Routing area | S. Hegde |
Internet-Draft | K. Arora |
Intended status: Standards Track | M. Srivastava |
Expires: January 4, 2020 | Juniper Networks Inc. |
July 3, 2019 |
Label Switched Path (LSP) Ping/Traceroute for Segment Routing (SR) Egress Peer engineering Segment Identifiers (SIDs) with MPLS Data Planes
draft-hegde-mpls-spring-epe-oam-02
Egress Peer Engineering is an application of Segment Routing to solve the problem of egress peer selection. The SR-based BGP-EPE solution allows a centralized (Software Defined Network, SDN)controller to program any egress peer. The EPE solution requires a node to program PeerNodeSID, PeerAdjSID, PeerSetSID as described in [I-D.ietf-spring-segment-routing-central-epe]. This document provides new sub-TLVs for EPE SIDs that would be used in Target stack TLV (Type 1) as defined in [RFC8029] for the EPE SIDs.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 4, 2020.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Egress Peer Engineering (EPE) as defined in [I-D.ietf-spring-segment-routing-central-epe] is an effective mechanism to select the egress peer link based on different criteria. The EPE SIDs provide means to represent egress peer links. Many network deployments have built their networks consisting of multiple Autonomous Systems either for ease of operations or as a result of network mergers and acquisitons. The inter-AS links connecting the two Autonomous Systems could be traffic engineered using EPE-SIDs in this case as well. It is important to be able to validate the control plane to forwarding plane synchronization for these SIDs so that any anomaly can be detected easily by the operator.
This document provides Target FEC stack TLV definitions for EPE SIDs. Other procedures for mpls ping and traceroute as defined in [RFC8287] are applicable for EPE-SIDs as well.
As described in [RFC8287] sec 5, 3 new type of sub-TLVs for the Target FEC Stack TLV are defined for the Target FEC stack TLV corresponding to each label in the label stack
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Type = TBD | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local AS Number (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote As Number (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local BGP router ID (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote BGP Router ID (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local Interface address (4/6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote Interface address (4/6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: PeerAdjSID Sub-TLV
Type : TBD
Length : variable based on ipv4/ipv6 interface address
Local AS Number :
4 octet unsigned integer representing the Member ASN inside the Confederation.[RFC5065]. The AS number corresponds to the AS to which PeerAdjSID advertising node belongs to.
Remote AS Number :
4 octet unsigned integer representing the Member ASN inside the Confederation.[RFC5065]. The AS number corresponds to the AS of the remote node for which the PeerAdjSID is advertised.
Local BGP Router ID :
4 octet unsigned integer of the advertising node representing the BGP Identifier as defined in [RFC4271] and [RFC6286].
Remote BGP Router ID :
4 octet unsigned integer of the receiving node representing the BGP Identifier as defined in [RFC4271] and [RFC6286].
Local Interface Address :
In case of PeerAdjSID BGP session IPv4/IPv6 local address shouldbe specified in this field. For IPv4,this field is 4 octets; for IPv6, this field is 16 octets.
Remote Interface Address :
In case of PeerAdjSID BGP session IPv4/IPv6 remote address should be specified in this field. For IPv4,this field is 4 octets; for IPv6, this field is 16 octets.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Type = TBD | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local AS Number (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote As Number (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local BGP router ID (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote BGP Router ID (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | No.of interface pairs |AF| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local Interface address1 (4/6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote Interface address1 (4/6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local Interface address2 (4/6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ...... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: PeerNodeSID Sub-TLV
Type : TBD
Length : variable based on ipv4/ipv6 interface address
Local AS Number :
4 octet unsigned integer representing the Member ASN inside the Confederation.[RFC5065]. The AS number corresponds to the AS to which PeerNodeSID advertising node belongs to.
Remote AS Number :
4 octet unsigned integer representing the Member ASN inside the Confederation.[RFC5065]. The AS number corresponds to the AS of the remote node for which the PeerNodeSID is advertised.
Local BGP Router ID :
4 octet unsigned integer of the advertising node representing the BGP Identifier as defined in [RFC4271] and [RFC6286].
Remote BGP Router ID :
4 octet unsigned integer of the receiving node representing the BGP Identifier as defined in [RFC4271] and [RFC6286].
Number of interface pairs:
There may be a number of parallel interfaces and few or all of them may be used for the PeerNodeSID. It is very useful to traverse all the links that the the PeerNodeSID represents and ensure connectivity. This field carries number of interface pairs the PeerNode SID corresponds to.
AF flag:
0 represents IPv4 address family.
1 represents IPv6 address family.
Local Interface Address :
In case of PeerNodeSID, the interface local address ipv4/ipv6 which corresponds to the PeerNodeSID MUST be specified. For IPv4,this field is 4 octets; for IPv6, this field is 16 octets.
Remote Interface Address :
In case of PeerNodeSID, the interface remote address ipv4/ipv6 which corresponds to the PeerNodeSID MUST be specified. For IPv4,this field is 4 octets; for IPv6, this field is 16 octets.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Type = TBD | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local AS Number (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local BGP router ID (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | No.of elements in set | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote As Number (4 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote BGP Router ID (4 octets) | ++-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-++ | No.of interface pairs |AF| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local Interface address1 (4/6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Remote Interface address1 (4/6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Local Interface address2 (4/6 octets) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ...... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: PeerSetSID Sub-TLV
Type : TBD
Length : variable based on ipv4/ipv6 interface address
Local AS Number :
4 octet unsigned integer representing the Member ASN inside the Confederation.[RFC5065]. The AS number corresponds to the AS to which PeerSetSID advertising node belongs to.
Remote AS Number :
4 octet unsigned integer representing the Member ASN inside the Confederation.[RFC5065]. The AS number corresponds to the AS of the remote node for which the PeerSetSID is advertised.
Advertising BGP Router ID :
4 octet unsigned integer of the advertising node representing the BGP Identifier as defined in [RFC4271] and [RFC6286].
Receiving BGP Router ID :
4 octet unsigned integer of the receiving node representing the BGP Identifier as defined in [RFC4271] and [RFC6286].
Number of interface pairs:
There may be a number of parallel interfaces and few or all of them may be used for the PeerNodeSID. It is very useful to traverse all the links that the the PeerNodeSID represents and ensure connectivity. This field carries number of interface pairs the PeerNode SID corresponds to.
AF flag:
0 represents IPv4 address family.
1 represents IPv6 address family.
Local Interface Address :
In case of PeerNodeSID/PeerAdjSID, the interface local address ipv4/ipv6 which corresponds to the PeerNodeSID/PeerAdjSID MUST be specified. For IPv4,this field is 4 octets; for IPv6, this field is 16 octets.
Remote Interface Address :
In case of PeerNodeSID/PeerAdjSID, the interface remote address ipv4/ipv6 which corresponds to the PeerNodeSID/PeerAdjSID MUST be specified. For IPv4,this field is 4 octets; for IPv6, this field is 16 octets.
The EPE SIDs are advertised for egress links for Egress Peer Engineering purposes or for inter-As links between co-operating ASes. When co-operating domains are involved, they can allow the packets arriving on trusted interfaces to reach the control plane and get processed. When EPE SIDs which are created for egress TE links where the neighbor AS is an independent entity, it may not allow packets arriving from external world to reach the control plane. In such deployments mpls OAM packets will be dropped by the neighboring AS.
New Target FEC stack sub-TLV from the "sub-TLVs for TLV types 1,16 and 21" subregistry of the "Multi-Protocol Label switching (MPLs) Label Switched Paths 9LSPs) Ping parameters" registry
[I-D.ietf-spring-segment-routing-central-epe] | Filsfils, C., Previdi, S., Dawra, G., Aries, E. and D. Afanasiev, "Segment Routing Centralized BGP Egress Peer Engineering", Internet-Draft draft-ietf-spring-segment-routing-central-epe-10, December 2017. |
[RFC8287] | Kumar, N., Pignataro, C., Swallow, G., Akiya, N., Kini, S. and M. Chen, "Label Switched Path (LSP) Ping/Traceroute for Segment Routing (SR) IGP-Prefix and IGP-Adjacency Segment Identifiers (SIDs) with MPLS Data Planes", RFC 8287, DOI 10.17487/RFC8287, December 2017. |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC8029] | Kompella, K., Swallow, G., Pignataro, C., Kumar, N., Aldrin, S. and M. Chen, "Detecting Multiprotocol Label Switched (MPLS) Data-Plane Failures", RFC 8029, DOI 10.17487/RFC8029, March 2017. |