IPPM WG | R. Civil |
Internet-Draft | Ciena Corporation |
Intended status: Standards Track | A. Morton |
Expires: September 10, 2015 | AT&T Labs |
L. Zheng | |
Huawei Technologies | |
R. Rahman | |
Cisco Systems | |
M. Jethanandani | |
Ciena Corporation | |
K. Pentikousis, Ed. | |
EICT | |
March 9, 2015 |
Two-Way Active Measurement Protocol (TWAMP) Data Model
draft-cmzrjp-ippm-twamp-yang-00
This document specifies a data model for client and server implementations of the Two-Way Active Measurement Protocol (TWAMP). We define the TWAMP data model through Unified Modeling Language (UML) class diagrams and formally specify it using YANG.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 10, 2015.
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The Two-Way Active Measurement Protocol (TWAMP) [RFC5357] can be used to measure network performance parameters such as latency, bandwidth, and packet loss by sending probe packets and monitoring their experience in the network. To date, TWAMP implementations do not come with a standard management framework and, as such, configuration depends on the various proprietary mechanisms developed by the corresponding TWAMP vendor.
For large, virtualized, and dynamically instantiated infrastructures where network functions are placed according to orchestration algorithms as discussed in [I-D.unify-nfvrg-challenges], proprietary mechanisms for managing TWAMP measurements have severe limitations. For current deployments, the lack of standardized programmable data model limits the flexibility to dynamically instantiate TWAMP-based measurement across equipment from different vendors.
We note that earlier efforts to define, for example, a TWAMP Management Information Base (MIB) [I-D.elteto-ippm-twamp-mib] did not advance. As we move forward, two major trends call for revisiting the standardization on TWAMP management aspects. First, we expect that in the coming years large-scale and multi-vendor TWAMP deployments will become the norm. From an operations perspective, dealing with several vendor-specific TWAMP configuration mechanisms is simply unsustainable in this context. Second, the increasingly software-defined and virtualized nature of network infrastructures, based on dynamic service chains [NSC] and programmable control and management planes [RFC7426] requires a well-defined data model for TWAMP implementations. This document defines such a TWAMP data model and specifies it formally using the YANG data modeling language [RFC6020].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
The rest of this document is organized as follows. Section 2 presents the scope and applicability of this document. Section 3 provides a high-level overview of the TWAMP data model. Section 4 details the configuration parameters of the data model and Section 5 specifies the YANG module. Section 6 lists illustrative examples which conform to the YANG module specified in this document. Appendix A elaborates these examples further.
The purpose of this document is the specification of vendor-independent data model for TWAMP implementations.
Figure 1 illustrates a redrawn version of the TWAMP logical model found in [RFC5357], Section 1.2. The figure is annotated with pointers to the UML diagrams provided in this document and associated with the data model of the four logical entities in a TWAMP deployment, namely the TWAMP Control-Client, Server, Session-Sender and Session-Reflector. As per [RFC5357], unlabeled links in the figure are unspecified and may be proprietary protocols.
[Fig. 3] [Fig. 4] +----------------+ +--------+ | Control-Client | <-- TWAMP-Control --> | Server | +----------------+ +--------+ ^ ^ | | V V +----------------+ +-------------------+ | Session-Sender | <-- TWAMP-Test --> | Session-Reflector | +----------------+ +-------------------+ [Fig. 5] [Fig. 6]
Figure 1: Annotated TWAMP logical model
As discussed in [RFC5357], a TWAMP implementation may follow a simplified logical model, in which the same node acts both as the Control-Client and Session-Sender, while another node acts at the same time as the TWAMP Server and Session-Reflector. Figure 2 illustrates this simplified logical model and indicates the interaction between the TWAMP configuration client and server using, for instance, NETCONF [RFC6241] or RESTCONF [I-D.ietf-netconf-restconf]. Note, however, that the specific protocol used to communicate the TWAMP configuration parameters specified herein is outside the scope of this document.
o-------------------o o-------------------o | Config client | | Config client | o-------------------o o-------------------o || || NETCONF || RESTCONF NETCONF || RESTCONF || || o-------------------o o-------------------o | Config server | | Config server | | [Fig. 3, 5] | | [Fig. 4, 6] | +-------------------+ +-------------------+ | Control-Client | <-- TWAMP-Control --> | Server | | | | | | Session-Sender | <-- TWAMP-Test --> | Session-Reflector | +-------------------+ +-------------------+
Figure 2: Simplified TWAMP model and protocols
A TWAMP data model includes four categories of configuration items. Global configuration items relate to parameters that are set on a per device level. For example, the administrative status of the device with respect to whether it allows TWAMP sessions and if so in what capacity (e.g. Control-Client, Server or both) are typical instances of global configuration items. A second category includes attributes that can be configured on a per control connection basis, such as the Server IP address. A third category includes attributes related to per-test session attributes, for instance setting different values in the Differentiated Services Code Point (DSCP) field. Finally, the data model could include attributes that relate to the operational state of the TWAMP implementation.
As we describe the TWAMP data model in the remaining sections of this document, readers should keep in mind the functional entity grouping illustrated in Figure 1.
A TWAMP Control-Client has an administrative status field set at the device level that indicates whether the node is enabled to function as such.
Each TWAMP Control-Client is associated with zero or more TWAMP control connections. The main configuration parameters of each control connection are:
Each TWAMP control connection, in turn, is associated with zero or more test sessions. For each test session we note the following configuration items:
Each TWAMP Server has an administrative status field set at the device level to indicate whether the node is enabled to function as a TWAMP Server.
Each TWAMP Server is associated with zero or more control connections. Each control connection is uniquely identified by the 4-tuple {Control-Client IP address, Control-Client TCP port number, Server IP address, Server TCP port}. Control connection configuration items on a TWAMP Server are read-only.
There is one TWAMP Session-Sender instance for each test session that is initiated from the sending device. Primary configuration fields include:
Each TWAMP Session-Reflector is associated with zero or more test sessions. For each test session, the REFWAIT parameter can be configured. Read-only access to other data model parameters, such as the Sender IP address is foreseen. Each test session can be uniquely identified by the 4-tuple mentioned in Section 3.2.
This section defines the TWAMP data model using UML and describes all associated parameters.
The twampClient container (see Figure 3) holds items that are related to the configuration of the TWAMP Control-Client logical entity. These are divided up into items that are associated with the configuration of the Control-Client as a whole (e.g. clientAdminState) and items that are associated with individual control connections initiated by that Control-Client entity (twampClientCtrlConnection).
+------------------+ | twampClient | +------------------+ 1..* +---------------------+ | clientAdminState |<>-------------------------| modePreferenceChain | | | +---------------------+ | | 1..* +-----------+ | priority | | |<>------| keyChain | | mode | +------------------+ +-----------+ +---------------------+ ^ | keyID | V | secretKey | | +-----------+ | 0..* +---------------------------+ | twampClientCtrlConnection | +---------------------------+ | ctrlConnectionName | 0..* +-----------------------+ | clientIp |<>-------| twampSessionRequest | | serverIp | +-----------------------+ | serverTcpPort | | testSessionName | | dscp | | senderIp | | keyId | | senderUdpPort | | dkLen | | reflectorIp | | clientTcpPort {ro} | | reflectorUdpPort | | serverStartTime {ro} | | timeout | | ctrlConnectionState {ro} | | paddingLength | | selectedMode {ro} | | startTime | | token {ro} | | repeat | | clientIv {ro} | | repeatInterval | +---------------------------+ | pmIndex | | testSessionState {ro} | | sid {ro} | +-----------------------+
Figure 3: TWAMP Control-Client UML class diagram
The twampClient container includes an administrative parameter (clientAdminState) that controls whether the device is allowed to initiate TWAMP control and test sessions.
The twampClient container holds a list which specifies the preferred Mode values according to their preferred order of use, including the authentication and encryption Modes. Specifically, modePreferenceChain lists each priority (expressed as a 16-bit unsigned integer, where zero is the highest priority and subsequent values monotonically increasing) with their corresponding mode (expressed as a 32-bit Hexadecimal value). Depending on the Modes available in the Server Greeting, the Control-Client MUST choose the highest priority Mode from the configured modePreferenceChain list. Note that the list of preferred Modes may set bit position combinations when necessary, such as when referring to the extended TWAMP features in [RFC5618], [RFC5938], and [RFC6038]. If the Control-Client cannot determine an acceptable Mode, it MUST respond with zero Mode bits set in the Set-up Response message, indicating it will not continue with the control connection.
In addition, the twampClient container holds a list named keyChain which relates KeyIDs with the respective secret keys. Both the Server and the Control-Client use the same mappings from KeyIDs to shared secrets. The Server, being prepared to conduct sessions with more than one Control-Client, uses KeyIDs to choose the appropriate secret key; a Control-Client would typically have different secret keys for different Servers. keyId is a UTF-8 string, up to 80 octets in length (if the string is shorter, it is padded with zero octets), that tells the Server which shared secret the Control-Client wishes to use to authenticate or encrypt. The secretKey is the shared secret, an octet string of arbitrary length whose interpretation as a text string is unspecified. In the interest of interoperability, however, the UTF-8 text encoding MUST be used for secretKey.
Each twampClient container also holds a list of twampClientCtrlConnection, where each item in the list describes a TWAMP control connection that will be initiated by this Control-Client. There SHALL be one instance of twampClientCtrlConnection per TWAMP Control (TCP) connection that is to be initiated from this device.
The configuration items for twampClientCtrlConnection are:
The following twampClientCtrlConnection parameters are read-only:
Each twampClientCtrlConnection holds a list of twampSessionRequest. twampSessionRequest holds information associated with the Control-Client for this test session. This includes information that is associated with the Request-TW-Session/Accept-Session message exchange ([RFC5357], Section 3.5). The Control-Client is also responsible for scheduling and results collection for test sessions, so twampSessionRequest will also hold information related these actions (e.g. pmIndex, repeatInterval). There SHALL be one instance of twampSessionRequest for each test session that is to be negotiated by this control connection via a Request-TW-Session/Accept-Session exchange.
The configuration items for twampSessionRequest are:
The following twampSessionRequest parameters are read-only:
The twampServer container (see Figure 4) holds items that are related to the configuration of the TWAMP Server logical entity (recall Figure 1).
+------------------+ | twampServer | +------------------+ | serverAdminState | 1..* +-----------+ | serverTcpPort |<>------| keyChain | | servwait | +-----------+ | dscp | | keyID | | count | | secretKey | | maxCount | +-----------+ | modes | | salt {ro} | 0..* +--------------------------------+ | serverIv {ro} |<>------| twampServerCtrlConnection | | challenge {ro} | +--------------------------------+ +------------------+ | clientIp {ro} | | clientTcpPort {ro} | | serverIp {ro} | | serverTcpPort {ro} | | serverCtrlConnectionState {ro} | | dscp {ro} | | selectedMode {ro} | | keyID {ro} | | dkLen {ro} | | count {ro} | | maxCount {ro} | +--------------------------------+
Figure 4: TWAMP Server UML class diagram
A device operating in the Server role cannot configure attributes on a per control connection basis, as it has no foreknowledge of what incoming TWAMP control connections it will receive. As such, any parameter that the Server might want to apply to an incoming control connection must be configured at the overall Server level, and will then be applied to all incoming TWAMP control connections.
Each twampServer container holds a list named keyChain which relates KeyIDs with the respective secret keys. As mentioned in Section 4.1, both the Server and the Control-Client use the same mappings from KeyIDs to shared secrets. The Server, being prepared to conduct sessions with more than one Control-Client, uses KeyIDs to choose the appropriate secret key; a Control-Client would typically have different secret keys for different Servers. keyId is a UTF-8 string, up to 80 octets in length (if the string is shorter, it is padded with zero octets), that tells the Server which shared secret the Control-Client wishes to use to authenticate or encrypt.
Each incoming control connection that is active on the Server will be represented by an instance of a twampServerCtrlConnection object. All items in the twampServerCtrlConnection object are read-only.
The twampServer container items are as follows:
The following parameters are read-only:
There SHALL be one instance of twampServerCtrlConnection per incoming TWAMP TCP Control connection that is received and active on the Server device. All items in the twampServerCtrlConnection are read-only. Each instance of twampServerCtrlConnection uses the following 4-tuple as its unique key: clientIp, clientTcpPort, serverIp, serverTcpPort.
The twampServerCtrlConnection container items are all read-only:
The twampSessionSender container, illustrated in Figure 5, holds items that are related to the configuration of the TWAMP Session-Sender logical entity.
There are no global configuration items that apply to the Session-Sender entity as a whole.
There is one instance of twampSenderTestSession for each test session for which packets are being sent.
+--------------------+ | twampSessionSender | +--------------------+ 0..* +-------------------------+ | |<>------| twampSenderTestSession | +--------------------+ +-------------------------+ | testSessionName | | ctrlConnectionName {ro} | | dscp | | dot1dPriority | | fillMode | | numberOfPackets | | senderSessionState {ro} | | sentPackets {ro} | | rcvPackets {ro} | | lastSentSeq {ro} | | lastRcvSeq {ro} | +-------------------------+ ^ V | 1 +--------------------+ | packetDistribution | +--------------------+ | fixed / poisson | +--------------------+ | | +--------------------+ | | fixedInterval | | | fixedIntervalUnits | | +--------------------+ | +----------------------+ | lambda | | lambdaUnits | | maxInterval | | truncationPointUnits | +----------------------+
Figure 5: TWAMP Session-Sender UML class diagram
The twampSenderTestSession container items are:
The following twampSenderTestSession parameters are read-only:
The twampSessionReflector container, illustrated in Figure 6, holds items that are related to the configuration of the TWAMP Session-Reflector logical entity.
A device operating in the Session-Reflector role cannot configure attributes on a per-session basis, as it has no foreknowledge of what incoming sessions it will receive. As such, any parameter that the Session-Reflector might want to apply to an incoming test session must be configured at the overall Session-Reflector level, and will then be applied to all incoming sessions.
Each incoming test session that is active on the Session-Reflector will be represented by an instance of a twampReflectorTestSession object. All items in the twampReflectorTestSession object are read-only.
+-----------------------+ | twampSessionReflector | +-----------------------+ 0..* +------------------------------------+ | refwait |<>------| twampReflectorTestSession | +-----------------------+ +------------------------------------+ | sid {ro} | | senderIp {ro} | | senderUdpPort {ro} | | reflectorIp {ro} | | reflectorUdpPort {ro} | | parentConnectionClientIp {ro} | | parentConnectionClientTcpPort {ro} | | parentConnectionServerIp {ro} | | parentConnectionServerTcpPort {ro} | | dscp {ro} | | sentPackets {ro} | | rcvPackets {ro} | | lastSentSeq {ro} | | lastRcvSeq {ro} | +------------------------------------+
Figure 6: TWAMP Session-Reflector UML class diagram
The twampSessionReflector configuration items are:
Instances of twampSessionReflector:twampReflectorTestSession are indexed by a session identifier (SID). This is a value that is auto-allocated by the Server as test session requests are received, and communicated back to the Control-Client in the SID field of the Accept-Session message; see Section 4.3 of [RFC6038].
When attempting to retrieve operational data for active test sessions from a Session-Reflector device, the user will not know what sessions are currently active on that device, or what SIDs have been auto-allocated for these test sessions. If the user has network access to the Control-Client device, then it is possible to read the data for this session under twampClient:twampClientCtrlConnection:twampSessionRequest and obtain the SID (see Figure 3). The user may then use this SID value as an index to retrieve an individual twampSessionReflector:twampReflectorTestSession instance on the Session-Reflector device.
If the user has no network access to the Control-Client device, then the only option is to retrieve all twampReflectorTestSession instances from the Session-Reflector device. This could be problematic if a large number of test sessions are currently active on that device.
Each Session-Reflector test session contains the following 4-tuple: {parentConnectionClientIp, parentConnectionClientTcpPort, parentConnectionServerIp, parentConnectionServerTcpPort}. This 4-tuple corresponds to the equivalent 4-tuple {clientIp, clientTcpPort, serverIp, serverTcpPort} in the twampServerCtrlConnection object. This four4-tuple allows the user to trace back from the test session to the parent control connection that negotiated this test session.
All data under twampReflectorTestSession is read-only:
This section presents the TWAMP YANG data tree defined in this document. Readers should keep in mind that the limit of 72 characters per line forces us to introduce artificial line breaks in some tree nodes.
module: twamp +--rw twamp +--rw twampClient {controlClient}? | +--rw clientAdminState boolean | +--rw modePreferenceChain* [priority] | | +--rw priority uint16 | | +--rw mode? enumeration | +--rw keyChain* [keyId] | | +--rw keyId string | | +--rw secretKey? string | +--rw twampClientCtrlConnection* [ctrlConnectionName] | +--rw ctrlConnectionName string | +--rw clientIp? inet:ip-address | +--rw serverIp? inet:ip-address | +--rw serverTcpPort? inet:port-number | +--rw dscp? inet:dscp | +--rw keyId? string | +--rw dkLen? uint32 | +--ro clientTcpPort? inet:port-number | +--ro serverStartTime? uint64 | +--ro ctrlConnectionState? enumeration | +--ro selectedMode? enumeration | +--ro token? string | +--ro clientIv? string | +--rw twampSessionRequest* [testSessionName] | +--rw testSessionName string | +--rw senderIp? inet:ip-address | +--rw senderUdpPort? inet:port-number | +--rw reflectorIp? inet:ip-address | +--rw reflectorUdpPort? inet:port-number | +--rw timeout? uint64 | +--rw paddingLength? uint32 | +--rw startTime? uint64 | +--rw repeat? boolean | +--rw repeatInterval? uint32 | +--rw pmIndex? uint16 | +--ro testSessionState? enumeration | +--ro sid? string +--rw twampServer {server}? | +--rw serverAdminState boolean | +--rw serverTcpPort? inet:port-number | +--rw servwait? uint32 | +--rw dscp? inet:dscp | +--rw count? uint32 | +--rw maxCount? uint32 | +--rw modes? bits | +--ro salt? string | +--ro serverIv? string | +--ro challenge? string | +--rw keyChain* [keyId] | | +--rw keyId string | | +--rw secretKey? string | +--ro twampServerCtrlConnection* \ [clientIp clientTcpPort serverIp serverTcpPort] | +--ro clientIp inet:ip-address | +--ro clientTcpPort inet:port-number | +--ro serverIp inet:ip-address | +--ro serverTcpPort inet:port-number | +--ro serverCtrlConnectionState? enumeration | +--ro dscp? inet:dscp | +--ro selectedMode? enumeration | +--ro keyId? string | +--ro dkLen? uint32 | +--ro count? uint32 | +--ro maxCount? uint32 +--rw twampSessionSender {sessionSender}? | +--rw twampSenderTestSession* [testSessionName] | +--rw testSessionName string | +--ro ctrlConnectionName? string | +--rw dscp? inet:dscp | +--rw dot1dPriority? uint8 | +--rw fillMode? enumeration | +--rw numberOfPackets? uint32 | +--rw (packetDistribution)? | | +--:(fixed) | | | +--rw fixedInterval? uint32 | | | +--rw fixedIntervalUnits? enumeration | | +--:(poisson) | | +--rw lambda? uint32 | | +--rw lambdaUnits? uint32 | | +--rw maxInterval? uint32 | | +--rw truncationPointUnits? enumeration | +--ro senderSessionState? enumeration | +--ro sentPackets? uint32 | +--ro rcvPackets? uint32 | +--ro lastSentSeq? uint32 | +--ro lastRcvSeq? uint32 +--rw twampSessionReflector {sessionReflector}? +--rw refwait? uint32 +--ro twampReflectorTestSession* \ [senderIp senderUdpPort reflectorIp reflectorUdpPort] +--ro sid? string +--ro senderIp inet:ip-address +--ro senderUdpPort inet:port-number +--ro reflectorIp inet:ip-address +--ro reflectorUdpPort inet:port-number +--ro parentConnectionClientIp? inet:ip-address +--ro parentConnectionClientTcpPort? inet:port-number +--ro parentConnectionServerIp? inet:ip-address +--ro parentConnectionServerTcpPort? inet:port-number +--ro dscp? inet:dscp +--ro sentPackets? uint32 +--ro rcvPackets? uint32 +--ro lastSentSeq? uint32 +--ro lastRcvSeq? uint32
This section presents the TWAMP YANG module defined in this document.
<CODE BEGINS> file "ietf-twamp@2015-03-06.yang" module twamp { namespace "urn:ietf:params:xml:ns:yang:ietf-twamp"; //namespace need to be assigned by IANA prefix "twamp"; import ietf-inet-types { prefix inet; } organization "IETF IPPM (IP Performance Metrics) Working Group"; contact "draft-cmzrjp-ippm-twamp-yang@tools.ietf.org"; description "TWAMP Data Model"; revision "2015-03-06" { description "Initial version. RFC5357 is covered. RFC5618, RFC5938 and RFC6038 are not covered."; } feature controlClient { description "This feature relates to the device functions as the TWAMP Control-Client."; } feature server { description "This feature relates to the device functions as the TWAMP Server."; } feature sessionSender { description "This feature relates to the device functions as the TWAMP Session-Sender."; } feature sessionReflector { description "This feature relates to the device functions as the TWAMP Session-Reflector."; } grouping maintenanceStatistics { leaf sentPackets { config "false"; type uint32; } leaf rcvPackets { config "false"; type uint32; } leaf lastSentSeq { config "false"; type uint32; } leaf lastRcvSeq { config "false"; type uint32; } } container twamp { container twampClient { if-feature controlClient; leaf clientAdminState { mandatory "true"; type boolean; description "Indicates whether this device is allowed to run TWAMP to initiate control/test sessions"; } list modePreferenceChain { key "priority"; unique "mode"; leaf priority { type uint16; } leaf mode { type enumeration { enum unauthenticated { value "1"; } enum authenticated { value "2"; } enum encrypted { value "4"; } enum unauthtestencrpytcontrol { value "8"; } enum individualsessioncontrol { value "16"; } enum reflectoctets { value "32"; } enum symmetricalsize { value "64"; } } } } list keyChain { key "keyId"; leaf keyId { type string { length "1..80"; } } leaf secretKey { type string; } } list twampClientCtrlConnection { key "ctrlConnectionName"; leaf ctrlConnectionName { type "string"; description "A unique name used as a key to identify this individual TWAMP control connection on the Control-Client device."; } leaf clientIp { type inet:ip-address; } leaf serverIp { config "true"; type inet:ip-address; } leaf serverTcpPort { type inet:port-number; } leaf dscp{ type inet:dscp; description "The DSCP value to be placed in the IP header of the TWAMP TCP Control packets generated by the Control-Client"; } leaf keyId { type string { length "1..80"; } } leaf dkLen { type uint32; } leaf clientTcpPort { config "false"; type inet:port-number; } leaf serverStartTime { config "false"; type uint64; } leaf ctrlConnectionState { config "false"; type enumeration { enum active { description "Control session is active."; } enum idle { description "Control session is idle."; } } } leaf selectedMode { config "false"; type enumeration { enum unauthenticated { value "1"; } enum authenticated { value "2"; } enum encrypted { value "4"; } enum unauthtestencrpytcontrol { value "8"; } enum individualsessioncontrol { value "16"; } enum reflectoctets { value "32"; } enum symmetricalsize { value "64"; } } } leaf token { config "false"; type string { length "1..64"; } description "64 octets, containing the concatenation of a 16-octet challenge, a 16-octet AES Session-key used for encryption, and a 32-octet HMAC-SHA1 Session-key used for authentication"; } leaf clientIv{ config "false"; type string { length "1..16"; } description "16 octets, Client-IV is generated randomly by the Control-Client."; } list twampSessionRequest { key "testSessionName"; leaf testSessionName { type "string"; } leaf senderIp { type inet:ip-address; } leaf senderUdpPort { type inet:port-number; } leaf reflectorIp { type inet:ip-address; } leaf reflectorUdpPort { type inet:port-number; } leaf timeout { type uint64; description "The time Session-Reflector MUST wait after receiving a Stop-Session message"; } leaf paddingLength { type uint32{ range "64..1500"; } description "The number of bytes of padding that should be added to the UDP test packets generated by the sender."; } leaf startTime { type uint64; } leaf repeat { type boolean; } leaf repeatInterval { type uint32; when "repeat='true'"; description "Repeat interval (in minutes)"; } leaf pmIndex { type uint16; description "Numerical index value of a Registered Metric in the Performance Metric Registry"; } leaf testSessionState { config "false"; type enumeration { enum ok { value 0; description "Test session is accepted."; } enum failed { value 1; description "Failure, reason unspecified (catch-all)."; } enum internalError { value 2; description "Internal error."; } enum notSupported { value 3; description "Some aspect of request is not supported."; } enum permanentResLimit { value 4; description "Cannot perform request due to permanent resource limitations."; } enum tempResLimit { value 5; description "Cannot perform request due to temporary resource limitations."; } } } leaf sid{ config "false"; type string; } } } } container twampServer{ if-feature server; leaf serverAdminState{ type boolean; mandatory "true"; description "Indicates whether this device is allowed to run TWAMP to respond to control/test sessions"; } leaf serverTcpPort { type inet:port-number; default "862"; } leaf servwait { type uint32 { range 1..604800; } default 900; description "SERVWAIT (TWAMP Control (TCP) session timeout), default value is 900"; } leaf dscp { type inet:dscp; description "The DSCP value to be placed in the IP header of the TWAMP TCP Control packets generated by the Server"; } leaf count { type uint32 { range 1024..4294967295; } } leaf maxCount { type uint32 { range 1024..4294967295; } default 32768; } leaf modes { type bits { bit unauthenticated { position 0; } bit authenticated { position 1; } bit encrypted { position 2; } bit unauthtestencryptcontrol { position 3; } bit individualsessioncontrol { position 4; } bit reflectoctets { position 5; } bit symmetricalsize { position 6; } } } leaf salt{ config "false"; type string { length "1..16"; } description "Salt MUST be generated pseudo-randomly"; } leaf serverIv { config "false"; type string { length "1..16"; } description "16 octets, Server-IV is generated randomly by the Control-Client."; } leaf challenge { config "false"; type string { length "1..16"; } description "Challenge is a random sequence of octets generated by the Server"; } list keyChain { key "keyId"; leaf keyId { type string { length "1..80"; } } leaf secretKey { type string; } } list twampServerCtrlConnection { key "clientIp clientTcpPort serverIp serverTcpPort"; config "false"; leaf clientIp { type inet:ip-address; } leaf clientTcpPort { type inet:port-number; } leaf serverIp { type inet:ip-address; } leaf serverTcpPort { type inet:port-number; } leaf serverCtrlConnectionState { type enumeration { enum "active"; enum "servwait"; } } leaf dscp { type inet:dscp; description "The DSCP value used in the header of the TCP control packets sent by the Server for this control connection. This will usually be the same value as is configured for twampServer:dscp under the twampServer. However, in the event that the user re-configures twampServer:dscp after this control connection is already in progress, this read-only value will show the actual dscp value in use by this control connection."; } leaf selectedMode { type enumeration { enum unauthenticated { value "1"; } enum authenticated { value "2"; } enum encrypted { value "4"; } enum unauthtestencrpytcontrol { value "8"; } enum individualsessioncontrol { value "16"; } enum reflectoctets { value "32"; } enum symmetricalsize { value "64"; } } description "The mode that was chosen for this control connection as set in the Mode field of the Set-Up-Response message."; } leaf keyId { type string { length "1..80"; } description "The keyId value that is in use by this control connection."; } leaf dkLen { type uint32; description "The dkLen value that is in use by this control connection. This will usually be the same value as is configured under twampServer. In the event that the user re-configured twampServer:dkLen after this control connection is already in progress, this read-only value will show the actual dkLen that is in use for this control connection."; } leaf count { type uint32 { range 1024..4294967295; } description "The count value that is in use by this control connection. This will usually be the same value as is configured under twampServer. However, in the event that the user re-configured twampServer:count after this control connection is already in progress, this read-only value will show the actual count that is in use for this control connection."; } leaf maxCount { type uint32 { range 1024..4294967295; } description "The maxCount value that is in use by this control connection. This will usually be the same value as is configured under twampServer. However, in the event that the user re-configured twampServer:maxCount after this control connection is already in progress, this read-only value will show the actual maxCount that is in use for this control connection."; } } } container twampSessionSender { if-feature sessionSender; list twampSenderTestSession { key "testSessionName"; leaf testSessionName { type string; description "A unique name for this test session to be used as a key for this test session by the Session-Sender logical entity."; } leaf ctrlConnectionName { config "false"; type "string"; description "The name of the parent control connection that is responsible for negotiating this test session."; } leaf dscp { type inet:dscp; description "The DSCP value to be placed in the header of TWAMP UDP test packets generated by the sender."; } leaf dot1dPriority { type uint8 { range "0..7"; } } leaf fillMode { type enumeration { enum zero; enum random; } default zero; } leaf numberOfPackets { type uint32; description "The overall number of UDP test packets to be transmitted by the sender for this test session."; } choice packetDistribution { case fixed { leaf fixedInterval { type uint32; } leaf fixedIntervalUnits { type enumeration { enum seconds; enum milliseconds; enum microseconds; enum nanoseconds; } } } case poisson { leaf lambda { type uint32; } leaf lambdaUnits { type uint32; } leaf maxInterval { type uint32; } leaf truncationPointUnits { type enumeration { enum seconds; enum milliseconds; enum microseconds; enum nanoseconds; } } } } leaf senderSessionState { config "false"; type enumeration { enum setup { description "Test session is active."; } enum failure { description "Test session is idle."; } } } uses maintenanceStatistics; } } container twampSessionReflector { if-feature sessionReflector; leaf refwait { config "true"; type uint32 { range 1..604800; } default 900; description "REFWAIT(TWAMP test session timeout), the default value is 900"; } list twampReflectorTestSession { key "senderIp senderUdpPort reflectorIp reflectorUdpPort"; config "false"; leaf sid { type string; } leaf senderIp { type inet:ip-address; } leaf senderUdpPort { type inet:port-number; } leaf reflectorIp { type inet:ip-address; } leaf reflectorUdpPort { type inet:port-number; } leaf parentConnectionClientIp { type inet:ip-address; } leaf parentConnectionClientTcpPort { type inet:port-number; } leaf parentConnectionServerIp { type inet:ip-address; } leaf parentConnectionServerTcpPort { type inet:port-number; } leaf dscp { type inet:dscp; description "The DSCP value placed in the header of TWAMP UDP test packets generated by the Session-Sender."; } uses maintenanceStatistics; } } } } <CODE ENDS>
This section presents a simple but complete example of configuring all four entities in Figure 1, based on the YANG module specified in Section 5. The example is illustrative in nature, but aims to be self-contained, i.e. were it to be executed in a real TWAMP implementation it would lead to a correctly configured test session. A more elaborated example, which also includes authentication parameters, is provided in Appendix A.
The following configuration example shows a Control-Client with clientAdminState enabled. In a real implementation this would permit the Control-Client functional entity to initiate TWAMP control connections and test sessions.
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampClient> <clientAdminState>True</clientAdminState> </twampClient> </twamp>
The following configuration example shows a Control-Client with two instances of twampClientCtrlConnection, one called "RouterA" and another called "RouterB". Each control connection is to a different Server. The control connection named "RouterA" has two test session requests. The control connection with name "RouterB" has no test session requests.
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampClient> <twampClientCtrlConnection> <ctrlConnectionName>RouterA</ctrlConnectionName> <clientIp>203.0.113.1</clientIp> <serverIp>203.0.113.2</serverIp> <twampSessionRequest> <testSessionName>Test1</testSessionName> <senderIp>10.1.1.1</senderIp> <senderUdpPort>4000</senderUdpPort> <reflectorIp>10.1.1.2</reflectorIp> <reflectorUdpPort>5000</reflectorUdpPort> <startTime>0</startTime> </twampSessionRequest> <twampSessionRequest> <testSessionName>Test2</testSessionName> <senderIp>203.0.113.1</senderIp> <senderUdpPort>4001</senderUdpPort> <reflectorIp>203.0.113.2</reflectorIp> <reflectorUdpPort>5001</reflectorUdpPort> <startTime>0</startTime> </twampSessionRequest> </twampClientCtrlConnection> <twampClientCtrlConnection> <ctrlConnectionName>RouterB</ctrlConnectionName> <clientIp>203.0.113.1</clientIp> <serverIp>203.0.113.3</serverIp> </twampClientCtrlConnection> </twampClient> </twamp>
This configuration example shows a Server with serverAdminState enabled, which permits the device to respond to TWAMP control connections and test sessions.
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampServer> <serverAdminState>True</serverAdminState> </twampServer> </twamp>
The following example presents a Server with the control connection corresponding to the control connection name (ctrlConnectionName) "RouterA" presented in Section 6.1.
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampServer> <twampServerCtrlConnection> <clientIp>203.0.113.1</clientIp> <clientTcpPort>16341</clientTcpPort> <serverIp>203.0.113.2</serverIp> <serverTcpPort>862</serverTcpPort> <serverCtrlConnectionState>active</serverCtrlConnectionState> </twampServerCtrlConnection> </twampServer> </twamp>
The following configuration example shows a Session-Sender with the two test sessions presented earlier in Section 6.1.
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampSessionSender> <twampSenderTestSession> <testSessionName>Test1</testSessionName> <ctrlConnectionName>RouterA</ctrlConnectionName> // read-only <numberOfPackets>900</numberOfPackets> <packetDistribution> <fixedInterval>1</fixedInterval> <fixedIntervalUnits>seconds</fixedIntervalUnits> </packetDistribution> </twampSenderTestSession> <twampSenderTestSession> <testSessionName>Test2</testSessionName> <ctrlConnectionName>RouterA</ctrlConnectionName> // read-only <numberOfPackets>900</numberOfPackets> <packetDistribution> <lambda>1</lambda> <lambdaUnits>1</lambdaUnits> <maxInterval>2</maxInterval> <truncationPointunits>seconds</truncationPointunits> </packetDistribution> </twampSenderTestSession> </twampSessionSender> </twamp>
The following example shows the two Session-Reflector test sessions corresponding to the test sessions presented in Section 6.3.
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampSessionReflector> <twampReflectorTestSession> <sid>1232</sid> <senderIp>10.1.1.1</senderIp> <reflectorIp>10.1.1.2</reflectorIp> <senderUdpPort>4000</senderUdpPort> <reflectorUdpPort>5000</reflectorUdpPort> <parentConnectionClientIp> 203.0.113.1 </parentConnectionClientIp> <parentConnectionClientTcpPort> 16341 </parentConnectionClientTcpPort> <parentConnectionServerIp> 203.0.113.2 </parentConnectionServerIp> <parentConnectionServerTcpPort> 862 </parentConnectionServerTcpPort> <sentPackets>2</sentPackets> <rcvPackets>2</rcvPackets> <lastSentSeq>1</lastSentSeq> <lastRcvSeq>1</lastRcvSeq> </twampReflectorTestSession> <twampReflectorTestSession> <sid>178943</sid> <senderIp>203.0.113.1</senderIp> <reflectorIp>192.68.0.2</reflectorIp> <senderUdpPort>4001</senderUdpPort> <parentConnectionClientIp> 203.0.113.1 </parentConnectionClientIp> <parentConnectionClientTcpPort> 16341 </parentConnectionClientTcpPort> <parentConnectionServerIp> 203.0.113.2 </parentConnectionServerIp> <parentConnectionServerTcpPort> 862 </parentConnectionServerTcpPort> <reflectorUdpPort>5001</reflectorUdpPort> <sentPackets>21</sentPackets> <rcvPackets>21</rcvPackets> <lastSentSeq>20</lastSentSeq> <lastRcvSeq>20</lastRcvSeq> </twampReflectorTestSession> </twampSessionReflector> </twamp>
TBD
This document registers a URI in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made.
URI: urn:ietf:params:xml:ns:yang:ietf-twamp
Registrant Contact: The IPPM WG of the IETF.
XML: N/A, the requested URI is an XML namespace.
This document registers a YANG module in the YANG Module Names registry [RFC6020].
name: ietf-twamp
namespace: urn:ietf:params:xml:ns:yang:ietf-twamp
prefix: twamp
reference: RFC XXXX
Haoxing Shen contributed to the definition of the YANG module in Section 5.
Kostas Pentikousis is partially supported by FP7 UNIFY (http://fp7-unify.eu), a research project partially funded by the European Community under the Seventh Framework Program (grant agreement no. 619609). The views expressed here are those of the authors only. The European Commission is not liable for any use that may be made of the information in this document.
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. |
[RFC3688] | Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688, January 2004. |
[RFC4656] | Shalunov, S., Teitelbaum, B., Karp, A., Boote, J. and M. Zekauskas, "A One-way Active Measurement Protocol (OWAMP)", RFC 4656, September 2006. |
[RFC5357] | Hedayat, K., Krzanowski, R., Morton, A., Yum, K. and J. Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", RFC 5357, October 2008. |
[RFC6020] | Bjorklund, M., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, October 2010. |
[RFC6038] | Morton, A. and L. Ciavattone, "Two-Way Active Measurement Protocol (TWAMP) Reflect Octets and Symmetrical Size Features", RFC 6038, October 2010. |
In this section we extend the example presented in Section 6 by configuring more fields such as authentication parameters, dscp values and so on.
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampClient> <clientAdminState>True</clientAdminState> <modePreferenceChain> <priority>0</priority> <mode>0x00000002</mode> </modePreferenceChain> <modePreferenceChain> <priority>1</priority> <mode>0x00000001</mode> </modePreferenceChain> <keychain> <keyid>KeyClient1ToRouterA</keyid> <secretKey>secret1</secretKey> </keychain> <keychain> <keyid>KeyForRouterB</keyid> <secretKey>secret2</secretKey> </keychain> <twampClientCtrlConnection> <ctrlConnectionName>RouterA</ctrlConnectionName> <clientIp>203.0.113.1</clientIp> <serverIp>203.0.113.2</serverIp> <dscp>32</dscp> <keyId>KeyClient1ToRouterA</keyId> <dkLen>1024</dkLen> <twampSessionRequest> <testSessionName>Test1</testSessionName> <senderIp>10.1.1.1</senderIp> <senderUdpPort>4000</senderUdpPort> <reflectorIp>10.1.1.2</reflectorIp> <reflectorUdpPort>5000</reflectorUdpPort> <paddingLength>0</paddingLength> <startTime>0</startTime> <testSessionState>ok</testSessionState> <sid>1232</sid> </twampSessionRequest> <twampSessionRequest> <testSessionName>Test2</testSessionName> <senderIp>203.0.113.1</senderIp> <senderUdpPort>4001</senderUdpPort> <reflectorIp>203.0.113.2</reflectorIp> <reflectorUdpPort>5001</reflectorUdpPort> <paddingLenth>32</paddingLenth> <startTime>0</startTime> <testSessionState>ok</testSessionState> <sid>178943</sid> </twampSessionRequest> </twampClientCtrlConnection> </twampClient> </twamp>
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampServer> <serverAdminState>True</serverAdminState> <servwait>1800</servwait> <dscp>32</dscp> <modes>0x00000003</modes> <dkLen>1024</dkLen> <count>256</count> <keychain> <keyid>KeyClient1ToRouterA</keyid> <secretKey>secret1</secretKey> </keychain> <keychain> <keyid>KeyClient10ToRouterA</keyid> <secretKey>secret10</secretKey> </keychain> <twampServerCtrlConnection> <clientIp>203.0.113.1</clientIp> <clientTcpPort>16341</clientTcpPort> <serverIp>203.0.113.2</serverIp> <serverTcpPort>862</serverTcpPort> <serverCtrlConnectionState>active</serverCtrlConnectionState> <dscp>32</dscp> <selectedMode>0x00000002</selectedMode> <keyId>KeyClient1ToRouterA</keyId> <count>1024</count> </twampServerCtrlConnection> </twampServer> </twamp>
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampSessionSender> <twampSenderTestSession> <testSessionName>Test1</testSessionName> <ctrlConnectionName>RouterA</ctrlConnectionName> // read-only <dscp>32</dscp> <fillMode>zero</fillMode> <numberOfPackets>900</numberOfPackets> <packetDistribution> <fixedInterval>1</fixedInterval> <fixedIntervalUnits>seconds</fixedIntervalUnits> </packetDistribution> <senderSessionState>Active</senderSessionState> <sentPackets>2</sentPackets> <rcvPackets>2</rcvPackets> <lastSentSeq>1</lastSentSeq> <lastRcvSeq>1</lastRcvSeq> </twampSenderTestSession> <twampSenderTestSession> <testSessionName>Test2</testSessionName> <ctrlConnectionName>RouterA</ctrlConnectionName> // read-only <dscp>32</dscp> <fillMode>random</fillMode> <numberOfPackets>900</numberOfPackets> <packetDistribution> <lambda>1</lambda> <lambdaUnits>1</lambdaUnits> <maxInterval>2</maxInterval> <truncationPointunits>seconds</truncationPointunits> </packetDistribution> <senderSessionState>Active</senderSessionState> <sentPackets>21</sentPackets> <rcvPackets>21</rcvPackets> <lastSentSeq>20</lastSentSeq> <lastRcvSeq>20</lastRcvSeq> </twampSenderTestSession> </twampSessionSender> </twamp>
<twamp xmlns="urn:ietf:params:xml:ns:yang:ietf-twamp"> <twampSessionReflector> <twampReflectorTestSession> <sid>1232</sid> <senderIp>10.1.1.1</senderIp> <reflectorIp>10.1.1.2</reflectorIp> <senderUdpPort>4000</senderUdpPort> <reflectorUdpPort>5000</reflectorUdpPort> <parentConnectionClientIp> 203.0.113.1 </parentConnectionClientIp> <parentConnectionClientTcpPort> 16341 </parentConnectionClientTcpPort> <parentConnectionServerIp> 203.0.113.2 </parentConnectionServerIp> <parentConnectionServerTcpPort> 862 </parentConnectionServerTcpPort> <dscp>32</dscp> <sentPackets>2</sentPackets> <rcvPackets>2</rcvPackets> <lastSentSeq>1</lastSentSeq> <lastRcvSeq>1</lastRcvSeq> </twampReflectorTestSession> <twampReflectorTestSession> <sid>178943</sid> <senderIp>203.0.113.1</senderIp> <reflectorIp>192.68.0.2</reflectorIp> <senderUdpPort>4001</senderUdpPort> <parentConnectionClientIp> 203.0.113.1 </parentConnectionClientIp> <parentConnectionClientTcpPort> 16341 </parentConnectionClientTcpPort> <parentConnectionServerIp> 203.0.113.2 </parentConnectionServerIp> <parentConnectionServerTcpPort> 862 </parentConnectionServerTcpPort> <reflectorUdpPort>5001</reflectorUdpPort> <dscp>32</dscp> <sentPackets>21</sentPackets> <rcvPackets>21</rcvPackets> <lastSentSeq>20</lastSentSeq> <lastRcvSeq>20</lastRcvSeq> </twampReflectorTestSession> </twampSessionReflector> </twamp>