

Identifiers are used to identify different kinds of YANG itens by
nane. Each identifier starts with an uppercase or |owercase ASCl
letter or an underscore character, followed by zero or nore ASCI
letters, digits, underscore characters, hyphens, and dots.

| mpl enent ati ons MUST support identifiers up to 64 characters in

l ength and MAY support longer identifiers. Identifiers are case
sensitive. The identifier syntax is fornmally defined by the rule
"identifier" in Section 14. ldentifiers can be specified as quoted

or unquoted strings.
6.2.1. ldentifiers and Their Namespaces

Each identifier is valid in a namespace that depends on the type of
the YANG item being defined. All identifiers defined in a nanespace
MJST be uni que.

o Al nodule and subnodul e nanes share the sane gl obal nodul e
i dentifier nanespace.

o Al extension nanes defined in a nbdule and its subnodul es share
the sanme extension identifier nanespace.

o All feature nanmes defined in a nodule and its subnodul es share the
sane feature identifier nanespace

o Al identity names defined in a nmodule and its subnodul es share
the sane identity identifier nanmespace.

o Al derived type nanes defined within a parent node or at the top
| evel of the nobdule or its subnodul es share the sane type
identifier nanespace. This namespace is scoped to all descendant
nodes of the parent node or nodule. This neans that any
descendant node may use that typedef, and it MJST NOT define a
typedef with the sane nane.

Bj or kl und St andards Track [Page 47]

RFC 7950 YANG 1.1 August 2016

o Al grouping names defined within a parent node or at the top
| evel of the module or its subnodul es share the same groupi ng
identifier nanespace. This namespace is scoped to all descendant
nodes of the parent node or nodule. This neans that any
descendant node may use that grouping, and it MJST NOT define a
groupi ng with the sane nane.

o Al leafs, leaf-lists, lists, containers, choices, rpcs, actions,
notifications, anydatas, and anyxm s defined (directly or through
a "uses" statenment) within a parent node or at the top |evel of
the nmodul e or its subnodul es share the sanme identifier nanespace
Thi s namespace is scoped to the parent node or nodul e, unless the
parent node is a case node. In that case, the nanespace is scoped
to the closest ancestor node that is not a case or choice node.

0o Al cases within a choice share the sane case identifier
nanespace. This namespace is scoped to the parent choi ce node.

Forward references are allowed i n YANG

6.3. Statements

A YANG nodul e contains a sequence of statenents. Each statenent
starts with a keyword, followed by zero or one argunment, followed by
either a semcolon (";") or a block of substatenents enclosed within
braces ("{ }"):

statement = keyword [argunent] (";" / "{" *statenent "}")
The argunment is a string, as defined in Section 6.1.2.
6.3.1. Language Extensions

A nmodul e can introduce YANG extensions by using the "extension"
keyword (see Section 7.19). The extensions can be inported by ot her
nodul es with the "inport" statenent (see Section 7.1.5). Wen an

i nported extension is used, the extension’s keyword MUST be qualified
using the prefix with which the extension’s nodule was inported. |If
an extension is used in the nodul e where it is defined, the
extension’s keyword MJUST be qualified with the prefix of this nodule.

The processing of extensions depends on whet her support for those
extensions is claimed for a given YANG parser or the tool set in
which it is enbedded. An unsupported extension appearing in a YANG
nodul e as an unknown- st atenent (see Section 14) MAY be ignored in its
entirety. Any supported extension MJST be processed in accordance
with the specification governing that extension.

Bj or kl und St andards Track [Page 48]

RFC 7950 YANG 1.1 August 2016

Care must be taken when defining extensions so that nodul es that use
the extensions are neani ngful also for applications that do not
support the extensions.

6.4. XPath Eval uati ons

YANG relies on XM. Path Language (XPath) 1.0 [XPATH] as a notation
for specifying many inter-node references and dependencies. An

i mpl enentation is not required to inplenent an XPath interpreter but
MJST ensure that the requirenents encoded in the data nodel are
enforced. The manner of enforcement is an inplenentation decision
The XPath expressions MJUST be syntactically correct, and all prefixes
used MUST be present in the XPath context (see Section 6.4.1). An

i mpl enentati on nay choose to inplenent them by hand, rather than
using the XPat h expression directly.

The data nopdel used in the XPath expressions is the same as that used
in XPath 1.0 [XPATH], with the sanme extension for root node children
as used by XSLT 1.0 (see Section 3.1 in [XSLT]). Specifically, it
neans that the root node may have any nunber of elenment nodes as its
chi l dren.

The data tree has no concept of document order. An inplenmentation
needs to choose sone document order, but how it is done is an

i npl enentati on decision. This neans that XPath expressions in YANG
nodul es SHOULD NOT rely on any specific docunent order

Nunbers in XPath 1.0 are | EEE 754 [| EEE754-2008] doubl e-preci sion

fl oati ng-poi nt val ues; see Section 3.5 in [XPATH . This nmeans that
sone val ues of int64, uint64, and deci nal 64 types (see Sections 9.2
and 9.3) cannot be exactly represented in XPath expressions.

Theref ore, due caution shoul d be exercised when using nodes with
64-bit nuneric values in XPath expressions. |In particular, nunerica
conparisons involving equality may yield unexpected results.

For exanple, consider the follow ng definition

leaf |xiv {
type deci mal 64 {
fraction-digits 18;
}
nust . <= 10";

}

An instance of the "Ixiv" |eaf having the val ue of
10. 0000000000000001 wi Il then successfully pass validation

Bj or kl und St andards Track [Page 49]

RFC 7950 YANG 1.1 August 2016

6.4.1. XPath Context

Al'l YANG XPat h expressi ons share the foll ow ng XPath cont ext
definition:

o The set of nanespace declarations is the set of all "inport"
statenments’ prefix and namespace pairs in the nodul e where the
XPat h expression is specified, and the "prefix" statenent’s prefix
for the "nanespace" statement’s URI

o Names without a namespace prefix belong to the same nanmespace as
the identifier of the current node. |Inside a grouping, that
nanespace is affected by where the grouping is used (see
Section 7.13). Inside a typedef, that nanespace is affected by
where the typedef is referenced. |If a typedef is defined and
referenced within a grouping, the nanespace is affected by where
the grouping is used (see Section 7.13).

o The function library is the core function library defined in
[XPATH and the functions defined in Section 10.

o The set of variable bindings is enpty.

The mechani sm for handling unprefixed nanes is adopted from XPath 2.0
[XPATH2. 0] and hel ps sinplify XPath expressions in YANG No
anbiguity may ever arise, because YANG node identifiers are always
qualified names with a non-null namespace URI.

The accessible tree depends on where the statement with the XPath
expression is defined:

o If the XPath expression is defined in a substatenent to a data
node that represents configuration, the accessible tree is the
data in the datastore where the context node exists. The root
node has all top-level configuration data nodes in all npdul es as
chil dren.

o If the XPath expression is defined in a substatenent to a data
node that represents state data, the accessible tree is all state
data in the server, and the running configuration datastore. The
root node has all top-level data nodes in all nodules as children

o If the XPath expression is defined in a substatenent to a
"notification" statement, the accessible tree is the notification
instance, all state data in the server, and the running
configuration datastore. |If the notification is defined on the
top level in a nodule, then the root node has the node

Bj or kl und St andards Track [Page 50]

RFC 7950 YANG 1.1 August 2016

representing the notification being defined and all top-level data
nodes in all nodules as children. Oherw se, the root node has
all top-level data nodes in all nodules as children

o If the XPath expression is defined in a substatenent to an "input"”
statenment in an "rpc" or "action" statement, the accessible tree
is the RPC or action operation instance, all state data in the
server, and the running configuration datastore. The root node
has top-level data nodes in all nodules as children
Additionally, for an RPC, the root node al so has the node
representing the RPC operation being defined as a child. The node
representing the operation being defined has the operation’ s input
paraneters as children

o If the XPath expression is defined in a substatenent to an
"output" statement in an "rpc" or "action" statenment, the
accessible tree is the RPC or action operation instance, all state
data in the server, and the running configuration datastore. The
root node has top-level data nodes in all nodules as children
Additionally, for an RPC, the root node al so has the node
representing the RPC operation being defined as a child. The node
representing the operation being defined has the operation’s
out put paraneters as children

In the accessible tree, all leafs and leaf-lists with default val ues
in use exist (see Sections 7.6.1 and 7.7.2).

If a node that exists in the accessible tree has a non-presence
container as a child, then the non-presence container also exists in
the accessible tree.

The context node varies with the YANG XPat h expression and is

specified where the YANG statenent with the XPath expression is
def i ned.

Bj or kl und St andards Track [Page 51]

RFC 7950 YANG 1.1 August 2016

6.4.1.1. Exanples
G ven the foll owi ng nodul e:
nodul e exanpl e-a {
yang-version 1.1;
namespace urn: exanpl e: a;

prefix a;

container a {

list b {
key id;
leaf id {
type string;

notification down {
| eaf reason {
type string;

}
action reset {
i nput {
| eaf del ay {
type uint 32;
}

out put {
| eaf result {
type string;

}
}
}
}
notification failure {
| eaf b-ref {
type leafref {
path "/a/b/id";
}
}
}
}

Bj or kl und St andards Track [Page 52]

RFC 7950 YANG 1.1 August 2016

and given the following data tree, specified in XM.:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
</ b>

<i d>2</id>
</ b>
</ a>

The accessible tree for a notification "down" on /a/b[id="2"] is:

<a xm ns="urn: exanpl e: a">

<i d>1</id>
</ b>

<i d>2</id>
<down>
<r eason>error</reason>
</ down>
</ b>
</ a>
/1 possibly other top-Ievel nodes here

The accessible tree for an action invocation of "reset" on
[alb[id="1"] with the "when" paraneter set to "10" woul d be:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
<reset >
<del ay>10</ del ay>
</reset>
</ b>

<i d>2</id>
</ b>
</ a>
/1 possibly other top-Ievel nodes here

Bj or kl und St andards Track [Page 53]

RFC 7950 YANG 1.1 August 2016

The accessible tree for the action output of this action is:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
<reset >
<resul t >ok</resul t>
</reset>
</ b>

<i d>2</id>
</ b>
</ a>
/1 possibly other top-Ievel nodes here

The accessible tree for a notification "failure" could be:

<a xm ns="urn: exanpl e: a" >

<id>1</id>
</ b>

<i d>2</id>
</ b>
</ a>
<failure>
<b-ref>2</b-ref>
</failure>
/1 possibly other top-level nodes here

6.5. Schenmn Node ldentifier

A schema node identifier is a string that identifies a node in the
schema tree. It has two forms, "absolute" and "descendant", defined
by the rul es "absol ut e-schema- nodei d* and "descendant - schema- nodei d"
in Section 14, respectively. A schema node identifier consists of a
path of identifiers, separated by slashes ("/"). 1In an absolute
scherma node identifier, the first identifier after the |eading slash
is any top-level schema node in the local nodule or in an inported
nodul e.

References to identifiers defined in external nodul es MUST be
qualified with appropriate prefixes, and references to identifiers
defined in the current nodule and its subnodul es MAY use a prefix.

For exanple, to identify the child node "b" of top-level node "a"
the string "/a/b" can be used.

Bj or kl und St andards Track [Page 54]

RFC 7950 YANG 1.1 August 2016

7. YANG Statenents
The foll owi ng sections describe all of the YANG statenents.

Note that even a statenent that does not have any substatements
defined in YANG can have vendor-specific extensi ons as substatenents.
For exanple, the "description" statenent does not have any
substatenments defined in YANG but the following is |egal

description "Sone text." {
ex: docunentation-flag 5;

}

7.1. The "nodul e" Statenent

The "nodul e" statenment defines the nodul e’ s nanme and groups al
statenments that belong to the nodul e together. The "nodul e"
statenment’s argunent is the name of the nodule, followed by a bl ock
of substatenents that hol ds detailed nodule information. The nodul e
name is an identifier (see Section 6.2).

Nanmes of nodul es published in RFC streans [RFC4844] MUST be assi gnhed
by 1 ANA; see Section 14 in [RFC6020].

Private nodul e names are assigned by the organi zati on owning the
nodul e without a central registry. See Section 5.1 for
recomendati ons on how to nane nodul es.

A nmodul e typically has the follow ng | ayout:
nodul e <nodul e- name> {

/1 header information
<yang- versi on st atenent >
<nanespace st at enent >
<prefix statenent>

/1 linkage statenents
<i nport statenents>
<i ncl ude st at enent s>

/1 meta-information
<organi zati on statenent>
<cont act statenent>
<descri ption statenment>
<ref erence statenent >

Bj or kl und St andards Track [Page 55]

RFC 7950 YANG 1.1
/1 revision history
<revi sion statenents>

/1 modul e definitions
<ot her st atements>

}
7.1.1. The nodul e’ s Substatenents

Fomm oo o - S Fom e e e e oo -
| substatenment | section | cardinality
R R S
| anydata | 7.10 | 0..n

| anyxm | 7.11 | 0..n

| augnent | 7.17 | 0..n

| choice | 7.9 | 0..n

| contact | 7.1.8 | 0..1

| container | 7.5 | 0..n

| description | 7.21.3 | 0..1

| deviation | 7.20.3 | O0..n

| extension | 7.19 | 0..n

| feature | 7.20.1 | O..n

| grouping | 7.12 | 0..n

| identity | 7.18 | 0..n

| inport | 7.1.5 | 0..n

| include | 7.1.6 | 0..n

| |eaf | 7.6 | 0..n

| leaf-1list | 7.7 | 0..n

| list | 7.8 | 0..n

| namespace | 7.1.3 | 1

| notification | 7.16 | 0..n

| organization | 7.1.7 | 0..1

| prefix | 7.1.4 | 1

| reference | 7.21.4 | 0..1

| revision | 7.1.9 | 0..n

| rpc | 7.14 | 0..n

| typedef | 7.3 | 0..n

| uses | 7.13 | 0..n

| yang-version | 7.1.2 | 1

Fomm oo o - S Fom e e e e oo -

Bj or kl und St andards Track

August 2016

[Page 56]

RFC 7950 YANG 1.1 August 2016

7.1.2. The "yang-version" Statenent

The "yang-version" statenent specifies which version of the YANG

| anguage was used in devel opi ng the nodul e. The statement’s argunent
is astring. It MJST contain the value "1.1" for YANG nodul es
defined based on this specification

A modul e or subnodul e that doesn’t contain the "yang-version"
statenment, or one that contains the value "1", is devel oped for YANG
version 1, defined in [RFC6020].

Handl i ng of the "yang-version" statenent for versions other than
"1.1" (the version defined here) is out of scope for this
specification. Any docunent that defines a higher version will need
to define the backward conpatibility of such a higher version

For compatibility between YANG versions 1 and 1.1, see Section 12.
7.1.3. The "nanespace" Statenent

The "namespace" statenment defines the XML nanmespace that al
identifiers defined by the nodule are qualified by in the XM
encoding, with the exception of identifiers for data nodes, action
nodes, and notification nodes defined inside a grouping (see

Section 7.13 for details). The argunent to the "nanespace" statenent
is the URI of the nanespace.

See al so Section 5. 3.
7.1.4. The "prefix" Statenment

The "prefix" statenent is used to define the prefix associated with
the nodul e and its nanespace. The "prefix" statenment’s argunent is
the prefix string that is used as a prefix to access a nodule. The
prefix string MAY be used with the nodule to refer to definitions
contained in the nodule, e.g., "if:ifNanme". A prefix is an
identifier (see Section 6.2).

When used inside the "nmodul e" statement, the "prefix" statenent
defines the prefix suggested to be used when this nodule is inported.

To inprove readability of the NETCONF XM., a NETCONF client or server
that generates XM. or XPath that uses prefixes SHOULD use the prefix
defined by the nodule as the XM. nanespace prefix, unless there is a
conflict.

Bj or kl und St andards Track [Page 57]

RFC 7950 YANG 1.1 August 2016

When used inside the "inport" statement, the "prefix" statenent
defines the prefix to be used when accessing definitions inside the

i mported nmodul e. Wien a reference to an identifier fromthe inported
nmodul e is used, the prefix string for the inported nodul e foll owed by
acolon (":") and the identifier is used, e.g., "if:iflndex". To

i nprove readability of YANG nodul es, the prefix defined by a nodul e
SHOULD be used when the nodule is inported, unless there is a
conflict. If there is a conflict, i.e., two different nodul es that
bot h have defined the same prefix are inported, at |east one of them
MJST be inported with a different prefix.

Al prefixes, including the prefix for the nodule itself, MJST be
uni que within the nodul e or subnodul e.

7.1.5. The "inmport" Statenent

The "inport" statenment makes definitions fromone nodul e avail abl e

i nsi de anot her nodul e or subnodule. The argunent is the nane of the
nodul e to inport, and the statenent is followed by a bl ock of
substatenments that holds detailed inport information. Wen a nodul e
is inmported, the inporting nodul e nay:

0 use any grouping and typedef defined at the top level in the
i nported nodul e or its subnodul es.

0 use any extension, feature, and identity defined in the inported
nodul e or its subnodul es.

o use any node in the inported nodule’s schema tree in "nust",
"path", and "when" statenents, or as the target node in "augnment"
and "devi ation" statenents.

The mandatory "prefix" substatenent assigns a prefix for the inported
nmodul e that is scoped to the inmporting nodule or subnodule. Miltiple
"inport" statements may be specified to inport fromdifferent

nodul es.

When the optional "revision-date" substatement is present, any
typedef, grouping, extension, feature, and identity referenced by
definitions in the local nodule are taken fromthe specified revision
of the inmported nodule. It is an error if the specified revision of
the inported nodul e does not exist. |If no "revision-date"
substatenment is present, it is undefined fromwhich revision of the
nodul e they are taken.

Multiple revisions of the sane nodul e can be inmported, provided that
di fferent prefixes are used.

Bj or kl und St andards Track [Page 58]

RFC 7950 YANG 1.1 August 2016

o . U +
| substatement | section | cardinality |
oo R R +
description	7.212.3	0..1
prefix	7.1.4	1
reference	7.21.4	0..1
revision-date	7.1.5.1	0..1
oo Fomm e Fom e +

The inmport’s Substatenents
7.1.5.1. The inport’s "revision-date" Statenent

The inmport’s "revision-date" statement is used to specify the version
of the nodule to inport.

7.1.6. The "include" Statenent

The "include" statement is used to make content from a subnodul e
avail able to that subnodul e’s parent nodule. The argunent is an
identifier that is the name of the subnodule to include. Modules are
only allowed to include subnmodul es that belong to that nodul e, as
defined by the "bel ongs-to" statenent (see Section 7.2.2).

When a nodul e includes a subnodule, it incorporates the contents of
the subnodul e into the node hierarchy of the nodul e.

For backward conpatibility with YANG version 1, a submodule is
all owed to include another subnodul e bel onging to the same nodul e,
but this is not necessary in YANG version 1.1 (see Section 5.1).

When the optional "revision-date" substatenent is present, the
specified revision of the submobdule is included in the nodule. It is
an error if the specified revision of the subnmodul e does not exist.

If no "revision-date" substatement is present, it is undefined which
revision of the subnodule is included.

Mul tiple revisions of the sane subnodul e MUST NOT be incl uded.

S B R S +
| substatement | section | cardinality |
R S T +
description	7.21.3	0..1
reference	7.21.4	0..1
revision-date	7.1.5.1] 0..1	
S B R S +

The includes’s Substatenents

Bj or kl und St andards Track [Page 59]

RFC 7950 YANG 1.1 August 2016

7.1.7. The "organi zati on" Statenent

The "organi zation" statenent defines the party responsible for this
nmodul e. The argument is a string that is used to specify a textua

description of the organization(s) under whose auspices this nodule
was devel oped.

7.1.8. The "contact" Statenent

The "contact" statenent provides contact information for the nodul e.
The argument is a string that is used to specify contact information
for the person or persons to whomtechnical queries concerning this

nodul e shoul d be sent, such as their nane, postal address, telephone
nunber, and el ectronic mail address.

7.1.9. The "revision" Statement

The "revision" statenment specifies the editorial revision history of
the nodule, including the initial revision. A series of "revision"
statenments detail the changes in the nodule's definition. The
argunent is a date string in the format "YYYY-MMDD', followed by a
bl ock of substatenents that holds detailed revision information. A
nodul e SHOULD have at | east one "revision" statement. For every
publ i shed editorial change, a new one SHOULD be added in front of the

revi sions sequence so that all revisions are in reverse chronol ogi ca
order.

7.1.9.1. The revision s Substatements

R R S +
| substatement | section | cardinality |
oo S oo oo +
| description | 7.21.3 | 0..1 |
| reference | 7.21.4 | 0..1 |
oo SR S +

Bj or kl und St andards Track [Page 60]

RFC 7950 YANG 1.1 August 2016

7.1.10. Usage Exanmpl e
The foll owi ng exanple relies on [RFC6991].

nodul e exanpl e- system {
yang-version 1.1;
nanespace "urn: exanpl e: syst ent
prefix "sys";

i mport ietf-yang-types {

prefix "yang";

reference "RFC 6991: Conmon YANG Data Types";
}

i ncl ude exanpl e-types;

organi zati on "Exanple Inc.";

cont act
"Joe L. User
Exampl e I nc.

42 Anywhere Drive
Nowhere, CA 95134
USA

Phone: +1 800 555 0100
Emai | : j oe@xanpl e. coni';

description
"The nmodule for entities inplenenting the Exanple system™";

revi si on 2007-06-09 {
description "lnitial revision.";

}

/!l definitions follow..

Bj or kl und St andards Track [Page 61]

RFC 7950 YANG 1.1 August 2016

7.2. The "subnodul e" Statenment

VWhile the primary unit in YANGis a nodule, a YANG nodul e can itself
be constructed out of several subnodul es. Subnodul es allow a nodul e
designer to split a conplex nodel into several pieces where all the
subnodul es contribute to a single nanmespace, which is defined by the
nodul e that includes the subnodul es.

The "subnodul e" staterment defines the subnmodul e’s nanme, and it groups
all statenents that belong to the subnodul e together. The
"subnodul e" statenent’s argunent is the name of the subnodul e,

foll owed by a bl ock of substatenents that hol ds detail ed subnodul e

i nformati on. The subnodule nanme is an identifier (see Section 6.2).

Nanes of subrodul es published in RFC streans [RFC4844] MUST be
assigned by | ANA;, see Section 14 in [RFC6020].

Private subnodul e nanes are assigned by the organi zati on owning the
subnmodul e without a central registry. See Section 5.1 for
reconmendati ons on how to nanme subnodul es.
A subnodul e typically has the follow ng | ayout:

subnodul e <nodul e- name> {

<yang-versi on statenent>

/1 nodule identification
<bel ongs-to st at enent >

/1 linkage statenents
<i nport statenents>

/1 meta-informtion
<organi zati on statenent>
<cont act statenent>
<descri ption statenent>
<reference statenent>

/1 revision history
<revi sion statenents>

/! nodul e definitions
<ot her statenents>

Bj or kl und St andards Track [Page 62]

RFC 7950 YANG 1.1 August 2016

7.2.1. The subnodul e’ s Subst atenents

. S . +
| substatement | section | cardinality |
oo SR S +
anydata	7.10	0..n
anyxm	7.11	0..n
augnent	7.17	0..n
belongs-to	7.2.2	1
choice	7.9	0..n
contact	7.1.8	0..1

container	7.5	0..n	
description	7.21.3	0..1	
deviation	7.20.3	0..n	
extension	7.19	0..n	
feature	7.20.1	O..n	
grouping	7.12	0..n	
identity	7.18	0..n	
inport	7.1.5	0..n	
include	7.1.6	0..n	
	eaf	7.6	0..n
leaf-1list	7.7	0..n	
list	7.8	0..n	
notification	7.16	0..n	
organization	7.1.7	0..1	
reference	7.21.4	0..1	
revision	7.1.9	0..n	
rpc	7.1		