AVTCORE WG | M. Westerlund |
Internet-Draft | Ericsson |
Updates: 3550, 3551 (if approved) | C. Perkins |
Intended status: Standards Track | University of Glasgow |
Expires: June 20, 2016 | J. Lennox |
Vidyo | |
December 18, 2015 |
Sending Multiple Types of Media in a Single RTP Session
draft-ietf-avtcore-multi-media-rtp-session-13
This document specifies how an RTP session can contain RTP Streams with media from multiple media types such as audio, video, and text. This has been restricted by the RTP Specification, and thus this document updates RFC 3550 and RFC 3551 to enable this behaviour for applications that satisfy the applicability for using multiple media types in a single RTP session.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on June 20, 2016.
Copyright (c) 2015 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The Real-time Transport Protocol [RFC3550] was designed to use separate RTP sessions to transport different types of media. This implies that different transport layer flows are used for different RTP streams. For example, a video conferencing application might send audio and video traffic RTP flows on separate UDP ports. With increased use of network address/port translation, firewalls, and other middleboxes it is, however, becoming difficult to establish multiple transport layer flows between endpoints. Hence, there is pressure to reduce the number of concurrent transport flows used by RTP applications.
This memo updates [RFC3550] and [RFC3551] to allow multiple media types to be sent in a single RTP session in certain cases, thereby reducing the number of transport layer flows that are needed. It makes no changes to RTP behaviour when using multiple RTP streams containing media of the same type (e.g., multiple audio streams or multiple video streams) in a single RTP session. However [I-D.ietf-avtcore-rtp-multi-stream] provides important clarifications to RTP behaviour in that case.
This memo is structured as follows. Section 2 defines terminology. Section 3 further describes the background to, and motivation for, this memo and Section 4 describes the scenarios where this memo is applicable. Section 5 discusses issues arising from the base RTP and RTCP specification when using multiple types of media in a single RTP session, while Section 6 considers the impact of RTP extensions. We discuss signalling in Section 7. Finally, security considerations are discussed in Section 8.
The terms Encoded Stream, Endpoint, Media Source, RTP Session, and RTP Stream are used as defined in [RFC7656]. We also define the following terms:
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
RTP was designed to support multimedia sessions, containing multiple types of media sent simultaneously, by using multiple transport layer flows. The existence of network address translators, firewalls, and other middleboxes complicates this, however, since a mechanism is needed to ensure that all the transport layer flows needed by the application can be established. This has three consequences:
Using fewer transport layer flows can hence be seen to reduce the risk of communication failure, and can lead to improved reliability and performance.
One of the benefits of using multiple transport layer flows is that it makes it easy to use network layer quality of service (QoS) mechanisms to give differentiated performance for different flows. However, we note that many RTP-using application don't use network QoS features, and don't expect or desire any separation in network treatment of their media packets, independent of whether they are audio, video or text. When an application has no such desire, it doesn't need to provide a transport flow structure that simplifies flow based QoS.
Given the above issues, it might seem appropriate for RTP-based applications to send all their RTP streams bundled into one RTP session, running over a single transport layer flow. However, this is prohibited by the RTP specification, because the design of RTP makes certain assumptions that can be incompatible with sending multiple media types in a single RTP session. Specifically, the RTP control protocol (RTCP) timing rules assume that all RTP media flows in a single RTP session have broadly similar RTCP reporting and feedback requirements, which can be problematic when different types of media are multiplexed together. Various RTP extensions also make assumptions about SSRC use and RTCP reporting that are incompatible with sending different media types in a single RTP session.
This memo updates [RFC3550] and [RFC3551] to allow RTP sessions to contain more than one media type in certain circumstances, and gives guidance on when it is safe to send multiple media types in a single RTP session.
This specification has limited applicability, and anyone intending to use it needs to ensure that their application and use case meets the following criteria:
This section defines what needs to be done or avoided to make an RTP session with multiple media types function without issues.
Section 5.2 of "RTP: A Transport Protocol for Real-Time Applications" [RFC3550] states:
This specification changes both of these sentences. The first sentence is changed to:
The second sentence is changed to:
Second paragraph of Section 6 in RTP Profile for Audio and Video Conferences with Minimal Control [RFC3551] says:
This specification's purpose is to override that existing SHALL NOT under certain conditions. Thus this sentence also has to be changed to allow for multiple media type's payload types in the same session. The sentence containing "SHALL NOT" in the above paragraph is changed to:
RFC-Editor Note: Please replace RFCXXXX with the RFC number of this specification when assigned.
When receiving packets from a transport layer flow, an endpoint will first separate the RTP and RTCP packets from the non-RTP packets, and pass them to the RTP/RTCP protocol handler. The RTP and RTCP packets are then demultiplexed based on their SSRC into the different RTP streams. For each RTP stream, incoming RTCP packets are processed, and the RTP payload type is used to select the appropriate media decoder. This process remains the same irrespective of whether multiple media types are sent in a single RTP session or not.
As explained below, it is important to note that the RTP payload type is never used to distinguish RTP streams. The RTP packets are demultiplexed into RTP streams based on their SSRC, then the RTP payload type is used to select the correct media decoding pathway for each RTP stream.
An SSRC in an RTP session can change between media formats of the same type, subject to certain restrictions [RFC7160], but MUST NOT change media type during its lifetime. For example, an SSRC can change between different audio formats, but cannot start sending audio then change to sending video. The lifetime of an SSRC ends when an RTCP BYE packet for that SSRC is sent, or when it ceases transmission for long enough that it times out for the other participants in the session.
The main motivation is that a given SSRC has its own RTP timestamp and sequence number spaces. The same way that you can't send two encoded streams of audio with the same SSRC, you can't send one encoded audio and one encoded video stream with the same SSRC. Each encoded stream when made into an RTP stream needs to have the sole control over the sequence number and timestamp space. If not, one would not be able to detect packet loss for that particular encoded stream. Nor can one easily determine which clock rate a particular SSRCs timestamp will increase with. For additional arguments why RTP payload type based multiplexing of multiple media sources doesn't work, see [I-D.ietf-avtcore-multiplex-guidelines].
Within an RTP session where multiple media types have been configured for use, an SSRC can only send one type of media during its lifetime (i.e., it can switch between different audio codecs, since those are both the same type of media, but cannot switch between audio and video). Different SSRCs MUST be used for the different media sources, the same way multiple media sources of the same media type already have to do. The payload type will inform a receiver which media type the SSRC is being used for. Thus the payload type MUST be unique across all of the payload configurations independent of media type that is used in the RTP session.
When sending multiple types of media that have different rates in a single RTP session, endpoints MUST follow the guidelines for handling RTCP described in Section 7 of [I-D.ietf-avtcore-rtp-multi-stream].
This section outlines known issues and incompatibilities with RTP and RTCP extensions when multiple media types are used in a single RTP sessions. Future extensions to RTP and RTCP need to consider, and document, any potential incompatibility.
The RTP Retransmission Payload Format [RFC4588] can operate in either SSRC-multiplexed mode or session-multiplex mode.
In SSRC-multiplexed mode, retransmitted RTP packets are sent in the same RTP session as the original packets, but use a different SSRC with the same RTCP SDES CNAME. If each endpoint sends only a single original RTP stream and a single retransmission RTP stream in the session, this is sufficient. If an endpoint sends multiple original and retransmission RTP streams, as would occur when sending multiple media types in a single RTP session, then each original RTP stream and the retransmission RTP stream have to be associated using heuristics. By having retransmission requests outstanding for only one SSRC not yet mapped, a receiver can determine the binding between original and retransmission RTP stream. Another alternative is the use of different RTP payload types, allowing the signalled "apt" (associated payload type) parameter of the RTP retransmission payload format to be used to associate retransmitted and original packets.
Session-multiplexed mode sends the retransmission RTP stream in a separate RTP session to the original RTP stream, but using the same SSRC for each, with association being done by matching SSRCs between the two sessions. This is unaffected by the use of multiple media types in a single RTP session, since each media type will be sent using a different SSRC in the original RTP session, and the same SSRCs can be used in the retransmission session, allowing the streams to be associated. This can be signalled using SDP with the BUNDLE [I-D.ietf-mmusic-sdp-bundle-negotiation] and FID grouping [RFC5888] extensions. These SDP extensions require each "m=" line to only be included in a single FID group, but the RTP retransmission payload format uses FID groups to indicate the m= lines that form an original and retransmission pair. Accordingly, when using the BUNDLE extension to allow multiple media types to be sent in a single RTP session, each original media source (m= line) that is retransmitted needs a corresponding m= line in the retransmission RTP session. In case there are multiple media lines for retransmission, these media lines will form an independent BUNDLE group from the BUNDLE group with the source streams.
An example SDP fragment showing the grouping structures is provided in Figure 1. This example is not legal SDP and only the most important attributes have been left in place. Note that this SDP is not an initial BUNDLE offer. As can be seen there are two bundle groups, one for the source RTP session and one for the retransmissions. Then each of the media sources are grouped with its retransmission flow using FID, resulting in three more groupings.
a=group:BUNDLE foo bar fiz a=group:BUNDLE zoo kelp glo a=group:FID foo zoo a=group:FID bar kelp a=group:FID fiz glo m=audio 10000 RTP/AVP 0 a=mid:foo a=rtpmap:0 PCMU/8000 m=video 10000 RTP/AVP 31 a=mid:bar a=rtpmap:31 H261/90000 m=video 10000 RTP/AVP 31 a=mid:fiz a=rtpmap:31 H261/90000 m=audio 40000 RTP/AVPF 99 a=rtpmap:99 rtx/90000 a=fmtp:99 apt=0;rtx-time=3000 a=mid:zoo m=video 40000 RTP/AVPF 100 a=rtpmap:100 rtx/90000 a=fmtp:199 apt=31;rtx-time=3000 a=mid:kelp m=video 40000 RTP/AVPF 100 a=rtpmap:100 rtx/90000 a=fmtp:199 apt=31;rtx-time=3000 a=mid:glo
Figure 1: SDP example of Session Multiplexed RTP Retransmission
The RTP Payload Format for Generic Forward Error Correction (FEC) [RFC5109] (and its predecessor [RFC2733]) can either send the FEC stream as a separate RTP stream, or it can send the FEC combined with the original RTP stream as a redundant encoding [RFC2198].
When sending FEC as a separate stream, the RTP Payload Format for generic FEC requires that FEC stream to be sent in a separate RTP session to the original stream, using the same SSRC, with the FEC stream being associated by matching the SSRC between sessions. The RTP session used for the original streams can include multiple RTP streams, and those RTP streams can use multiple media types. The repair session only needs one RTP Payload type to indicate FEC data, irrespective of the number of FEC streams sent, since the SSRC is used to associate the FEC streams with the original streams. Hence, it is RECOMMENDED that the FEC stream use the "application/ulpfec" media type for [RFC5109], and the "application/parityfec" media type for [RFC2733]. It is legal, but NOT RECOMMENDED, to send FEC streams using media specific payload format names (e.g., using both the "audio/ulpfec" and "video/ulpfec" payload formats for a single RTP session containing both audio and video flows), since this unnecessarily uses up RTP payload type values, and adds no value for demultiplexing since there might be multiple streams of the same media type).
The combination of an original RTP session using multiple media types with an associated generic FEC session can be signalled using SDP with the BUNDLE extension [I-D.ietf-mmusic-sdp-bundle-negotiation]. In this case, the RTP session carrying the FEC streams will be its own BUNDLE group. The m= line for each original stream and the m= line for the corresponding FEC stream are grouped using the SDP grouping framework using either the FEC-FR [RFC5956] grouping or, for backwards compatibility, the FEC [RFC4756] grouping. This is similar to the situation that arises for RTP retransmission with session multiplexing discussed in Section 6.1.
The Source-Specific Media Attributes [RFC5576] specification defines an SDP extension (the "FEC" semantic of the "ssrc-group" attribute) to signal FEC relationships between multiple RTP streams within a single RTP session. This cannot be used with generic FEC, since the FEC repair packets need to have the same SSRC value as the source packets being protected. There was work on an Unequal Layer Protection (ULP) extension to allow it be use FEC RTP streams within the same RTP Session as the source stream [I-D.lennox-payload-ulp-ssrc-mux].
When the FEC is sent as a redundant encoding, the considerations in Section 6.3 apply.
The RTP Payload Format for Redundant Audio [RFC2198] can be used to protect audio streams. It can also be used along with the generic FEC payload format to send original and repair data in the same RTP packets. Both are compatible with RTP sessions containing multiple media types.
This payload format requires each different redundant encoding use a different RTP payload type number. When used with generic FEC in sessions that contain multiple media types, this requires each media type to use a different payload type for the FEC stream. For example, if audio and text are sent in a single RTP session with generic ULP FEC sent as a redundant encoding for each, then payload types need to be assigned for FEC using the audio/ulpfec and text/ulpfec payload formats. If multiple original payload types are used in the session, different redundant payload types need to be allocated for each one. This has potential to rapidly exhaust the available RTP payload type numbers.
Establishing a single RTP session using multiple media types requires signalling. This signalling has to:
When using SDP signalling, the BUNDLE extension [I-D.ietf-mmusic-sdp-bundle-negotiation] is used to signal RTP sessions containing multiple media types.
RTP provides a range of strong security mechanisms that can be used to secure sessions [RFC7201], [RFC7202]. The majority of these are independent of the type of media sent in the RTP session; however it is important to check that the security mechanism chosen is compatible with all types of media sent within the session.
Sending multiple media types in a single RTP session will generally require that all use the same security mechanism, whereas media sent using different RTP sessions can be secured in different ways. When different media types have different security requirements, it might be necessary to send them using separate RTP sessions to meet those different requirements. This can have significant costs in terms of resource usage, session set-up time, etc.
This memo makes no request of IANA.
The authors would like to thank Christer Holmberg, Gunnar Hellström, Charles Eckel, Tolga Asveren, Warren Kumari, and Meral Shirazipour for their feedback on the document.
[I-D.ietf-avtcore-rtp-multi-stream] | Lennox, J., Westerlund, M., Wu, Q. and C. Perkins, "Sending Multiple RTP Streams in a Single RTP Session", Internet-Draft draft-ietf-avtcore-rtp-multi-stream-11, December 2015. |
[I-D.ietf-mmusic-sdp-bundle-negotiation] | Holmberg, C., Alvestrand, H. and C. Jennings, "Negotiating Media Multiplexing Using the Session Description Protocol (SDP)", Internet-Draft draft-ietf-mmusic-sdp-bundle-negotiation-23, July 2015. |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC3550] | Schulzrinne, H., Casner, S., Frederick, R. and V. Jacobson, "RTP: A Transport Protocol for Real-Time Applications", STD 64, RFC 3550, DOI 10.17487/RFC3550, July 2003. |
[RFC3551] | Schulzrinne, H. and S. Casner, "RTP Profile for Audio and Video Conferences with Minimal Control", STD 65, RFC 3551, DOI 10.17487/RFC3551, July 2003. |