Internet-Draft | GOST R 34.12-2015: Block Cipher "Kuznyec | January 2016 |
Dolmatov | Expires 3 August 2016 | [Page] |
This document is intended to be a source of information about the Russian Federal standard GOST R 34.12-2015 describing block cipher with block length of n=128 bits and key length k=256 bits, which is also referred as "Kuznyechik". This algorithm is one of the set of Russian cryptographic standard algorithms (called GOST algorithms).¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 4 July 2016.¶
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.¶
The Russian Federal standard [GOST3412-2015] specifies basic block ciphers used as cryptographic techniques for information processing and information protection including the provision of confidentiality, authenticity, and integrity of information during information transmission, processing and storage in computer-aided systems.¶
The cryptographic algorithms specified in this Standard are designed both for hardware and software implementation. They comply with modern cryptographic requirements, and put no restrictions on the confidentiality level of the protected information.¶
The Standard applies to developing, operation, and modernization of the information systems of various purposes.¶
The block cipher "Kuznyechik" [GOST3412-2015] was developed by the Center for Information Protection and Special Communications of the Federal Security Service of the Russian Federation with participation of the Open Joint-Stock company "Information Technologies and Communication Systems" (InfoTeCS JSC). GOST R 34.12-2015 was approved and introduced by Decree #749 of the Federal Agency on Technical Regulating and Metrology on 19.06.2015.¶
Terms and concepts in the standard comply with the following international standards:¶
The following terms and their corresponding definitions are used in the standard.¶
Definitions¶
block cipher: symmetric encipherment system with the property that the encryption algorithm operates on a block of plaintext, i.e. a string of bits of a defined length, to yield a block of ciphertext (Clause 2.7 of [ISO-IEC18033-1]),¶
key: sequence of symbols that controls the operation of a cryptographic transformation (e.g., encipherment, decipherment) (Clause 2.21 of [ISO-IEC18033-1]),¶
The following notations are used in the standard:¶
The bijective nonlinear mapping is a substitution: Pi = (Vec_8)Pi'(Int_8): V_8 -> V_8, where Pi': Z_(2^8) -> Z_(2^8). The values of the substitution Pi' are specified below as an array Pi' = (Pi'(0), Pi'(1), ... , Pi'(255)):¶
Pi' = ( 252, 238, 221, 17, 207, 110, 49, 22, 251, 196, 250, 218, 35, 197, 4, 77, 233, 119, 240, 219, 147, 46, 153, 186, 23, 54, 241, 187, 20, 205, 95, 193, 249, 24, 101, 90, 226, 92, 239, 33, 129, 28, 60, 66, 139, 1, 142, 79, 5, 132, 2, 174, 227, 106, 143, 160, 6, 11, 237, 152, 127, 212, 211, 31, 235, 52, 44, 81, 234, 200, 72, 171, 242, 42, 104, 162, 253, 58, 206, 204, 181, 112, 14, 86, 8, 12, 118, 18, 191, 114, 19, 71, 156, 183, 93, 135, 21, 161, 150, 41, 16, 123, 154, 199, 243, 145, 120, 111, 157, 158, 178, 177, 50, 117, 25, 61, 255, 53, 138, 126, 109, 84, 198, 128, 195, 189, 13, 87, 223, 245, 36, 169, 62, 168, 67, 201, 215, 121, 214, 246, 124, 34, 185, 3, 224, 15, 236, 222, 122, 148, 176, 188, 220, 232, 40, 80, 78, 51, 10, 74, 167, 151, 96, 115, 30, 0, 98, 68, 26, 184, 56, 130, 100, 159, 38, 65, 173, 69, 70, 146, 39, 94, 85, 47, 140, 163, 165, 125, 105, 213, 149, 59, 7, 88, 179, 64, 134, 172, 29, 247, 48, 55, 107, 228, 136, 217, 231, 137, 225, 27, 131, 73, 76, 63, 248, 254, 141, 83, 170, 144, 202, 216, 133, 97, 32, 113, 103, 164, 45, 43, 9, 91, 203, 155, 37, 208, 190, 229, 108, 82, 89, 166, 116, 210, 230, 244, 180, 192, 209, 102, 175, 194, 57, 75, 99, 182).¶
Pi^(-1) is the inverse of Pi, the values of the substitution Pi^(-1)' are specified below as an array Pi^(-1)' = (Pi^(-1)'(0), Pi^(-1)'(1), ... , Pi^(-1)'(255)):¶
Pi^(-1)' = ( 165, 45, 50, 143, 14, 48, 56, 192, 84, 230, 158, 57, 85, 126, 82, 145, 100, 3, 87, 90, 28, 96, 7, 24, 33, 114, 168, 209, 41, 198, 164, 63, 224, 39, 141, 12, 130, 234, 174, 180, 154, 99, 73, 229, 66, 228, 21, 183, 200, 6, 112, 157, 65, 117, 25, 201, 170, 252, 77, 191, 42, 115, 132, 213, 195, 175, 43, 134, 167, 177, 178, 91, 70, 211, 159, 253, 212, 15, 156, 47, 155, 67, 239, 217, 121, 182, 83, 127, 193, 240, 35, 231, 37, 94, 181, 30, 162, 223, 166, 254, 172, 34, 249, 226, 74, 188, 53, 202, 238, 120, 5, 107, 81, 225, 89, 163, 242, 113, 86, 17, 106, 137, 148, 101, 140, 187, 119, 60, 123, 40, 171, 210, 49, 222, 196, 95, 204, 207, 118, 44, 184, 216, 46, 54, 219, 105, 179, 20, 149, 190, 98, 161, 59, 22, 102, 233, 92, 108, 109, 173, 55, 97, 75, 185, 227, 186, 241, 160, 133, 131, 218, 71, 197, 176, 51, 250, 150, 111, 110, 194, 246, 80, 255, 93, 169, 142, 23, 27, 151, 125, 236, 88, 247, 31, 251, 124, 9, 13, 122, 103, 69, 135, 220, 232, 79, 29, 78, 4, 235, 248, 243, 62, 61, 189, 138, 136, 221, 205, 11, 19, 152, 2, 147, 128, 144, 208, 36, 52, 203, 237, 244, 206, 153, 16, 68, 64, 146, 58, 1, 38, 18, 26, 72, 104, 245, 129, 139, 199, 214, 32, 10, 8, 0, 76, 215, 116 ).¶
The linear transformation is denoted by l: (V_8)^16 -> V_8, and defined as:¶
l(a_15,...,a_0) = nabla(148*delta(a_15) + 32*delta(a_15) + 133*delta(a_13) + 16*delta(a_12) + 194*delta(a_11) + 192*delta(a_10) + 1*delta(a_9) + 251*delta(a_8) + 1*delta(a_7) + 192*delta(a_6) + 194*delta(a_5) + 16*delta(a_4) + 133*delta(a_3) + 32*delta(a_2) + 148*delta(a_1) +1*delta(a_0)),¶
for all a_i belonging to V_8, i = 0, 1, ..., 15, where the addition and multiplication operations are in the field Q, and constants are elements of the field as defined above.¶
The following transformations are applicable for encryption and decryption algorithms:¶
Key schedule uses round constants C_i belonging to V_128, i=1, 2, ..., 32, defined as¶
C_i=L(Vec_128(i)), i=1,2,...,32.¶
Round keys K_i, i=1, 2, ..., 10 are derived from key K=k_255||...||k_0 belonging to V_256, k_i belongs to V_1, i=0, 1, ..., 255, as follows:¶
K_1=k_255||...||k_128; K_2=k_127||...||k_0; (K_(2i+1),K_(2i+2))=F[C_(8(i-1)+8)]... F[C_(8(i-1)+1)](K_(2i-1),K_(2i)), i=1,2,3,4.¶
Depending on the values of round keys K_1,...,K_10, the encryption algorithm is a substitution E_(K_1,...,K_10) defined as follows:¶
E_(K_1,...,K_10)(a)=X[K_10]LSX[K_9]...LSX[K_2]LSX[K_1](a),¶
where a belongs to V_128.¶
Depending on the values of round keys K_1,...,K_10, the decryption algorithm is a substitution D_(K_1,...,K_10) defined as follows:¶
D_(K_1,...,K_10)(a)=X[K_1]L^(-1)S^(-1)X[K_2]...L^(-1)S^(-1)X[K_9] L^(-1)S^(-1)X[K_10](a),¶
where a belongs to V_128.¶
This section is for information only and is not a normative part of the standard.¶
S(ffeeddccbbaa99881122334455667700) = b66cd8887d38e8d77765aeea0c9a7efc, S(b66cd8887d38e8d77765aeea0c9a7efc) = 559d8dd7bd06cbfe7e7b262523280d39, S(559d8dd7bd06cbfe7e7b262523280d39) = 0c3322fed531e4630d80ef5c5a81c50b, S(0c3322fed531e4630d80ef5c5a81c50b) = 23ae65633f842d29c5df529c13f5acda.¶
R(00000000000000000000000000000100) = 94000000000000000000000000000001, R(94000000000000000000000000000001) = a5940000000000000000000000000000, R(a5940000000000000000000000000000) = 64a59400000000000000000000000000, R(64a59400000000000000000000000000) = 0d64a594000000000000000000000000.¶
L(64a59400000000000000000000000000) = d456584dd0e3e84cc3166e4b7fa2890d, L(d456584dd0e3e84cc3166e4b7fa2890d) = 79d26221b87b584cd42fbc4ffea5de9a, L(79d26221b87b584cd42fbc4ffea5de9a) = 0e93691a0cfc60408b7b68f66b513c13, L(0e93691a0cfc60408b7b68f66b513c13) = e6a8094fee0aa204fd97bcb0b44b8580.¶
In this test example, the key is equal to:¶
K = 8899aabbccddeeff0011223344556677fedcba98765432100123456789abcdef. K_1 = 8899aabbccddeeff0011223344556677, K_2 = fedcba98765432100123456789abcdef. C_1 = 6ea276726c487ab85d27bd10dd849401, X[C_1](K_1) = e63bdcc9a09594475d369f2399d1f276, SX[C_1](K_1) = 0998ca37a7947aabb78f4a5ae81b748a, LSX[C_1](K_1) = 3d0940999db75d6a9257071d5e6144a6, F[C_1](K_1, K_2) = = (c3d5fa01ebe36f7a9374427ad7ca8949, 8899aabbccddeeff0011223344556677). C_2 = dc87ece4d890f4b3ba4eb92079cbeb02, F [C_2]F [C_1](K_1, K_2) = (37777748e56453377d5e262d90903f87, c3d5fa01ebe36f7a9374427ad7ca8949). C_3 = b2259a96b4d88e0be7690430a44f7f03, F[C_3]...F[C_1](K_1, K_2) = (f9eae5f29b2815e31f11ac5d9c29fb01, 37777748e56453377d5e262d90903f87). C_4 = 7bcd1b0b73e32ba5b79cb140f2551504, F[C_4]...F[C_1](K_1, K_2) = (e980089683d00d4be37dd3434699b98f, f9eae5f29b2815e31f11ac5d9c29fb01). C_5 = 156f6d791fab511deabb0c502fd18105, F[C_5]...F[C_1](K_1, K_2) = (b7bd70acea4460714f4ebe13835cf004, e980089683d00d4be37dd3434699b98f). C_6 = a74af7efab73df160dd208608b9efe06, F[C_6]...F[C_1](K_1, K_2) = (1a46ea1cf6ccd236467287df93fdf974, b7bd70acea4460714f4ebe13835cf004). C_7 = c9e8819dc73ba5ae50f5b570561a6a07, F[C_7]...F [C_1](K_1, K_2) = (3d4553d8e9cfec6815ebadc40a9ffd04, 1a46ea1cf6ccd236467287df93fdf974) C_8 = f6593616e6055689adfba18027aa2a08, (K_3, K_4) = F [C_8]...F [C_1](K_1, K_2) = (db31485315694343228d6aef8cc78c44, 3d4553d8e9cfec6815ebadc40a9ffd04).¶
The round keys K_i, i = 1, 2, ..., 10, take the following values:¶
K_1 = 8899aabbccddeeff0011223344556677, K_2 = fedcba98765432100123456789abcdef, K_3 = db31485315694343228d6aef8cc78c44, K_4 = 3d4553d8e9cfec6815ebadc40a9ffd04, K_5 = 57646468c44a5e28d3e59246f429f1ac, K_6 = bd079435165c6432b532e82834da581b, K_7 = 51e640757e8745de705727265a0098b1, K_8 = 5a7925017b9fdd3ed72a91a22286f984, K_9 = bb44e25378c73123a5f32f73cdb6e517, K_10 = 72e9dd7416bcf45b755dbaa88e4a4043.¶
In this test example, encryption is performed on the round keys specified in clause 5.4. Let the plaintext be¶
a = 1122334455667700ffeeddccbbaa9988,¶
then¶
X[K_1](a) = 99bb99ff99bb99ffffffffffffffffff, SX[K_1](a) = e87de8b6e87de8b6b6b6b6b6b6b6b6b6, LSX[K_1](a) = e297b686e355b0a1cf4a2f9249140830, LSX[K_2]LSX[K_1](a) = 285e497a0862d596b36f4258a1c69072, LSX[K_3]...LSX[K_1](a) = 0187a3a429b567841ad50d29207cc34e, LSX[K_4]...LSX[K_1](a) = ec9bdba057d4f4d77c5d70619dcad206, LSX[K_5]...LSX[K_1](a) = 1357fd11de9257290c2a1473eb6bcde1, LSX[K_6]...LSX[K_1](a) = 28ae31e7d4c2354261027ef0b32897df, LSX[K_7]...LSX[K_1](a) = 07e223d56002c013d3f5e6f714b86d2d, LSX[K_8]...LSX[K_1](a) = cd8ef6cd97e0e092a8e4cca61b38bf65, LSX[K_9]...LSX[K_1](a) = 0d8e40e4a800d06b2f1b37ea379ead8e.¶
Then the ciphertext is¶
b = X[K_10]LSX[K_9]...LSX[K_1](a) = 7f679d90bebc24305a468d42b9d4edcd.¶
In this test example, decryption is performed on the round keys specified in clause 5.4. Let the ciphertext be¶
b = 7f679d90bebc24305a468d42b9d4edcd,¶
then¶
X[K_10](b) = 0d8e40e4a800d06b2f1b37ea379ead8e, L^(-1)X[K_10](b) = 8a6b930a52211b45c5baa43ff8b91319, S^(-1)L^(-1)X[K_10](b) = 76ca149eef27d1b10d17e3d5d68e5a72, S^(-1)L^(-1)X[K_9]S^(-1)L^(-1)X[K_10](b) = 5d9b06d41b9d1d2d04df7755363e94a9, S^(-1)L^(-1)X[K_8]...S^(-1)L^(-1)X[K_10](b) = 79487192aa45709c115559d6e9280f6e, S^(-1)L^(-1)X[K_7]...S^(-1)L^(-1)X[K_10](b) = ae506924c8ce331bb918fc5bdfb195fa, S^(-1)L^(-1)X[K_6]...S^(-1)L^(-1)X[K_10](b) = bbffbfc8939eaaffafb8e22769e323aa, S^(-1)L^(-1)X[K_5]...S^(-1)L^(-1)X[K_10](b) = 3cc2f07cc07a8bec0f3ea0ed2ae33e4a, S^(-1)L^(-1)X[K_4]...S^(-1)L^(-1)X[K_10](b) = f36f01291d0b96d591e228b72d011c36, S^(-1)L^(-1)X[K_3]...S^(-1)L^(-1)X[K_10](b) = 1c4b0c1e950182b1ce696af5c0bfc5df, S^(-1)L^(-1)X[K_2]...S^(-1)L^(-1)X[K_10](b) = 99bb99ff99bb99ffffffffffffffffff.¶
Then the plaintext is¶
a = X[K_1]S^(-1)L^(-1)X[K_2]...S^(-1)L^(-1)X[K_10](b) = 1122334455667700ffeeddccbbaa9988.¶
This entire document is about security considerations.¶
This document has no IANA considerations.¶