I nternet Engi neering Task Force (I ETF) M Bj orkl und
Request for Comments: 8342 Tail -f Systens
Updat es: 7950 J. Schoenwael der
Cat egory: Standards Track Jacobs University
| SSN: 2070-1721 P. Shafer
K. Wat sen

Juni per Networ ks

R Wlton

Ci sco Systens

March 2018

Net wor k Managenent Datastore Architecture (NVDA)
Abst r act

Dat astores are a fundanental concept binding the data nodels witten
in the YANG data nodel i ng | anguage to network managenent protocols
such as the Network Configuration Protocol (NETCONF) and RESTCONF.
Thi s docunent defines an architectural framework for datastores based
on the experience gained with the initial sinpler nodel, addressing
requirenents that were not well supported in the initial nobdel. This
docunent updates RFC 7950.

Status of This Menp
This is an Internet Standards Track document.

Thi s docunent is a product of the Internet Engineering Task Force
(IETF). It represents the consensus of the |IETF community. It has
recei ved public review and has been approved for publication by the
I nternet Engineering Steering Goup (IESG. Further information on
Internet Standards is available in Section 2 of RFC 7841.

I nformati on about the current status of this docunment, any errata,

and how to provide feedback on it may be obtained at
https://wwv. rfc-editor.org/info/rfc8342.

Bj orkl und, et al. St andards Track [Page 1]

RFC 8342 NIVDA March 2018

Copyri ght Notice

Copyright (c) 2018 | ETF Trust and the persons identified as the
docunent authors. Al rights reserved.

Thi s docunent is subject to BCP 78 and the I ETF Trust’'s Lega
Provisions Relating to | ETF Docunents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this docunment. Please review these docunents
carefully, as they describe your rights and restrictions with respect

to

this document. Code Conponents extracted fromthis document nust

include Sinplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Sinplified BSD License.

Tabl e
1
2.
3.
4

5.

of Contents

INtroduCti ON ..o 3
QD] BCL I VS ottt e e 4
Term NOl OQY . . oot 5
Background 8
4.1. Original Mddel of Datastores, 9
Architectural Model of Datastores, 11
5.1. Conventional Configuration Datastores 12
5.1.1. The Startup Configuration Datastore (<startup>)12

5.1.2. The Candi date Configuration Datastore
(<candidate>) 13
5.1. 3. The Running Configuration Datastore (<running>)13
5.1.4. The Intended Configuration Datastore (<intended>) ..13
5.2. Dynamic Configuration Datastoreso.... 14
5.3. The Operational State Datastore (<operational>) 14
5.3.1. Remant Configuration 16
5.3.2. MsSsing ResSOUIrCes i 16
5.3.3. SystemControlled Resources 16
5.3.4. Oigin Metadata Annotation 17
Implications on YANG e e e e 18
6.1. XPath Context 18
6.2. Invocation of Actions and RPCs 19
YANG Modul €S . ..o 20
[ANA Considerati ONS e e 26
8.1. Updates to the IETF XML Registry 26
8.2. Updates to the YANG Modul e Nanmes Registry 27
Security Considerati ONS e 27
Ref Br eNCeS .. . 28
10.1. Normative References 28
10.2. Informative References 29

Bj or kl und, et al. St andards Track [Page 2]

RFC 8342 NIVDA March 2018

Appendi x A. Quidelines for Defining Datastores 31
A. 1. Define Wi ch YANG Mbdul es Can Be Used in the Datastore 31
A. 2. Define Wiich Subset of YANG Model ed Data Applies 31
A. 3. Define How Data Is Actualized 31
A. 4. Define Wiich Protocols Can Be Used 31
A.5. Define YANG Identities for the Datastore 32

Appendi x B. Exanpl e of an Epheneral Dynam c Configuration

Dat ast Or e 32

Appendi x C. Exanple Data 33
C.1. SystemExanpl e 34
C. 2. BGP EXanpl e ... 37

C. 2.0, DAt ast Or €St e 38
C.2.2. Adding a Peer 38

C. 2.3. Renoving a Peer 39

C. 3. Interface Exanpl e 40
C.3.1. Pre-provisioned Interfaces 41
C.3.2. SystemProvided Interface 42
ACKNOW edgmBNt S 43
AUt hor S’ Addr €SS S . .ot 44

1. Introduction

Thi s docunent provides an architectural framework for datastores as
they are used by network nmanagenent protocols such as the Network
Configuration Protocol (NETCONF) [RFC6241], RESTCONF [RFC8040], and
the YANG data nodel i ng | anguage [RFC7950]. Datastores are a
fundanent al concept bindi ng network managenent data nodels to network
management protocols. Agreenent on a common architectural nodel of
dat astores ensures that data nodels can be witten in a way that is
net wor k managenent protocol agnostic. This architectural franmework
identifies a set of conceptual datastores, but it does not nandate
that all network managenment protocols expose all these conceptua
datastores. This architecture is agnostic with regard to the
encodi ng used by network nmanagenent protocols.

Thi s docunent updates RFC 7950 by refining the definition of the
accessible tree for sone XML Path Language (XPath) context (see
Section 6.1) and the invocation context of operations (see
Section 6.2).

The key words "MJST", "MJST NOT", "REQUI RED', "SHALL", "SHALL NOT",
"SHOULD', "SHOULD NOT", "RECOWMENDED', "NOT RECOMVENDED', "MAY", and
"OPTIONAL" in this docunent are to be interpreted as described in
BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in al
capitals, as shown here.

Bj or kl und, et al. St andards Track [Page 3]

RFC 8342 NIVDA March 2018

2.

oj ectives

Net wor k management data objects can often take two different val ues:
the val ue configured by the user or an application (configuration)
and the value that the device is actually using (operational state).
These two values may be different for a nunber of reasons, e.g.
systeminternal interactions with hardware, interaction with
protocols or other devices, or sinply the tine it takes to propagate
a configuration change to the software and hardware conponents of a
system Furthernmore, configuration and operational state data
objects may have different lifetines.

The original nodel of datastores required these data objects to be
nodel ed twice in the YANG schema -- as "config true" objects and as
"config fal se" objects. The convention adopted by the interfaces
data model [RFC8343] and the | P data nodel [RFC8344] was to use two
separate branches rooted at the root of the data tree: one branch for
configuration data objects and one branch for operational state data
obj ect s.

The duplication of definitions and the ad hoc separation of
operational state data from configuration data |ead to a nunber of
probl ems. Having configuration and operational state data in
separate branches in the data nodel is operationally conplicated and
i npacts the readability of nodule definitions. Furthernore, the

rel ati onship between the branches is not machi ne readable, and filter
expressi ons operating on configuration and on rel ated operationa
state are different.

Wth the revised architectural nodel of datastores defined in this
docunent, the data objects are defined only once in the YANG schema
but independent instantiations can appear in different datastores,
e.g., one for a configured value and another for an operationally
used value. This provides a nore el egant and sinpler solution to the
pr obl em

The revised architectural nodel of datastores supports additiona
dat astores for systens that support nore advanced processing chains
converting configuration to operational state. For exanple, sone
systens support configuration that is not currently used (so-called
"inactive configuration") or they support configuration tenplates
that are used to expand configuration data via a common tenpl ate.

Bj or kl und, et al. St andards Track [Page 4]

RFC 8342 NIVDA March 2018

3.

Ter m nol ogy

Thi s docunent defines the follow ng term nology. Sonme of the termns
are revised definitions of terns originally defined in [RFC6241] and
[RFC7950] (see also Section 4). The revised definitions are
semantically equivalent to the definitions found in [RFC6241] and
[RFC7950]. It is expected that the revised definitions provided in
this section will replace the definitions in [RFC6241] and [RFC7950]
when these docunents are revised.

o datastore: A conceptual place to store and access information. A
dat astore m ght be inplenmented, for exanple, using files, a
dat abase, flash nenory |ocations, or conbinations thereof. A
datastore maps to an instantiated YANG data tree.

0o schema node: A node in the schema tree. The formal definition is
provided in RFC 7950.

o datastore schema: The conbi ned set of schema nodes for all nodul es
supported by a particular datastore, taking into consideration any
devi ati ons and enabl ed features for that datastore.

o configuration: Data that is required to get a device fromits
initial default state into a desired operational state. This data
is model ed in YANG using "config true" nodes. Configuration can
originate fromdifferent sources.

o configuration datastore: A datastore holding configuration

o running configuration datastore: A configuration datastore hol ding
the current configuration of the device. It nmay include
configuration that requires further transformations before it can
be applied. This datastore is referred to as "<running>".

o candidate configuration datastore: A configuration datastore that
can be nani pul ated without inpacting the device' s running
configuration datastore and that can be committed to the running
configuration datastore. This datastore is referred to as
"<candi dat e>".

o startup configuration datastore: A configuration datastore hol ding
the configuration | oaded by the device into the running
configuration datastore when it boots. This datastore is referred
to as "<startup>".

Bj or kl und, et al. St andards Track [Page 5]

RFC 8342 NIVDA March 2018

o intended configuration: Configuration that is intended to be used
by the device. It represents the configuration after al
configuration transformations to <runni ng> have been perforned and
is the configuration that the systemattenpts to apply.

o intended configuration datastore: A configuration datastore
hol di ng the conpl ete intended configuration of the device. This
datastore is referred to as "<intended>".

o configuration transformation: The addition, nodification, or
renoval of configuration between the <runni ng> and <i ntended>
dat astores. Exanples of configuration transformations include the
renoval of inactive configuration and the configuration produced
t hrough the expansi on of tenpl ates.

o conventional configuration datastore: One of the follow ng set of
configuration datastores: <running> <startup>, <candi date>, and
<intended>. These datastores share a commpn datastore schenma, and
protocol operations allow copying data between these datastores.
The term "conventional" is chosen as a generic unbrella termfor
t hese dat astores.

o conventional configuration: Configuration that is stored in any of
the conventional configuration datastores.

o dynanic configuration datastore: A configuration datastore hol ding
configuration obtained dynami cally during the operation of a
devi ce through interaction with other systens, rather than through
one of the conventional configuration datastores.

o dynanmic configuration: Configuration obtained via a dynam c
configuration datastore.

o |learned configuration: Configuration that has been | earned via
protocol interactions with other systenms and that is neither
conventional nor dynam c configuration

o systemconfiguration: Configuration that is supplied by the device
itself.

o default configuration: Configuration that is not explicitly
provi ded but for which a value defined in the data nodel is used.

o applied configuration: Configuration that is actively in use by a

device. Applied configuration originates from conventi onal
dynam c, |earned, system and default configuration.

Bj or kl und, et al. St andards Track [Page 6]

RFC 8342 NIVDA March 2018

0 systemstate: The additional data on a systemthat is not
configuration, such as read-only status information and coll ected
statistics. Systemstate is transient and nodified by
interactions with internal conponents or other systens. System
state is nodeled in YANG using "config fal se" nodes.

o operational state: The conbination of applied configuration and
system state

0 operational state datastore: A datastore holding the conplete
operational state of the device. This datastore is referred to as
"<operational >".

o origin: A netadata annotation indicating the origin of a
data item

o remant configuration: Configuration that remmins part of the
applied configuration for a period of tine after it has been
renoved fromthe intended configuration or dynam c configuration
The tine period may be minimal or may last until all resources
used by the newWy deleted configuration (e.g., network
connections, menory allocations, file handl es) have been
deal | ocat ed.

The following additional terns are not datastore specific, but they
are comonly used and are thus defined here as well:

o client: An entity that can access YANG defined data on a server,
over sone networ k managenent protocol

o server: An entity that provides access to YANG defined data to a
client, over sone network management protocol

o notification: A server-initiated nessage indicating that a certain
event has been recogni zed by the server.

o renpte procedure call: An operation that can be invoked by a
client on a server.

Bj or kl und, et al. St andards Track [Page 7]

RFC 8342 NIVDA March 2018

4.

Backgr ound
NETCONF [RFC6241] provides the follow ng definitions:

o datastore: A conceptual place to store and access information. A
dat astore m ght be inplenmented, for exanple, using files, a
dat abase, flash nenory |ocations, or conbinations thereof.

o configuration datastore: The datastore hol ding the conplete set of
configuration that is required to get a device fromits initia
default state into a desired operational state.

YANG 1.1 [RFC7950] provides the followi ng refinenents when NETCONF is
used with YANG (which is the usual case, but note that NETCONF was
defined before YANG exi sted):

o datastore: Wien npdeled with YANG a datastore is realized as an
instanti ated data tree.

o configuration datastore: Wen nodeled with YANG a configuration
datastore is realized as an instantiated data tree with
confi gurati on.

[RFC6244] defined operational state data as foll ows:

o Operational state data is a set of data that has been obtai ned by
the systemat runtinme and influences the system s behavior simlar
to configuration data. 1In contrast to configuration data,
operational state is transient and nodified by interactions with
i nternal conponents or other systens via specialized protocols.

Section 4.3.3 of [RFC6244] discusses operational state and nentions,
among ot her things, the option to consider operational state as being
stored in another datastore. Section 4.4 of [RFC6244] then concl udes
that, at the time of its witing, nodeling state as distinct leafs
and distinct branches is the recommended approach

| mpl enment ati on experience and requests from operators [OpStat e- Reqs]
[OpSt at e- Model i ng] i ndicate that the datastore nodel initially

desi gned for NETCONF and refined by YANG needs to be extended. In
particul ar, the notion of intended configuration and applied
configuration has devel oped.

Bj or kl und, et al. St andards Track [Page 8]

RFC 8342 NIVDA March 2018

4.1. Oiginal Mdel of Datastores

The foll owi ng drawi ng shows the original nodel of datastores as it is
currently used by NETCONF [RFC6241]:

T + R —— +
| <candi date> | | <startup>
| (ct, rw [<---+ +---> (ct, rw |
B - + | | e +
| | | |
| S +
R >| <running> |<-------- +
| (ct, rw) |
e +
|
v
operational state <--- control plane
(cf, ro)

ct = config true; cf = config fal se
rw=read-wite; ro = read-only
boxes denote dat astores

Figure 1

Note that this diagramsinplifies the nodel: "read-only" (ro) and
"read-wite" (rw) are to be understood fromthe client’s perspective,
at a conceptual level. |In NETCONF, for exanple, support for

<candi date> and <startup> is optional, and <runni ng> does not have to
be witable. Furthernore, <startup> can only be nodified by copying
<running> to <startup> in the standardi zed NETCONF datastore editing
nodel . The RESTCONF protocol does not expose these differences and

i nstead provides only a witable unified datastore, which hides

whet her edits are done through <candi date>, by directly nodifying
<runni ng>, or via sone other inplenmentation-specific mechanism
RESTCONF al so hides how configuration is made persistent. Note that
i npl enentati ons may al so have additional datastores that can
propagat e changes to <running> NETCONF explicitly nentions
so-cal | ed "named datastores".

Bj or kl und, et al. St andards Track [Page 9]

RFC 8342 NIVDA March 2018

Sonme observations:

0 Operational state has not been defined as a datastore, although
there were proposals in the past to introduce an operational state
dat ast or e.

0 The NETCONF <get> operation returns the contents of <running>
together with the operational state. It is therefore necessary
that "config false" data be in a different branch than the
"config true" data if the operational state can have a different
lifetime compared to configuration or if configuration is not
i medi ately or successfully appli ed.

o Several inplenentations have proprietary mechani sns that all ow
clients to store inactive data in <running> |Inactive data is
conceptual Iy renoved before validation.

o Sone inplenmentations have proprietary nechani sns that allow
clients to define configuration tenplates in <running> These
tenpl ates are expanded automatically by the system and the
resulting configuration is applied internally.

0o Some operators have reported that it is essential for themto be
able to retrieve the configuration that has actually been
successfully applied, which may be a subset or a superset of the
<runni ng> configurati on.

Bj or kl und, et al. St andards Track [Page 10]

RFC 8342 NIVDA March 2018

5. Architectural Mdel of Datastores

Bel ow i s a new conceptual nodel of datastores, extending the origina
nodel in order to reflect the experience gained with the origina

nodel .
U + Fom oo +
| <candi date> | | <startup>
| (ct, rw) [<---+ +---> (ct, rw) |
S + | | S +
| | | |
| Fommm e o +
R > <running> | <-------- +
| (ct, rw |
R +
|
| /1 configuration transformations,
| /1 e.g., renoval of nodes marked as
| /1 "inactive", expansion of
| /1 tenplates
%
Fomm e oo - +
| <intended> | // subject to validation
| (ct, ro) |
Fom ek +
| /1 changes applied, subject to
| /1 local factors, e.g., mssing
| /'l resources, del ays
|
dynami ¢ | e | ear ned configuration
configuration | Foomaa- - system configuration
dat astores ----- + | Fo--e-- - default configuration
| |
% vV Vv
Fom e e e oo - +

| <operational> | <-- systemstate
| (ct + cf, ro) |

ct = config true; cf = config fal se
rw=read-wite; ro = read-only
boxes denote naned dat astores

Fi gure 2

Bj or kl und, et al. St andards Track [Page 11]

RFC 8342 NIVDA March 2018

5.1. Conventional Configuration Datastores

The conventional configuration datastores are a set of configuration
dat astores that share exactly the sane datastore schema, allow ng
data to be copied between them The termis nmeant as a generic
unbrella description of these datastores. |f a nodul e does not
contain any configuration data nodes and it is not needed to satisfy
any inports, then it MAY be onmitted fromthe datastore schena for the
conventional configuration datastores. The set of datastores

i ncl ude:

o0 <runni ng>

0 <candi dat e>
0 <startup>

0 <intended>

QO her conventional configuration datastores may be defined in future
docunent s.

The flow of data between these datastores is depicted in Section 5.

The specific protocols nmay define explicit operations to copy between
these datastores, e.g., NETCONF defines the <copy-config> operation

5.1.1. The Startup Configuration Datastore (<startup>)

The startup configuration datastore (<startup>) is a configuration
dat astore hol ding the configuration | oaded by the device when it
boots. <startup> is only present on devices that separate the
startup configuration fromthe running configuration datastore.

The startup configuration datastore may not be supported by al
protocol s or inplenentations.

On devices that support non-volatile storage, the contents of
<startup> will typically persist across reboots via that storage. At
boot tinme, the device |loads the saved startup configuration into
<runni ng>. To save a new startup configuration, data is copied to
<startup> via either inplicit or explicit protocol operations.

Bj or kl und, et al. St andards Track [Page 12]

RFC 8342 NIVDA March 2018

5.1.2. The Candi date Configuration Datastore (<candi date>)

The candi date configuration datastore (<candidate>) is a
configuration datastore that can be mani pul ated wi thout inpacting the
device's current configuration and that can be conmtted to

<runni ng>.

The candi date configuration datastore nay not be supported by al
protocol s or inplenentations.

<candi dat e> does not typically persist across reboots, even in the

presence of non-volatile storage. |f <candidate> is stored using
non-vol atile storage, it is reset at boot tine to the contents of
<runni ng>.

5.1.3. The Running Configuration Datastore (<running>)

The running configuration datastore (<running>) is a configuration

dat astore that holds the current configuration of the device. [t MY
i ncl ude configuration that requires further transformation before it
can be applied, e.g., inactive configuration, or tenplate-mechani sm

oriented configuration that needs further expansion. However,
<runni ng> MJST always be a valid configuration data tree, as defined
in Section 8.1 of [RFC7950].

<runni ng> MJST be supported if the device can be configured via
conventional configuration datastores.

If a device does not have a distinct <startup> and non-vol atile
storage is available, the device will typically use that non-volatile
storage to allow <running> to persist across reboots.

5.1.4. The Intended Configuration Datastore (<intended>)

The intended configuration datastore (<intended>) is a read-only
configuration datastore. It represents the configuration after al
configuration transformations to <running> are perfornmed (e.g.
tenmpl at e expansi on, removal of inactive configuration) and is the
configuration that the systemattenpts to apply.

<intended> is tightly coupled to <running> Wenever data is witten
to <running> the server MJST al so i medi ately update and validate
<i nt ended>.

<i nt ended> MAY al so be updated independently of <running> if the
effect of a configuration transformati on changes, but <intended> MJST
al ways be a valid configuration data tree, as defined in Section 8.1
of [RFC7950].

Bj or kl und, et al. St andards Track [Page 13]

RFC 8342 NIVDA March 2018

For sinple inplementations, <running> and <i ntended> are identical

The contents of <intended> are also related to the "config true"
subset of <operational>; hence, a client can determ ne to what extent
the intended configuration is currently in use by checking to see
whet her the contents of <intended> al so appear in <operational >.

<i nt ended> does not persist across reboots; its relationship with
<runni ng> nakes that unnecessary.

Currently, there are no standard nechani sns defined that affect
<intended> so that it would have different content than <runni ng>,
but this architecture allows for such mechanisnms to be defined

One exanpl e of such a mechanismis support for marki ng nodes as
inactive in <running> Ilnactive nodes are not copied to <intended>.
A second exanple is support for tenplates, which can perform
transformations on the configuration from<running> to the
configuration witten to <i ntended>.

5.2. Dynanic Configuration Datastores

The nodel recogni zes the need for dynam c configuration datastores
that are, by definition, not part of the persistent configuration of
a device. |In sone contexts, these have been ternmed "epheneral

dat astores”, since the information is epheneral, i.e., lost upon
reboot. The dynamic configuration datastores interact with the rest
of the system through <operational >.

The datastore schema for a dynamic configuration datastore MAY differ
fromthe datastore schema used for conventional configuration
datastores. |f a nodul e does not contain any configuration data
nodes and it is not needed to satisfy any inports, then it MAY be
omtted fromthe datastore schema for the dynam c configuration

dat ast ore.

5.3. The Operational State Datastore (<operational>)

The operational state datastore (<operational>) is a read-only
datastore that consists of all "config true" and "config fal se" nodes
defined in the datastore’s schema. 1In the original NETCONF nodel

the operational state only had "config fal se" nodes. The reason for

i ncorporating "config true" nodes here is to be able to expose al
operational settings without having to replicate definitions in the
dat a nodel s.

Bj or kl und, et al. St andards Track [Page 14]

RFC 8342 NIVDA March 2018

<operational > contains systemstate and all configuration actually
used by the system This includes all applied configuration from

<i ntended>, |earned configuration, system provided configuration, and
default val ues defined by any supported data nodels. In addition
<operational > al so contains applied configuration fromdynam c
configuration datastores.

The datastore schema for <operational > MJST be a superset of the
conbi ned datastore schema used in all configuration datastores,
except that configuration data nodes supported in a configuration
dat astore MAY be omtted from <operational> if a server is not able
to accurately report them

Requests to retrieve nodes from <operational > al ways return the val ue
in use if the node exists, regardl ess of any default val ue specified
in the YANG nodule. If no value is returned for a given node, then
this inplies that the node is not used by the device.

The interpretation of what constitutes being "in use" by the system
i s dependent on both the schema definition and the device

i mpl ementation. Generally, functionality that is enabled and
operational on the system would be considered to be "in use"
Conversely, functionality that is neither enabled nor operational on
the systemis considered not to be "in use"; hence, it SHOULD be

om tted from <operational >.

<operational > SHOULD conformto any constraints specified in the data
nodel , but given the principal aimof returning "in use" values, it
is possible that constraints MAY be viol ated under sone circunstances
(e.g., an abnormal value is "in use", the structure of a list is
bei ng nodi fied, or remant configuration (see Section 5.3.1) stil
exists). Note that deviations SHOULD be used when it is known in
advance that a device does not fully conformto the <operational >
schena.

Only senantic constraints MAY be violated. These are the YANG
"when", "nust", "mandatory", "unique", "mn-elenments", and
"max- el ements" statements; and the uni queness of key val ues.

Syntactic constraints MJST NOT be violated, including hierarchica
organi zation, identifiers, and type-based constraints. |If a node in
<oper ational > does not neet the syntactic constraints, then it

MUST NOT be returned, and sone other mechani sm should be used to flag
the error.

<oper ati onal > does not persist across reboots.

Bj or kl und, et al. St andards Track [Page 15]

RFC 8342 NIVDA March 2018

5.

5.

5.

3.

3.

3.

1. Remmant Configuration

Changes to configuration nay take tinme to percolate through to
<operational > During this period, <operational> may contain nodes
for both the previous and current configuration, as closely as
possi bl e tracking the current operation of the device. Such remmant
configuration fromthe previous configuration persists until the
system has rel eased resources used by the newy del eted configuration
(e.g., network connections, menory allocations, file handles).

Remmant configuration is a comon exanple of where the semantic
constraints defined in the data nodel cannot be relied upon for
<operational >, since the system may have remmant configuration whose
constraints were valid with the previous configuration and that are
not valid with the current configuration. Since constraints on
"config fal se" nodes may refer to "config true" nodes, remmant
configuration may force the violation of those constraints.

2. Mssing Resources

Configuration in <intended> can refer to resources that are not
avai |l abl e or otherwi se not physically present. In these situations,
these parts of <intended> are not applied. The data appears in

<i nt ended> but does not appear in <operational >.

A typical exanple is an interface configuration that refers to an

interface that is not currently present. 1In such a situation, the
interface configuration remains in <intended> but the interface
configuration will not appear in <operational>.

Note that configuration validity cannot depend on the current state
of such resources, since that would inply that renoving a resource
m ght render the configuration invalid. This is unacceptable,
especially given that rebooting such a device would cause it to

restart with an invalid configuration. |Instead, we allow
configuration for mssing resources to exist in <running> and
<intended>, but it will not appear in <operational >.

3. System Controll ed Resources

Sonetimes, resources are controlled by the device and the
correspondi ng systemcontrol | ed data appears in (and di sappears fron)
<operational > dynamcally. |If a systemcontrolled resource has

mat chi ng configuration in <intended> when it appears, the systemw ||
try to apply the configuration; this causes the configuration to
appear in <operational> eventually (if application of the
configuration was successful).

Bj or kl und, et al. St andards Track [Page 16]

RFC 8342 NIVDA March 2018

5.3.4. Oigin Metadata Annotation

As configuration flows into <operational>, it is conceptually marked
with a metadata annotation [RFC7952] that indicates its origin. The
origin applies to all configuration nodes except non-presence
containers. The "origin" netadata annotation is defined in

Section 7. The values are YANG identities. The followi ng identities
are defined:

o origin: abstract base identity fromwhich the other origin
identities are derived.

o intended: represents configuration provided by <intended>.

o dynanic: represents configuration provided by a dynamic
configuration datastore.

o system represents configuration provided by the systemitself.
Exanmpl es of system configuration include applied configuration for
an al ways-exi sting | oopback interface, or interface configuration
that is auto-created due to the hardware currently present in the
devi ce.

o learned: represents configuration that has been | earned via
protocol interactions with other systemns, including such protocols
as link-1ayer negotiations, routing protocols, and DHCP

o default: represents configuration using a default value specified
in the data nmodel, using either values in the "default" statenent
or any val ues described in the "description" statenment. The
default origin is only used when the configurati on has not been
provi ded by any ot her source.

o unknown: represents configuration for which the system cannot
identify the origin

These identities can be further refined, e.g., there could be
separate identities for particular types or instances of dynamc
configuration datastores derived from "dynam c".

For all configuration data nodes in <operational> the device SHOULD

report the origin that nost accurately reflects the source of the
configuration that is in use by the system

Bj or kl und, et al. St andards Track [Page 17]

RFC 8342 NIVDA March 2018

In cases where it could be ambi guous as to which origin should be
used, i.e., where the sane data node val ue has originated from

mul tiple sources, the "description" statement in the YANG nodul e
SHOULD be used as gui dance for choosing the appropriate origin. For
exanpl e:

If, for a particular configuration node, the associ ated YANG
"description" statement indicates that a protocol -negotiated val ue
overrides any configured value, then the origin would be reported as
"l earned", even when a |learned value is the sane as the configured
val ue.

Conversely, if, for a particular configuration node, the associated
YANG "description" statenent indicates that a protocol -negotiated
val ue does not override an explicitly configured value, then the
origin would be reported as "intended", even when a | earned value is
the sanme as the configured val ue.

In the case that a device cannot provide an accurate origin for a
particul ar configuration data node, it SHOULD use the origin
"unknown" .

6. Inplications on YANG
6.1. XPath Context
Thi s section updates Section 6.4.1 of RFC 7950.

If a server inplements the architecture defined in this docunent, the
accessi ble trees for sonme XPath contexts are refined as foll ows:

o If the XPath expression is defined in a substatenent to a data
node that represents systemstate, the accessible tree is al
operational state in the server. The root node has all top-Ileve
data nodes in all nodul es as children

o If the XPath expression is defined in a substatenent to a
"notification" statement, the accessible tree is the notification
i nstance and all operational state in the server. |If the
notification is defined on the top level in a nodule, then the
root node has the node representing the notification being defined
and all top-level data nodes in all nobdules as children
Q herwi se, the root node has all top-level data nodes in al
nodul es as children

Bj or kl und, et al. St andards Track [Page 18]

RFC 8342 NIVDA March 2018

6.

2.

o If the XPath expression is defined in a substatenent to an "input"
statenment in an "rpc" or "action" statement, the accessible tree
is the RPC or action operation instance and all operational state
in the server. The root node has top-level data nodes in al
nodul es as children. Additionally, for an RPC, the root node al so
has the node representing the RPC operation being defined as a
child. The node representing the operation being defined has the
operation’s input paraneters as children.

o If the XPath expression is defined in a substatenent to an
"output" statement in an "rpc" or "action" statenment, the
accessible tree is the RPC or action operation instance and al
operational state in the server. The root node has top-Ilevel data
nodes in all modules as children. Additionally, for an RPC, the
root node al so has the node representing the RPC operation being
defined as a child. The node representing the operation being
defined has the operation’s output parameters as children

I nvocation of Actions and RPCs

This section updates Section 7.15 of RFC 7950.

Actions are always invoked in the context of the operational state
datastore. The node for which the action is invoked MIUST exist in
the operational state datastore.

Note that this document does not constrain the result of invoking an

RPC or action in any way. For exanple, an RPC might be defined to
nodi fy the contents of sonme datastore

Bj or kl und, et al. St andards Track [Page 19]

RFC 8342 NIVDA March 2018

7. YANG Modul es
<CODE BEG NS> file "ietf-datastores@018-02-14. yang"

nodul e ietf-datastores {
yang-version 1.1;
nanespace "urn:ietf:parans: xm:ns:yang:ietf-datastores"”;
prefix ds;

or gani zati on
"I ETF Network Mbdeling (NETMOD) Working G oup”;

cont act
"WG Web: <https://datatracker.ietf.org/wy/ netnod/ >

W5 List: <mailto:netnod@etf.org>

Aut hor : Martin Bjorklund
<mailto:nmbj @ail-f.conp

Aut hor : Juer gen Schoenwael der
<mai |l to:j.schoenwael der @ acobs- uni versity. de>

Aut hor : Phi | Shafer
<mai | t o: phi | @ uni per. net >

Aut hor : Kent Watsen
<mai | t 0o: kwat sen@ uni per . net >

Aut hor : Rob W ton
<rwi | ton@i sco. cons";

description
"Thi s YANG nodul e defines a set of identities for identifying
dat ast ores.

Copyright (c) 2018 | ETF Trust and the persons identified as
authors of the code. Al rights reserved.

Redi stribution and use in source and binary forns, with or

wi t hout nodification, is permtted pursuant to, and subject to
the license ternms contained in, the Sinplified BSD License set
forth in Section 4.c of the |ETF Trust’'s Legal Provisions

Rel ating to | ETF Documents
(https://trustee.ietf.org/license-info).

Bj or kl und, et al. St andards Track [Page 20]

RFC 8342 NIVDA March 2018

This version of this YANG nodule is part of RFC 8342
(https://ww. rfc-editor.org/info/rfc8342); see the RFC itself
for full legal notices.";

revi sion 2018-02-14 {
description
“Initial revision.";
reference
"RFC 8342: Network Managenent Datastore Architecture (NVDA)";

}

/*
* ldentities
*/

identity datastore {
description
"Abstract base identity for datastore identities.";

}

i dentity conventional {
base dat astore;
description
"Abstract base identity for conventional configuration
dat astores. ";

}

identity running {
base conventi onal
description
"The running configuration datastore.";

}

identity candidate {
base conventi onal
description
"The candi date configuration datastore.";

}

identity startup {
base conventi onal
description
"The startup configuration datastore.";

Bj or kl und, et al. St andards Track [Page 21]

RFC 8342 NIVDA March 2018

identity intended {
base conventi onal
descri ption
"The i ntended configuration datastore.";

}

identity dynam c {
base datastore;
description
"Abstract base identity for dynam c configuration datastores.";

}

identity operational {
base dat astore;
description
"The operational state datastore.";

}

/*
* Type definitions
*/

typedef datastore-ref {
type identityref {
base dat astore;

}

description
"A datastore identity reference.”;

<CODE ENDS>

Bj or kl und, et al. St andards Track [Page 22]

RFC 8342 NIVDA March 2018

<CODE BEG NS> file "ietf-origin@018-02-14. yang"

nodul e ietf-origin {
yang-version 1.1;
nanespace "urn:ietf:paranms:xm:ns:yang:ietf-origin";
prefix or;

i mport ietf-yang-netadata {
prefix nd;
}

or gani zati on
"I ETF Network Mbdeling (NETMOD) Working G oup”;

cont act
"WG Web: <https://datatracker.ietf.org/wy/ netnod/ >

WG List: <mailto:netnod@etf.org>

Aut hor : Martin Bjorklund
<mailto:mbj @ail-f.conp

Aut hor : Juer gen Schoenwael der
<mai | to:j.schoenwael der @ acobs-uni versity. de>

Aut hor : Phi | Shaf er
<mai | t o: phi | @ uni per. net>

Aut hor : Kent Watsen
<mai | t 0: kwat sen@ uni per. net >

Aut hor : Rob W ton
<rwi |l ton@i sco. conp";

description
"This YANG nodul e defines an "origin’ netadata annotation and a
set of identities for the origin value.

Copyright (c) 2018 | ETF Trust and the persons identified as
authors of the code. Al rights reserved.

Redi stri bution and use in source and binary forns, with or

wi thout nodification, is permtted pursuant to, and subject to
the license terms contained in, the Sinplified BSD License set
forth in Section 4.c of the | ETF Trust’'s Legal Provisions

Rel ating to | ETF Docunents
(https://trustee.ietf.org/license-info).

Bj or kl und, et al. St andards Track [Page 23]

RFC 8342 NIVDA March 2018

This version of this YANG nodule is part of RFC 8342
(https://ww. rfc-editor.org/info/rfc8342); see the RFC itself
for full legal notices.";

revi sion 2018-02-14 {
description
“Initial revision.";
reference
"RFC 8342: Network Managenent Datastore Architecture (NVDA)";

}

/*
* ldentities
*/

identity origin {
description
"Abstract base identity for the origin annotation.";

}

identity intended {
base origin;
description
"Denotes configuration fromthe intended configuration
datastore.";

}

identity dynam c {
base ori gin;
description
"Denotes configuration froma dynam c configuration
dat astore.";

}

identity system {
base origin;
description
"Denotes configuration originated by the systemitself.

Exampl es of system configuration include applied configuration
for an al ways-existing | oopback interface, or interface
configuration that is auto-created due to the hardware
currently present in the device.";

Bj or kl und, et al. St andards Track [Page 24]

RFC 8342 NIVDA March 2018

identity learned {
base origin;
description
"Denotes configuration | earned fromprotocol interactions with
ot her devices, instead of via either the intended
configuration datastore or any dynam c configuration
dat ast ore.

Exanpl es of protocols that provide |earned configuration
i nclude Iink-layer negotiations, routing protocols, and
DHCP. ";

}

identity default {
base origin;
description
"Denotes configuration that does not have a configured or
| earned val ue but has a default value in use. Covers both
val ues defined in a 'default’ statenment and val ues defi ned
via an explanation in a 'description’ statenent.";

}

identity unknown {
base origin;
description
"Denotes configuration for which the system cannot identify the

origin.";
}
/*
* Type definitions
*/

typedef origin-ref {
type identityref {
base origin;
}
description
"An origin identity reference.”;

Bj or kl und, et al. St andards Track [Page 25]

RFC 8342 NIVDA March 2018

/*
* Met adat a annot ati ons
*/

md: annot ation origin {
type origin-ref;
description
"The 'origin annotation can be present on any configuration
data node in the operational state datastore. It specifies
fromwhere the node originated. |If not specified for a given
configuration data node, then the origin is the same as the
origin of its parent node in the data tree. The origin for
any top-1level configuration data nodes nmust be specified.";

}
}

<CODE ENDS>
8. | ANA Consi derations
8.1. Updates to the IETF XM. Registry
Thi s docunent registers two URIs in the "I ETF XM Regi stry”
[RFC3688]. Following the format in [RFC3688], the follow ng
regi strations have been nade:
URI: urn:ietf:parans: xm:ns:yang:ietf-datastores
Regi strant Contact: The | ESG
XM.: NA; the requested URI is an XML nanespace
URI: urn:ietf:parans:xm:ns:yang:ietf-origin

Regi strant Contact: The | ESG
XM: N A the requested URI is an XM. nanmespace

Bj or kl und, et al. St andards Track [Page 26]

RFC 8342 NIVDA March 2018

8.

9.

2. Updates to the YANG Modul e Nanes Registry

Thi s docunent registers two YANG nodul es in the "YANG Modul e Nanes"
registry [RFC6020]. Following the format in [RFC6020], the follow ng
regi strations have been made:

name: i etf-datastores

namespace: urn:ietf:paramnms: xm :ns:yang:ietf-datastores
prefix: ds

ref erence: RFC 8342

nane: ietf-origin

nanespace: urn:ietf:parans: xm:ns:yang:ietf-origin
prefix: or

ref erence: RFC 8342

Security Considerations

Thi s docunent di scusses an architectural npdel of datastores for
net wor k managenent usi ng NETCONF/ RESTCONF and YANG. It has no
security inmpact on the Internet.

Al t hough this docunent specifies several YANG nodul es, these npodul es
only define identities and a netadata annotation; hence, the "YANG
nodul e security guidelines" [YANG SEC] do not apply.

The origin netadata annotation exposes the origin of values in the
applied configuration. Oigin information nmay provide hints that
certain control -plane protocols are active on a device. Since origin
information is tied to applied configuration values, it is only
accessible to clients that have the permissions to read the applied
configuration values. Security administrators should consider the
sensitivity of origin information while defining access contro

rul es.

Bj or kl und, et al. St andards Track [Page 27]

RFC 8342

NIVDA March 2018

10. References

10.1. Normmtive References

[RFC2119]

[RFC6241]

[RFC7950]

[RFC7952]

[RFC8040]

[RFC8174]

Bradner, S., "Key words for use in RFCs to Indicate
Requi renent Level s", BCP 14, RFC 2119,

DO 10.17487/ RFC2119, March 1997,

<https://ww. rfc-editor.org/info/rfc2119>.

Enns, R, Ed., Bjorklund, M, Ed., Schoenwael der, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF) ", RFC 6241, DO 10.17487/ RFC6241, June 2011,
<https://ww. rfc-editor.org/info/rfc6241>.

Bj orklund, M, Ed., "The YANG 1.1 Data Mdel i ng Language",
RFC 7950, DA 10. 17487/ RFC7950, August 2016,
<https://wwv.rfc-editor.org/info/rfc7950>.

Lhotka, L., "Defining and Using Metadata with YANG',
RFC 7952, DO 10.17487/ RFC7952, August 2016,
<https://ww.rfc-editor.org/info/rfc7952>.

Bi erman, A, Bjorklund, M, and K Wtsen, "RESTCONF
Protocol ", RFC 8040, DO 10.17487/RFC8040, January 2017,
<https://ww.rfc-editor.org/info/rfc8040>.

Lei ba, B., "Anbiguity of Uppercase vs Lowercase in
RFC 2119 Key Words", BCP 14, RFC 8174,

DO 10. 17487/ RFC8174, May 2017,
<https://ww.rfc-editor.org/info/rfc8174>.

[WVBC. REC- xni - 20081126]

Bray, T., Paoli, J., Sperberg-MQeen, M, Miler, E, and
F. Yergeau, "Extensible Markup Language (XM.) 1.0

(Fifth Edition)", Wrld Wde Web Consortium Recomendati on
REC- xm - 20081126, Novemrber 2008,

<htt ps://ww. w3. or g/ TR/ 2008/ REC- xnl - 20081126>.

Bj or kl und, et al. St andards Track [Page 28]

RFC 8342 NIVDA March 2018

10.2. Informmtive References

[NETMOD- Oper at i onal]
Bj orklund, M and L. Lhotka, "Operational Data in NETCONF
and YANG', Work in Progress, draft-bjorklund-netnod-
operational -00, Cctober 2012.

[OpSt at e- Enhance]
Wat sen, K., Bierman, A, Bjorklund, M, and J.
Schoenwael der, "Operational State Enhancenents for YANG
NETCONF, and RESTCONF", Work in Progress, draft-kwatsen-
net nod- opst at e- 02, February 2016.

[OpSt at e- Model i ng]
Shakir, R, Shaikh, A, and M Hi nes, "Consistent Mdeling
of Operational State Data in YANG', Wbrk in Progress,
dr af t - openconfi g- net nod- opst at e- 01, July 2015.

[OpSt at e- Regs]
Wat sen, K. and T. Nadeau, "Termi nology and Requirenents
for Enhanced Handling of Operational State", Wrk in
Progress, draft-ietf-netnod-opstate-reqs-04, January 2016.

[RFC3688] Mealling, M, "The | ETF XM. Registry", BCP 81, RFC 3688,
DA 10. 17487/ RFC3688, January 2004,
<https://ww.rfc-editor.org/info/rfc3688>.

[RFC6020] Bjorklund, M, Ed., "YANG - A Data Mdeling Language for
the Network Configuration Protocol (NETCONF)", RFC 6020,
DO 10.17487/ RFC6020, Cctober 2010,
<https://ww.rfc-editor.org/info/rfc6020>.

[RFC6244] Shafer, P., "An Architecture for Network Managenment Using
NETCONF and YANG', RFC 6244, DO 10.17487/ RFC6244,
June 2011, <https://ww. rfc-editor.org/info/rfc6244>.

[RFC8343] Bjorklund, M, "A YANG Data Mdel for Interface
Managerment ", RFC 8343, DA 10.17487/ RFC8343, March 2018,
<https://ww.rfc-editor.org/info/rfc8343>.

[RFC8344] Bjorklund, M, "A YANG Data Mdel for |IP Managenent",

RFC 8344, DA 10.17487/ RFC8344, March 2018,
<https://ww.rfc-editor.org/info/rfc8344>,

Bj or kl und, et al. St andards Track [Page 29]

RFC 8342

NIVDA March 2018

[Wth-config-state]

[YANG- SEC]

Wlton, R, ""Wth-config-state" Capability for
NETCONF/ RESTCONF", Work in Progress, draft-wlton-netnod-
opst at e-yang- 02, Decenber 2015.

| ETF, "YANG Security Guidelines", <https://trac.ietf.org/
trac/ ops/w ki /yang-security-gui delines>.

Bj or kl und, et al. St andards Track [Page 30]

RFC 8342 NIVDA March 2018

Appendi x A. CGuidelines for Defining Datastores

The definition of a new datastore in this architecture should be
provided in a docunent (e.g., an RFC) purposed for defining the
datastore. Wen it nakes sense, nore than one datastore may be
defined in the sane docunent (e.g., when the datastores are logically
connected). Each datastore’s definition should address the points
specified in the subsections bel ow.

A. 1. Define Wich YANG Mddul es Can Be Used in the Datastore

Not all YANG nbdules nay be used in all datastores. Sone datastores
may constrain which data nodels can be used in them |If it is
desirable that a subset of all nodul es can be targeted to the

dat astore, then the docunentation defining the datastore nust

i ndicate this.

A. 2. Define Wiich Subset of YANG Mdel ed Data Applies

By default, the data in a datastore is nodeled by all YANG statenents
in the avail abl e YANG nodul es. However, it is possible to specify
criteria that YANG statenents nust satisfy in order to be present in
a datastore. For instance, maybe only "config true" nodes, or
"config fal se" nodes that al so have a specific YANG extension, are
present in the datastore.

A.3. Define How Data |s Actualized

The new datastore nust specify how it interacts with other
dat ast or es.

For exanple, the diagramin Section 5 depicts dynam c configuration
dat astores feeding into <operational> How this interaction occurs
has to be defined by the particul ar dynam c configuration datastores.
In sonme cases, it may occur inplicitly, as soon as the data is put
into the dynami c configuration datastore, while in other cases an
explicit action (e.g., an RPC) may be required to trigger the
application of the datastore’'s data.

A. 4. Define Wich Protocols Can Be Used

By default, it is assunmed that both the NETCONF and RESTCONF
protocols can be used to interact with a datastore. However, it nay
be that only a specific protocol can be used (e.g., Forwardi ng and
Control Element Separation (ForCES)) or that a subset of all protoco
operations or capabilities are available (e.g., no locking or no
XPat h- based filtering).

Bj or kl und, et al. St andards Track [Page 31]

RFC 8342 NIVDA March 2018

A.5. Define YANG Identities for the Datastore

The datastore nust be defined with a YANG identity that uses the
"ds:datastore" identity, or one of its derived identities, as its
base. This identity is necessary, so that the datastore can be
referenced in protocol operations (e.g., <get-data>).

The datastore may al so be defined with an identity that uses the
"or:origin" identity, or one of its derived identities, as its base.
This identity is needed if the datastore interacts with
<operational > so that data originating fromthe datastore can be
identified as such via the "origin" netadata attribute defined in
Section 7.

An exampl e of these guidelines in use is provided in Appendix B
Appendi x B. Exanple of an Epheneral Dynami c Configuration Datastore

This section defines docunentation for an exanple dynam c
configuration datastore using the guidelines provided in Appendix A
For brevity, only a terse exanple is provided; it is expected that a
st andal one RFC woul d be witten when this type of scenario is fully
consi der ed.

Thi s exanpl e defines a dynam c configuration datastore called

"epheneral ", which is |oosely nodel ed after the work done in the |I2RS
Wor ki ng G oup.

ephener a

YANG nodul es all (default)

YANG nodes all "config true" data nodes
<oper ati onal >
Pr ot ocol s NETCONF/ RESTCONF (def aul t)

Def i ni ng YANG
nodul e

|

|

|

|

|

| How applied
|

|

I

| "exanpl e- ds- epheneral "
|

|
|
|
|
|
|
changes autonmatically propagated to |
|
|
|
|
|
|

Properties of the Exanpl e "epheneral" Datastore

Bj or kl und, et al. St andards Track [Page 32]

RFC 8342 NIVDA March 2018

nodul e exanpl e-ds-epheneral {
yang-version 1.1;
nanespace "urn: exanpl e: ds- epheneral ";
prefix eph;

import ietf-datastores {
prefix ds;
}

import ietf-origin {
prefix or;
}

/1 datastore identity
identity ds-epheneral {
base ds: dynami c;
description
"The epheneral dynami c configuration datastore.”;

}

/1 originidentity
identity or-epheneral {
base or:dynami c;
description
"Denotes data fromthe epheneral dynam c configuration
datastore.";
}
}

Appendi x C. Exanpl e Data

The use of datastores is conplex, and nany of the subtle effects are
nore easily presented using exanples. This section presents a series
of exanpl e data nmodel s with some sanple contents of the various

dat ast or es.

The XML [WBC. REC- xmi - 20081126] sni ppets that follow are provided as
exanpl es only.

Bj or kl und, et al. St andards Track [Page 33]

RFC 8342 NIVDA March 2018

C.1. System Exanple
In this exanple, the following fictional nodule is used:

nodul e exanpl e- system {
yang-version 1.1;
namespace urn: exanpl e: system
prefix sys;

import ietf-inet-types {
prefix inet;
}

cont ai ner system {
| eaf hostname {
type string;
}

list interface {
key nane;

| eaf name {
type string;

cont ai ner aut o-negotiation {
| eaf enabl ed {
type bool ean;
defaul t true;

| eaf speed {
type uint 32;
units mnbps;
description
"The advertised speed, in Mps.";
}
}

| eaf speed {
type uint32;
units mnbps;
config fal se
description
"The speed of the interface, in Mps.";

Bj or kl und, et al. St andards Track [Page 34]

RFC 8342 NIVDA March 2018

list address {
key ip;

leaf ip {
type inet:ip-address;

| eaf prefix-length {
type uint8;

}
}
}
}

The operator has configured the hostnane and two interfaces, so the
contents of <intended> are:

<system xm ns="ur n: exanpl e: syst eni' >
<host nane>f 0o. exanpl e. conx/ host nane>

<i nterface>
<nane>et hO</ nane>
<aut o- negoti ati on>
<speed>1000</ speed>
</ aut o- negoti ati on>
<addr ess>
<i p>2001: db8: : 10</i p>
<prefi x-1engt h>64</ prefix-Iength>
</ addr ess>
</interface>

<interface>
<nane>et hl</ nane>
<addr ess>
<i p>2001: db8: : 20</i p>
<prefi x-1engt h>64</ prefix-1engt h>
</ addr ess>
</interface>

</ syst enp

The system has detected that the hardware for one of the configured
interfaces ("ethl") is not yet present, so the configuration for that
interface is not applied. Further, the system has received a

host name and an additional |IP address for "eth0" over DHCP. 1In
addition to filling in the default value for the auto-negotiation
enabl ed | eaf, a | oopback interface entry is also automatically

Bj or kl und, et al. St andards Track [Page 35]

RFC 8342 NIVDA March 2018

instantiated by the system All of this is reflected in
<operational >. Note howthe "origin" netadata attribute for severa
"config true" data nodes is inherited fromtheir parent data nodes.

<system
xm ns="ur n: exanpl e: syst enf
xm ns:or="urn:ietf:parans: xm :ns:yang:ietf-origin">

<host nane or:origin="or:|earned">bar. exanpl e. conk/ host nanme>

<interface or:origin="or:intended">
<nane>et h0</ name>
<aut o- negoti ati on>
<enabl ed or:origin="or:default">true</enabl ed>
<speed>1000</ speed>
</ aut o- negoti ati on>
<speed>100</ speed>
<address>
<i p>2001: db8: : 10</i p>
<prefi x-1engt h>64</ prefix-1engt h>
</ addr ess>
<address or:origin="or:|earned">
<i p>2001: db8::1:100</i p>
<prefi x-1engt h>64</ prefix-Iength>
</ addr ess>
</interface>

<interface or:origin="or:system >
<nanme>| 00</ nanme>
<address>
<ip>:1l</ip>
<prefix-I|ength>128</prefix-Iength>
</ addr ess>
</interface>

</ systenp

Bj or kl und, et al. St andards Track [Page 36]

RFC 8342 NIVDA March 2018

C. 2. BGP Exampl e
Consi der the followi ng fragment of a fictional BGP nodul e:

cont ai ner bgp {
| eaf local-as {
type uint32;

| eaf peer-as {
type uint32;

list peer {
key nane;
| eaf nane {
type inet:ip-address;

| eaf local-as {
type uint 32;
description
“... Defaults to ../local-as.";
}
| eaf peer-as {
type uint32;
description
"... Defaults to ../peer-as.";

| eaf |ocal-port {
type inet:port;

| eaf renote-port {
type inet:port;
default 179;

| eaf state {
config fal se
type enuneration {
enuminit;
enum est abl i shed;
enum cl osi ng;
}
}
}
}

In this exanpl e nodel, both bgp/peer/|ocal -as and bgp/ peer/ peer-as
have conpl ex hierarchical values, allow ng the user to specify
default values for all peers in a single |ocation

Bj or kl und, et al. St andards Track [Page 37]

RFC 8342 NIVDA March 2018

The nodel also follows the pattern of fully integrating state
("config false") nodes with configuration ("config true") nodes.
There is no separate "bgp-state" hierarchy, with the accomnpanying
repetition of contai nnent and nam ng nodes. This makes the node
si mpl er and nore readabl e.

C.2.1. Datastores

Each datastore represents differing views of these nodes. <running>
will hold the configuration provided by the operator -- for exanple,
a single BGP peer. <intended> will conceptually hold the data as
val idated, after the renoval of data not intended for validation and
after any local tenplate nechanisns are perforned. <operational >
wi Il show data from <intended> as well as any "config fal se" nodes.

C.2.2. Adding a Peer

If the user configures a single BGP peer, then that peer will be
visible in both <running> and <intended>. It nmay al so appear in
<candi date> if the server supports the candi date configuration
datastore. Retrieving the peer will return only the user-specified
val ues.

No tine delay shoul d exist between the appearance of the peer in
<runni ng> and <i ntended>.

In this scenario, we’ve added the follow ng to <running>:

<bgp>
<l ocal - as>64501</1 ocal - as>
<peer - as>64502</ peer - as>
<peer >
<nanme>2001: db8: : 2: 3</ nane>
</ peer >
</bgp>

C.2.2.1. <operational >
The operational datastore will contain the fully expanded peer data,
i ncluding "config fal se" nodes. In our exanple, this neans that the

"state" node will appear.

In addition, <operational> will contain the "currently in use" val ues

for all nodes. This neans that |ocal-as and peer-as wll be

popul ated even if they are not given values in <intended> The val ue
of bgp/local-as will be used if bgp/peer/local-as is not provided;
bgp/ peer-as and bgp/ peer/peer-as will have the sane relationship. In

Bj or kl und, et al. St andards Track [Page 38]

RFC 8342 NIVDA March 2018

the operational view, this neans that every peer will have values for
their | ocal-as and peer-as, even if those values are not explicitly
configured but are provided by bgp/local -as and bgp/ peer-as.

Each BGP peer has a TCP connection associated with it, using the

val ues of local-port and renote-port from <intended>. [|f those

val ues are not supplied, the systemw |l select values. Wen the
connection is established, <operational> will contain the current

val ues for the local-port and renote-port nodes regardl ess of the
origin. |If the systemhas chosen the values, the "origin" attribute
will be set to "systenf. Before the connection is established, one

or both of the nodes nmay not appear, since the system may not yet
have their val ues.

<bgp xm ns:or="urn:ietf:parans: xm :ns:yang:ietf-origin"
or:origin="or:intended">
<| ocal - as>64501</| ocal - as>
<peer - as>64502</ peer - as>
<peer >
<nane>2001: db8: : 2: 3</ nane>
<l ocal -as or:origin="or:default">64501</1 ocal - as>
<peer-as or:origin="or:defaul t">64502</ peer-as>
<l ocal -port or:origin="or:systent>60794</| ocal - port>
<renote-port or:origin="or:default">179</renote-port>
<st at e>est abl i shed</ st at e>
</ peer >
</ bgp>

C.2.3. Renmpbving a Peer

Changes to configuration nay take tine to percol ate through the
various software conponents involved. During this period, it is

i mperative to continue to give an accurate view of the working of the
device. <operational> will contain nodes for both the previous and
current configuration, as closely as possible tracking the current
operation of the device.

Consi der the scenario where a client renoves a BGP peer. \Wen a peer
is removed, the operational state will continue to reflect the

exi stence of that peer until the peer’s resources are rel eased,

i ncluding closing the peer’s connection. During this period, the
current data values will continue to be visible in <operational >,
with the "origin" attribute set to indicate the origin of the
original data

Bj or kl und, et al. St andards Track [Page 39]

RFC 8342 NIVDA March 2018

<bgp xm ns:or="urn:ietf:parans: xm:ns:yang:ietf-origin"
or:origin="or:intended">
<l ocal - as>64501</1 ocal - as>
<peer - as>64502</ peer - as>
<peer >
<nane>2001: db8: : 2: 3</ nane>
<l ocal -as or:origin="or:default">64501</1 ocal - as>
<peer-as or:origin="or:default">64502</ peer - as>
<l ocal -port or:origin="or:systen>60794</I ocal -port >
<renote-port or:origin="or:default">179</renvote-port>
<st at e>cl osi ng</ st at e>
</ peer >
</ bgp>

Once resources are rel eased and the connection is closed, the peer’s
data i s renmpoved from <operational >.

C.3. Interface Exanple
In this section, we will use this sinple interface data nodel
contai ner interfaces {
[ist interface {
key nane;
| eaf nane {
type string;

| eaf description {
type string;

| eaf ntu {
type uint 16;

| eaf-1ist ip-address {
type inet:ip-address;

Bj or kl und, et al. St andards Track [Page 40]

RFC 8342 NIVDA March 2018

C.3.1. Pre-provisioned Interfaces

One comon issue in networking devices is the support of Field

Repl aceable Units (FRUs) that can be inserted and renoved fromthe
device without requiring a reboot or interfering with norma
operation. These FRUs are typically interface cards, and the devices
support pre-provisioning of these interfaces.

If a client creates an interface "et-0/0/0" but the interface does
not physically exist at this point, then <intended> m ght contain the
fol | ow ng:

<interfaces>
<interface>
<name>et - 0/ 0/ 0</ nane>
<description>Test interface</description>
</interface>
</interfaces>

Since the interface does not exist, this data does not appear in
<oper ati onal >.

VWhen a FRU containing this interface is inserted, the systemwl|
detect it and process the associated configuration. <operational>
will contain the data from <intended> as well as nodes added by the
system such as the current value of the interface’'s MU

<interfaces xm ns:or="urn:ietf:parans: xm : ns:yang:ietf-origin"
or:origin="or:intended">
<interface>
<nane>et - 0/ 0/ 0</ name>
<description>Test interface</description>
<mtu or:origin="or:system >1500</nt u>
</interface>
</interfaces>

If the FRUIis renmoved, the interface data is renmnpved from
<oper ati onal >.

Bj or kl und, et al. St andards Track [Page 41]

RFC 8342 NIVDA March 2018

C.3.2. SystemProvided Interface

| magi ne that the system provides a | oopback interface (named "1 00")
with a default |Pv4 address of "127.0.0.1" and a default |Pv6 address
of "::1". The systemwll only provide configuration for this
interface if there is no data for it in <intended>.

When no configuration for "I o0" appears in <intended> <operational>
will show the system provided data:

<interfaces xm ns:or="urn:ietf:parans: xm : ns:yang:ietf-origin"
or:origin="or:intended">
<interface or:origin="or:systen>
<nane>| 00</ name>
<i p- address>127. 0. 0. 1</ i p- addr ess>
<i p-address>:: 1</i p- addr ess>
</interface>
</interfaces>

When configuration for "l o0" does appear in <intended>, <operational>
will show that data with the origin set to "intended". If the

"i p-address" is not provided, then the system provided val ue wll
appear as foll ows:

<interfaces xm ns:or="urn:ietf:parans: xnm :ns:yang:ietf-origin"
or:origin="or:intended">
<interface>
<name>| 00</ name>
<descri pti on>l oopback</descri pti on>
<i p-address or:origin="or:systent>127.0.0. 1</i p- addr ess>
<i p- address>: : 1</ i p- addr ess>
</interface>
</interfaces>

Bj or kl und, et al. St andards Track [Page 42]

RFC 8342 NIVDA March 2018

Acknowl edgnent s
Thi s docunent grew out of many di scussions that took place since
2010. Several documents ([NETMOD-Qperational] [Wth-config-state]
[OpSt at e- Regs] [OpSt at e- Enhance] [OpSt at e- Model i ng]l, as well as
[RFC6244]), touched on some of the problens of the original datastore
nodel . The follow ng people were authors of these works in progress
or were otherwi se actively involved in the discussions that led to
thi s docunent:
o Lou Berger, LabN Consulting, L.L.C , <lIberger@ abn. net>
0 Andy Bi ernman, YumaWorks, <andy@unaworks. con®
o Marcus Hines, CGoogle, <hines@oogle.conp
o Christian Hopps, Deutsche Tel ekom <chopps@hopps. org>
o Bal azs Lengyel, Ericsson, <bal azs.|engyel @ricsson. conp
o Ladislav Lhotka, CZ.NIC, <Ilhotka@ic.cz>
0o Acee Lindem Cisco Systens, <acee@i sco.conp
0 Thomas Nadeau, Brocade Networks, <tnadeau@ uci dvision.conp
o Tom Petch, Engineering Networks Ltd, <ietfc@otconnect.conp
0 Anees Shai kh, Googl e, <aashai kh@oogl e. con>
o Rob Shakir, Google, <robjs@oogle.conr
o Jason Sterne, Nokia, <jason.sterne@okia.conpr
Juer gen Schoenwael der was partly funded by Flam ngo, a Network of

Excel | ence project (ICT-318488) supported by the European Conmi ssion
under its Seventh Franework Progranme.

Bj or kl und, et al. St andards Track [Page 43]

RFC 8342 NIVDA March 2018

Aut hors’ Addr esses

Martin Bjorklund
Tail -f Systens

Email: nbj@ail-f.com
Juer gen Schoenwael der
Jacobs University

Enmai | : j.schoenwael der @ acobs-uni versity. de
Phi | Shaf er

Juni per Networ ks

Emai | : phil @ uni per. net
Kent Watsen

Juni per Networ ks

Emai | : kwat sen@ uni per. net
Robert W Ilton

Ci sco Systemns

Email: rwilton@isco.com

Bj or kl und, et al. St andards Track [Page 44]

