Network Working Group | J. Chroboczek |
Internet-Draft | IRIF, University of Paris-Diderot |
Obsoletes: 6126,7557 (if approved) | D. Schinazi |
Intended status: Standards Track | Google LLC |
Expires: May 18, 2019 | November 14, 2018 |
The Babel Routing Protocol
draft-ietf-babel-rfc6126bis-07
Babel is a loop-avoiding distance-vector routing protocol that is robust and efficient both in ordinary wired networks and in wireless mesh networks. This document describes the Babel routing protocol, and obsoletes RFCs 6126 and 7557
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on May 18, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Babel is a loop-avoiding distance-vector routing protocol that is designed to be robust and efficient both in networks using prefix- based routing and in networks using flat routing ("mesh networks"), and both in relatively stable wired networks and in highly dynamic wireless networks.
The main property that makes Babel suitable for unstable networks is that, unlike naive distance-vector routing protocols [RIP], it strongly limits the frequency and duration of routing pathologies such as routing loops and black-holes during reconvergence. Even after a mobility event is detected, a Babel network usually remains loop-free. Babel then quickly reconverges to a configuration that preserves the loop-freedom and connectedness of the network, but is not necessarily optimal; in many cases, this operation requires no packet exchanges at all. Babel then slowly converges, in a time on the scale of minutes, to an optimal configuration. This is achieved by using sequenced routes, a technique pioneered by Destination-Sequenced Distance-Vector routing [DSDV].
More precisely, Babel has the following properties:
Babel has provisions for link quality estimation and for fairly arbitrary metrics. When configured suitably, Babel can implement shortest-path routing, or it may use a metric based, for example, on measured packet loss.
Babel nodes will successfully establish an association even when they are configured with different parameters. For example, a mobile node that is low on battery may choose to use larger time constants (hello and update intervals, etc.) than a node that has access to wall power. Conversely, a node that detects high levels of mobility may choose to use smaller time constants. The ability to build such heterogeneous networks makes Babel particularly adapted to the unmanaged and wireless environment.
Finally, Babel is a hybrid routing protocol, in the sense that it can carry routes for multiple network-layer protocols (IPv4 and IPv6), whichever protocol the Babel packets are themselves being carried over.
Babel has two limitations that make it unsuitable for use in some environments. First, Babel relies on periodic routing table updates rather than using a reliable transport; hence, in large, stable networks it generates more traffic than protocols that only send updates when the network topology changes. In such networks, protocols such as OSPF [OSPF], IS-IS [IS-IS], or the Enhanced Interior Gateway Routing Protocol (EIGRP) [EIGRP] might be more suitable.
Second, unless the optional algorithm described in Section 3.5.5 is implemented, Babel does impose a hold time when a prefix is retracted. While this hold time does not apply to the exact prefix being retracted, and hence does not prevent fast reconvergence should it become available again, it does apply to any shorter prefix that covers it. This may make those implementations of Babel that do not implement the optional algorithm described in Section 3.5.5 unsuitable for use in networks that implement automatic prefix aggregation.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Babel is a loop-avoiding distance vector protocol: it is based on the Bellman-Ford protocol, just like the venerable RIP [RIP], but includes a number of refinements that either prevent loop formation altogether, or ensure that a loop disappears in a timely manner and doesn't form again.
Conceptually, Bellman-Ford is executed in parallel for every source of routing information (destination of data traffic). In the following discussion, we fix a source S; the reader will recall that the same algorithm is executed for all sources.
For every pair of neighbouring nodes A and B, Babel computes an abstract value known as the cost of the link from A to B., written C(A, B). Given a route between any two (not necessarily neighbouring) nodes, the metric of the route is the sum of the costs of all the edges along the route. The goal of the routing algorithm is to compute, for every source S, the tree of routes of lowest metric to S.
Costs and metrics need not be integers. In general, they can be values in any algebra that satisfies two fairly general conditions (Section 3.5.2).
A Babel node periodically sends Hello messages to all of its neighbours; it also periodically sends an IHU ("I Heard You") message to every neighbour from which it has recently heard a Hello. From the information derived from Hello and IHU messages received from its neighbour B, a node A computes the cost C(A, B) of the link from A to B.
Every node A maintains two pieces of data: its estimated distance to S, written D(A), and its next-hop router to S, written NH(A). Initially, D(S) = 0, D(A) is infinite, and NH(A) is undefined.
Periodically, every node B sends to all of its neighbours a route update, a message containing D(B). When a neighbour A of B receives the route update, it checks whether B is its selected next hop; if that is the case, then NH(A) is set to B, and D(A) is set to C(A, B) + D(B). If that is not the case, then A compares C(A, B) + D(B) to its current value of D(A). If that value is smaller, meaning that the received update advertises a route that is better than the currently selected route, then NH(A) is set to B, and D(A) is set to C(A, B) + D(B).
A number of refinements to this algorithm are possible, and are used by Babel. In particular, convergence speed may be increased by sending unscheduled "triggered updates" whenever a major change in the topology is detected, in addition to the regular, scheduled updates. Additionally, a node may maintain a number of alternate routes, which are being advertised by neighbours other than its selected neighbour, and which can be used immediately if the selected route were to fail.
B 1 /| 1 / | S --- A |1 \ | 1 \| C
It is well known that a naive application of Bellman-Ford to distributed routing can cause transient loops after a topology change. Consider for example the following topology:
B 1 /| / | S A |1 \ | 1 \| C
Suppose now that the link between S and A fails:
When it detects the failure of the link, A switches its next hop to B (which is still advertising a route to S with metric 2), and advertises a metric equal to 3, and then advertises a new route with metric 3. This process of nodes changing selected neighbours and increasing their metric continues until the advertised metric reaches "infinity", a value larger than all the metrics that the routing protocol is able to carry.
Bellman-Ford is a very robust algorithm: its convergence properties are preserved when routers delay route acquisition or when they discard some updates. Babel routers discard received route announcements unless they can prove that accepting them cannot possibly cause a routing loop.
More formally, we define a condition over route announcements, known as the "feasibility condition", that guarantees the absence of routing loops whenever all routers ignore route updates that do not satisfy the feasibility condition. In effect, this makes Bellman-Ford into a family of routing algorithms, parameterised by the feasibility condition.
Many different feasibility conditions are possible. For example, BGP can be modelled as being a distance-vector protocol with a (rather drastic) feasibility condition: a routing update is only accepted when the receiving node's AS number is not included in the update's AS-Path attribute (note that BGP's feasibility condition does not ensure the absence of transient "micro-loops" during reconvergence).
Another simple feasibility condition, used in the Destination-Sequenced Distance-Vector (DSDV) routing protocol [DSDV] and in the Ad hoc On-Demand Distance Vector (AODV) protocol, stems from the following observation: a routing loop can only arise after a router has switched to a route with a larger metric than the route that it had previously selected. Hence, one could decide that a route is feasible only when its metric at the local node would be no larger than the metric of the currently selected route, i.e., an announcement carrying a metric D(B) is accepted by A when C(A, B) + D(B) <= D(A). If all routers obey this constraint, then the metric at every router is nonincreasing, and the following invariant is always preserved: if A has selected B as its successor, then D(B) < D(A), which implies that the forwarding graph is loop-free.
Babel uses a slightly more refined feasibility condition, derived from EIGRP [DUAL]. Given a router A, define the feasibility distance of A, written FD(A), as the smallest metric that A has ever advertised for S to any of its neighbours. An update sent by a neighbour B of A is feasible when the metric D(B) advertised by B is strictly smaller than A's feasibility distance, i.e., when D(B) < FD(A).
It is easy to see that this latter condition is no more restrictive than DSDV-feasibility. Suppose that node A obeys DSDV-feasibility; then D(A) is nonincreasing, hence at all times D(A) <= FD(A). Suppose now that A receives a DSDV-feasible update that advertises a metric D(B). Since the update is DSDV-feasible, C(A, B) + D(B) <= D(A), hence D(B) < D(A), and since D(A) <= FD(A), D(B) < FD(A).
B 1 / \ 1 / \ S A \ / 1 \ / 4 C
To see that it is strictly less restrictive, consider the following diagram, where A has selected the route through B, and D(A) = FD(A) = 2. Since D(C) = 1 < FD(A), the alternate route through C is feasible for A, although its metric C(A, C) + D(C) = 5 is larger than that of the currently selected route:
To show that this feasibility condition still guarantees loop-freedom, recall that at the time when A accepts an update from B, the metric D(B) announced by B is no smaller than FD(B); since it is smaller than FD(A), at that point in time FD(B) < FD(A). Since this property is preserved when A sends updates, it remains true at all times, which ensures that the forwarding graph has no loops.
A 1 /| D(A) = 1 / | FD(A) = 1 S |1 \ | D(B) = 2 2 \| FD(B) = 2 B
Obviously, the feasibility conditions defined above cause starvation when a router runs out of feasible routes. Consider the following diagram, where both A and B have selected the direct route to S:
A | | FD(A) = 1 S |1 \ | D(B) = 2 2 \| FD(B) = 2 B
Suppose now that the link between A and S breaks:
The only route available from A to S, the one that goes through B, is not feasible: A suffers from spurious starvation. At that point, the whole subtree suffering from starvation must be reset, which is essentially what EIGRP does when it performs a global synchronisation of all the routers in the sarving subtree (the "active" phase of EIGRP).
Babel reacts to starvation in a less drastic manner, by using sequenced routes, a technique introduced by DSDV and adopted by AODV. In addition to a metric, every route carries a sequence number, a nondecreasing integer that is propagated unchanged through the network and is only ever incremented by the source; a pair (s, m), where s is a sequence number and m a metric, is called a distance.
A received update is feasible when either it is more recent than the feasibility distance maintained by the receiving node, or it is equally recent and the metric is strictly smaller. More formally, if FD(A) = (s, m), then an update carrying the distance (s', m') is feasible when either s' > s, or s = s' and m' < m.
A | | FD(A) = (137, 1) S |1 \ | D(B) = (137, 2) 2 \| FD(B) = (137, 2) B
Assuming the sequence number of S is 137, the diagram above becomes:
A | | FD(A) = (137, 1) S |1 \ | D(B) = (138, 2) 2 \| FD(B) = (138, 2) B
After S increases its sequence number, and the new sequence number is propagated to B, we have:
Note that while sequence numbers are used for determining feasibility, they are not necessarily used in route selection: a node will normally ignore the sequence number when selecting the best route to a given destination (Section 3.6).
In DSDV, the sequence number of a source is increased periodically. A route becomes feasible again after the source increases its sequence number, and the new sequence number is propagated through the network, which may, in general, require a significant amount of time.
Babel takes a different approach. When a node detects that it is suffering from a potentially spurious starvation, it sends an explicit request to the source for a new sequence number. This request is forwarded hop by hop to the source, with no regard to the feasibility condition. Upon receiving the request, the source increases its sequence number and broadcasts an update, which is forwarded to the requesting node.
Note that after a change in network topology not all such requests will, in general, reach the source, as some will be sent over links that are now broken. However, if the network is still connected, then at least one among the nodes suffering from spurious starvation has an (unfeasible) route to the source; hence, in the absence of packet loss, at least one such request will reach the source. (Resending requests a small number of times compensates for packet loss.)
Since requests are forwarded with no regard to the feasibility condition, they may, in general, be caught in a forwarding loop; this is avoided by having nodes perform duplicate detection for the requests that they forward.
The above discussion assumes that every prefix is originated by a single router. In real networks, however, it is often necessary to have a single prefix originated by multiple routers: for example, the default route will be originated by all of the edge routers of a routing domain.
Since synchronising sequence numbers between distinct routers is problematic, Babel treats routes for the same prefix as distinct entities when they are originated by different routers: every route announcement carries the router-id of its originating router, and feasibility distances are not maintained per prefix, but per source, where a source is a pair of a router-id and a prefix. In effect, Babel guarantees loop-freedom for the forwarding graph to every source; since the union of multiple acyclic graphs is not in general acyclic, Babel does not in general guarantee loop-freedom when a prefix is originated by multiple routers, but any loops will be broken in a time at most proportional to the diameter of the loop — as soon as an update has "gone around" the routing loop.
1 1 1 ::/0 -- S --- A --- B --- S' -- ::/0
Consider for example the following topology, where A has selected the default route through S, and B has selected the one through S':
Suppose that both default routes fail at the same time; then nothing prevents A from switching to B, and B simultaneously switching to A. However, as soon as A has successfully advertised the new route to B, the route through A will become unfeasible for B. Conversely, as soon as B will have advertised the route through A, the route through B will become unfeasible for A.
In effect, the routing loop disappears at the latest when routing information has gone around the loop. Since this process can be delayed by lost packets, Babel makes certain efforts to ensure that updates are sent reliably after a router-id change (Section 3.7.2).
Additionally, after the routers have advertised the two routes, both sources will be in their source tables, which will prevent them from ever again participating in a routing loop involving routes from S and S' (up to the source GC time, which, available memory permitting, can be set to arbitrarily large values).
In the above discussion, we have assumed that all prefixes are disjoint, as is the case in flat ("mesh") routing. In practice, however, prefixes may overlap: for example, the default route overlaps with all of the routes present in the network.
1 1 ::/0 -- A --- B --- C
After a route fails, it is not correct in general to switch to a route that subsumes the failed route. Consider for example the following configuration:
Suppose that node C fails. If B forwards packets destined to C by following the default route, a routing loop will form, and persist until A learns of B's retraction of the direct route to C. B avoids this pitfall by installing an "unreachable" route after a route is retracted; this route is maintained until it can be guaranteed that the former route has been retracted by all of B's neighbours (Section 3.5.5).
Every Babel speaker is assigned a router-id, which is an arbitrary string of 8 octets that is assumed unique across the routing domain. For example, routers-ids could be assigned randomly, or they could derived from a link-layer address. (The protocol encoding is slightly more compact when router-ids are assigned in the same manner as the IPv6 layer assigns host IDs.)
Babel protocol packets are sent in the body of a UDP datagram (as described in Section 4 below). Each Babel packet consists of zero or more TLVs. Most TLVs may contain sub-TLVs.
The source address of a Babel packet is always a unicast address, link-local in the case of IPv6. Babel packets may be sent to a well-known (link-local) multicast address or to a (link-local) unicast address. In normal operation, a Babel speaker sends both multicast and unicast packets to its neighbours.
With the exception of Hello TLVs and acknowledgments, all Babel TLVs can be sent to either unicast or multicast addresses, and their semantics does not depend on whether the destination is a unicast or a multicast address. Hence, a Babel speaker does not need to determine the destination address of a packet that it receives in order to interpret it.
A moderate amount of jitter may be applied to packets sent by a Babel speaker: outgoing TLVs are buffered and SHOULD be sent with a small random delay. This is done for two purposes: it avoids synchronisation of multiple Babel speakers across a network [JITTER], and it allows for the aggregation of multiple TLVs into a single packet.
The exact delay and amount of jitter applied to a packet depends on whether it contains any urgent TLVs. Acknowledgment TLVs MUST be sent before the deadline specified in the corresponding request. The particular class of updates specified in Section 3.7.2 MUST be sent in a timely manner. The particular class of request and update TLVs specified in Section 3.8.2 SHOULD be sent in a timely manner.
In this section, we give a description of the data structures that every Babel speaker maintains. This description is conceptual: a Babel speaker may use different data structures as long as the resulting protocol is the same as the one described in this document. For example, rather than maintaining a single table containing both selected and unselected (fallback) routes, as described in Section 3.2.6 belong, an actual implementation would probably use two tables, one with selected routes and one with fallback routes.
Sequence numbers (seqnos) appear in a number of Babel data structures, and they are interpreted as integers modulo 2^16. For the purposes of this document, arithmetic on sequence numbers is defined as follows.
Given a seqno s and an integer n, the sum of s and n is defined by
or, equivalently,
where MOD is the modulo operation yielding a non-negative integer and AND is the bitwise conjunction operation.
Given two sequence numbers s and s', the relation s is less than s' (s < s') is defined by
or equivalently
A node's sequence number is a 16-bit integer that is included in route updates sent for routes originated by this node.
A node increments its sequence number (modulo 2^16) whenever it receives a request for a new sequence number (Section 3.8.1.2). A node SHOULD NOT increment its sequence number (seqno) spontaneously, since increasing seqnos makes it less likely that other nodes will have feasible alternate routes when their selected routes fail.
The interface table contains the list of interfaces on which the node speaks the Babel protocol. Every interface table entry contains the interface's outgoing Multicast Hello seqno, a 16-bit integer that is sent with each Multicast Hello TLV on this interface and is incremented (modulo 2^16) whenever a Multicast Hello is sent. (Note that an interface's Multicast Hello seqno is unrelated to the node's seqno.)
There are two timers associated with each interface table entry — the multicast hello timer, which governs the sending of scheduled Multicast Hello and IHU packets, and the update timer, which governs the sending of periodic route updates.
The neighbour table contains the list of all neighbouring interfaces from which a Babel packet has been recently received. The neighbour table is indexed by pairs of the form (interface, address), and every neighbour table entry contains the following data:
There are three timers associated with each neighbour entry — the multicast hello timer, which is initialised from the interval value carried by scheduled Multicast Hello TLVs, the unicast hello timer, which is initialised from the interval value carried by scheduled Unicast Hello TLVs, and the IHU timer, which is initialised to a small multiple of the interval carried in IHU TLVs.
Note that the neighbour table is indexed by IP addresses, not by router-ids: neighbourship is a relationship between interfaces, not between nodes. Therefore, two nodes with multiple interfaces can participate in multiple neighbourship relationships, a situation that can notably arise when wireless nodes with multiple radios are involved.
The source table is used to record feasibility distances. It is indexed by triples of the form (prefix, plen, router-id), and every source table entry contains the following data:
There is one timer associated with each entry in the source table — the source garbage-collection timer. It is initialised to a time on the order of minutes and reset as specified in Section 3.7.3.
The route table contains the routes known to this node. It is indexed by triples of the form (prefix, plen, neighbour), and every route table entry contains the following data:
There is one timer associated with each route table entry — the route expiry timer. It is initialised and reset as specified in Section 3.5.4.
Note that there are two distinct (seqno, metric) pairs associated to each route: the route's distance, which is stored in the route table, and the feasibility distance, stored in the source table and shared between all routes with the same source.
The table of pending seqno requests contains a list of seqno requests that the local node has sent (either because they have been originated locally, or because they were forwarded) and to which no reply has been received yet. This table is indexed by triples of the form (prefix, plen, router-id), and every entry in this table contains the following data:
There is one timer associated with each pending seqno request; it governs both the resending of requests and their expiry.
A Babel speaker may request that a neighbour receiving a given packet reply with an explicit acknowledgment within a given time. While the use of acknowledgment requests is optional, every Babel speaker MUST be able to reply to such a request.
An acknowledgment MUST be sent to a unicast destination. On the other hand, acknowledgment requests may be sent to either unicast or multicast destinations, in which case they request an acknowledgment from all of the receiving nodes.
When to request acknowledgments is a matter of local policy; the simplest strategy is to never request acknowledgments and to rely on periodic updates to ensure that any reachable routes are eventually propagated throughout the routing domain. In order to improve convergence speed and reduce the amount of control traffic, acknowledgment requests MAY be used in order to reliably send urgent updates (Section 3.7.2) and retractions (Section 3.5.5), especially when the number of neighbours on a given interface is small. Since Babel is designed to deal gracefully with packet loss on unreliable media, sending all packets with acknowledgment requests is not necessary, and NOT RECOMMENDED, as the acknowledgments cause additional traffic and may force additional Address Resolution Protocol (ARP) or Neighbour Discovery (ND) exchanges.
Neighbour acquisition is the process by which a Babel node discovers the set of neighbours heard over each of its interfaces and ascertains bidirectional reachability. On unreliable media, neighbour acquisition additionally provides some statistics that may be useful for link quality computation.
Before it can exchange routing information with a neighbour, a Babel node MUST create an entry for that neighbour in the neighbour table. When to do that is implementation-specific; suitable strategies include creating an entry when any Babel packet is received, or creating an entry when a Hello TLV is parsed. Similarly, in order to conserve system resources, an implementation SHOULD discard an entry when it has been unused for long enough; suitable strategies include dropping the neighbour after a timeout, and dropping a neighbour when the associated Hello histories become empty (see Appendix A.2).
Every Babel node sends Hello TLVs to its neighbours to indicate that it is alive, at regular or irregular intervals. Each Hello TLV carries an increasing (modulo 2^16) sequence number and an upper bound on the time interval until the next Hello of the same type (see below). If the time interval is set to 0, then the Hello TLV does not establish a new promise: the deadline carried by the previous Hello of the same type still applies to the next Hello (if the most recent scheduled Hello of the right kind was received at time t0 and carried interval i, then the previous promise of sending another Hello before time t0 + i still holds). We say that a Hello is "scheduled" if it carries a non-zero interval, and "unscheduled" otherwise.
There are two kinds of Hellos: Multicast Hellos, which use a per-interface Hello counter (the Multicast Hello seqno), and Unicast Hellos, which use a per-neighbour counter (the Multicast Hello seqno). A Multicast Hello with a given seqno MUST be sent to all neighbours on a given interface, either by sending it to a multicast address or by sending it to one unicast address per neighbour (hence, the term "Multicast Hello" is a slight misnomer). A Unicast Hello carrying a given seqno should normally be sent to just one neighbour (over unicast), since the sequence numbers of different neighbours are not in general synchronised.
Multicast Hellos sent over multicast can be used for neighbour discovery; hence, a node SHOULD send periodic (scheduled) Multicast Hellos unless neighbour discovery is performed by means outside of the Babel protocol. A node MAY send Unicast Hellos or unscheduled Hellos of either kind for any reason, such as reducing the amount of multicast traffic or improving reliability on link technologies with poor support for link-layer multicast.
A node MAY send a scheduled Hello ahead of time. A node MAY change its scheduled Hello interval. The Hello interval MAY be decreased at any time; it MAY be increased immediately before sending a Hello TLV, but SHOULD NOT be increased at other times. (Equivalently, a node SHOULD send a scheduled Hello immediately after increasing its Hello interval.)
How to deal with received Hello TLVs and what statistics to maintain are considered local implementation matters; typically, a node will maintain some sort of history of recently received Hellos. An example of a suitable algorithm is described in Appendix A.1.
After receiving a Hello, or determining that it has missed one, the node recomputes the association's cost (Section 3.4.3) and runs the route selection procedure (Section 3.6).
In order to establish bidirectional reachability, every node sends periodic IHU ("I Heard You") TLVs to each of its neighbours. Since IHUs carry an explicit interval value, they MAY be sent less often than Hellos in order to reduce the amount of routing traffic in dense networks; in particular, they SHOULD be sent less often than Hellos over links with little packet loss. While IHUs are conceptually unicast, they MAY be sent to a multicast address in order to avoid an ARP or Neighbour Discovery exchange and to aggregate multiple IHUs into a single packet.
In addition to the periodic IHUs, a node MAY, at any time, send an unscheduled IHU packet. It MAY also, at any time, decrease its IHU interval, and it MAY increase its IHU interval immediately before sending an IHU, but SHOULD NOT increase it at any other time. (Equivalently, a node SHOULD send an extra IHU immediately after increasing its Hello interval.)
Every IHU TLV contains two pieces of data: the link's rxcost (reception cost) from the sender's perspective, used by the neighbour for computing link costs (Section 3.4.3), and the interval between periodic IHU packets. A node receiving an IHU sets the value of the txcost (transmission cost) maintained in the neighbour table to the value contained in the IHU, and resets the IHU timer associated to this neighbour to a small multiple of the interval value received in the IHU. When a neighbour's IHU timer expires, the neighbour's txcost is set to infinity.
After updating a neighbour's txcost, the receiving node recomputes the neighbour's cost (Section 3.4.3) and runs the route selection procedure (Section 3.6).
A neighbourship association's link cost is computed from the values maintained in the neighbour table: the statistics kept in the neighbour table about the reception of Hellos, and the txcost computed from received IHU packets.
For every neighbour, a Babel node computes a value known as this neighbour's rxcost. This value is usually derived from the Hello history, which may be combined with other data, such as statistics maintained by the link layer. The rxcost is sent to a neighbour in each IHU.
Since nodes do not necessarily send periodic Unicast Hellos but do usually send periodic Multicast Hellos (Section 3.4.1), a node SHOULD use an algorithm that yields a finite rxcost when only Multicast Hellos are received, unless interoperability with nodes that only send Multicast Hellos is not required.
How the txcost and rxcost are combined in order to compute a link's cost is a matter of local policy; as far as Babel's correctness is concerned, only the following conditions MUST be satisfied:
Note that while this document does not constrain cost computation any further, not all cost computation strategies will give good results. See Appendix A.2 for examples of strategies for computing a link's cost that are known to work well in practice.
Conceptually, a Babel update is a quintuple (prefix, plen, router-id, seqno, metric), where (prefix, plen) is the prefix for which a route is being advertised, router-id is the router-id of the router originating this update, seqno is a nondecreasing (modulo 2^16) integer that carries the originating router seqno, and metric is the announced metric.
Before being accepted, an update is checked against the feasibility condition (Section 3.5.1), which ensures that the route does not create a routing loop. If the feasibility condition is not satisfied, the update is either ignored or prevents the route from being selected, as described in Section 3.5.4. If the feasibility condition is satisfied, then the update cannot possibly cause a routing loop.
The feasibility condition is applied to all received updates. The feasibility condition compares the metric in the received update with the metrics of the updates previously sent by the receiving node; updates that fail the feasibility condition, and therefore have metrics large enough to cause a routing loop, are either ignored or prevent the resulting route from being selected.
A feasibility distance is a pair (seqno, metric), where seqno is an integer modulo 2^16 and metric is a positive integer. Feasibility distances are compared lexicographically, with the first component inverted: we say that a distance (seqno, metric) is strictly better than a distance (seqno', metric'), written
when
where sequence numbers are compared modulo 2^16.
Given a source (prefix, plen, router-id), a node's feasibility distance for this source is the minimum, according to the ordering defined above, of the distances of all the finite updates ever sent by this particular node for the prefix (prefix, plen) and the given router-id. Feasibility distances are maintained in the source table, the exact procedure is given in Section 3.7.3.
A received update is feasible when either it is a retraction (its metric is FFFF hexadecimal), or the advertised distance is strictly better, in the sense defined above, than the feasibility distance for the corresponding source. More precisely, a route advertisement carrying the quintuple (prefix, plen, router-id, seqno, metric) is feasible if one of the following conditions holds:
Note that the feasibility condition considers the metric advertised by the neighbour, not the route's metric; hence, a fluctuation in a neighbour's cost cannot render a selected route unfeasible. Note further that retractions (updates with infinite metric) are always feasible, since they cannot possibly cause a routing loop.
A route's metric is computed from the metric advertised by the neighbour and the neighbour's link cost. Just like cost computation, metric computation is considered a local policy matter; as far as Babel is concerned, the function M(c, m) used for computing a metric from a locally computed link cost and the metric advertised by a neighbour MUST only satisfy the following conditions:
Additionally, the metric SHOULD satisfy the following condition:
Note that while strict monotonicity is essential to the integrity of the network (persistent routing loops may arise if it is not satisfied), left distributivity is not: if it is not satisfied, Babel will still converge to a loop-free configuration, but might not reach a global optimum (in fact, a global optimum may not even exist).
As with cost computation, not all strategies for computing route metrics will give good results. In particular, some metrics are more likely than others to lead to routing instabilities (route flapping). In Appendix A.3, we give a number of examples of strictly monotonic, left-distributive routing metrics that are known to work well in practice.
In a large network, the bulk of Babel traffic consists of route updates; hence, some care has been given to encoding them efficiently. An Update TLV itself only contains the prefix, seqno, and metric, while the next hop is derived either from the network-layer source address of the packet or from an explicit Next Hop TLV in the same packet. The router-id is derived from a separate Router-Id TLV in the same packet, which optimises the case when multiple updates are sent with the same router-id.
Additionally, a prefix of the advertised prefix can be omitted in an Update TLV, in which case it is copied from a previous Update TLV in the same packet — this is known as address compression (Section 4.6.9).
Finally, as a special optimisation for the case when a router-id coincides with the interface-id part of an IPv6 address, the router-id can optionally be derived from the low-order bits of the advertised prefix.
The encoding of updates is described in detail in Section 4.6.
When a Babel node receives an update (prefix, plen, router-id, seqno, metric) from a neighbour neigh with a link cost value equal to cost, it checks whether it already has a route table entry indexed by (prefix, plen, neigh).
If no such entry exists: Section 3.8.2).
If such an entry exists:
Note that the route table may contain unfeasible routes, either because they were created by an unfeasible update or due to a metric fluctuation. Such routes are never selected, since they are not known to be loop-free; should all the feasible routes become unusable, however, the unfeasible routes can be made feasible and therefore possible to select by sending requests along them (see
When a route's expiry timer triggers, the behaviour depends on whether the route's metric is finite. If the metric is finite, it is set to infinity and the expiry timer is reset. If the metric is already infinite, the route is flushed from the route table.
After the route table is updated, the route selection procedure (Section 3.6) is run.
When a prefix P is retracted, because all routes are unfeasible or have an infinite metric (whether due to the expiry timer or to other reasons), and a shorter prefix P' that covers P is reachable, P' cannot in general be used for routing packets destined to P without running the risk of creating a routing loop (Section 2.8).
To avoid this issue, whenever a prefix P is retracted, a route table entry with infinite metric is maintained as described in Section 3.5.4 above. As long as this entry is maintained, packets destined to an address within P MUST NOT be forwarded by following a route for a shorter prefix. This entry is removed as soon as a finite-metric update for prefix P is received and the resulting route selected. If no such update is forthcoming, the infinite metric entry SHOULD be maintained at least until it is guaranteed that no neighbour has selected the current node as next-hop for prefix P. This can be achieved by either:
The former option is simpler and ensures that at that point, any routes for prefix P pointing at the current node have expired. However, since the expiry time can be as high as a few minutes, doing that prevents automatic aggregation by creating spurious black-holes for aggregated routes. The latter option is RECOMMENDED as it dramatically reduces the time for which a prefix is unreachable in the presence of aggregated routes.
Route selection is the process by which a single route for a given prefix is selected to be used for forwarding packets and to be re-advertised to a node's neighbours.
Babel is designed to allow flexible route selection policies. As far as the protocol's correctness is concerned, the route selection policy MUST only satisfy the following properties:
Note, however, that Babel does not naturally guarantee the stability of routing, and configuring conflicting route selection policies on different routers may lead to persistent route oscillation.
Route selection is a difficult problem, since a good route selection policy needs to take into account multiple mutually contradictory criteria; in roughly decreasing order of importance, these are:
A simple but useful strategy is to choose the feasible route with the smallest metric, with a small amount of hysteresis applied to avoid switching router-ids too often.
After the route selection procedure is run, triggered updates (Section 3.7.2) and requests (Section 3.8.2) are sent.
A Babel speaker advertises to its neighbours its set of selected routes. Normally, this is done by sending one or more multicast packets containing Update TLVs on all of its connected interfaces; however, on link technologies where multicast is significantly more expensive than unicast, a node MAY choose to send multiple copies of updates in unicast packets, especially when the number of neighbours is small.
Additionally, in order to ensure that any black-holes are reliably cleared in a timely manner, a Babel node sends retractions (updates with an infinite metric) for any recently retracted prefixes.
If an update is for a route injected into the Babel domain by the local node (e.g., it carries the address of a local interface, the prefix of a directly attached network, or a prefix redistributed from a different routing protocol), the router-id is set to the local node's router-id, the metric is set to some arbitrary finite value (typically 0), and the seqno is set to the local router's sequence number.
If an update is for a route learned from another Babel speaker, the router-id and sequence number are copied from the route table entry, and the metric is computed as specified in Section 3.5.2.
Every Babel speaker periodically advertises all of its selected routes on all of its interfaces, including any recently retracted routes. Since Babel doesn't suffer from routing loops (there is no "counting to infinity") and relies heavily on triggered updates (Section 3.7.2), this full dump only needs to happen infrequently.
In addition to periodic routing updates, a Babel speaker sends unscheduled, or triggered, updates in order to inform its neighbours of a significant change in the network topology.
A change of router-id for the selected route to a given prefix may be indicative of a routing loop in formation; hence, a node MUST send a triggered update in a timely manner whenever it changes the selected router-id for a given destination. Additionally, it SHOULD make a reasonable attempt at ensuring that all reachable neighbours receive this update.
There are two strategies for ensuring that. If the number of neighbours is small, then it is reasonable to send the update together with an acknowledgment request; the update is resent until all neighbours have acknowledged the packet, up to some number of times. If the number of neighbours is large, however, requesting acknowledgments from all of them might cause a non-negligible amount of network traffic; in that case, it may be preferable to simply repeat the update some reasonable number of times (say, 5 for wireless and 2 for wired links).
A route retraction is somewhat less worrying: if the route retraction doesn't reach all neighbours, a black-hole might be created, which, unlike a routing loop, does not endanger the integrity of the network. When a route is retracted, a node SHOULD send a triggered update and SHOULD make a reasonable attempt at ensuring that all neighbours receive this retraction.
Finally, a node MAY send a triggered update when the metric for a given prefix changes in a significant manner, due to a received update, because a link's cost has changed, or because a different next hop has been selected. A node SHOULD NOT send triggered updates for other reasons, such as when there is a minor fluctuation in a route's metric, when the selected next hop changes, or to propagate a new sequence number (except to satisfy a request, as specified in Section 3.8).
Before sending an update (prefix, plen, router-id, seqno, metric) with finite metric (i.e., not a route retraction), a Babel node updates the feasibility distance maintained in the source table. This is done as follows.
If no entry indexed by (prefix, plen, router-id) exists in the source table, then one is created with value (prefix, plen, router-id, seqno, metric).
If an entry (prefix, plen, router-id, seqno', metric') exists, then it is updated as follows:
The garbage-collection timer for the entry is then reset. Note that the feasibility distance is not updated and the garbage-collection timer is not reset when a retraction (an update with infinite metric) is sent.
When the garbage-collection timer expires, the entry is removed from the source table.
When running over a transitive, symmetric link technology, e.g., a point-to-point link or a wired LAN technology such as Ethernet, a Babel node SHOULD use an optimisation known as split horizon. When split horizon is used on a given interface, a routing update for prefix P is not sent on the particular interface over which the selected route towards prefix P was learnt.
Split horizon SHOULD NOT be applied to an interface unless the interface is known to be symmetric and transitive; in particular, split horizon is not applicable to decentralised wireless link technologies (e.g., IEEE 802.11 in ad hoc mode) when routing updates are sent over multicast.
In normal operation, a node's route table is populated by the regular and triggered updates sent by its neighbours. Under some circumstances, however, a node sends explicit requests in order to cause a resynchronisation with the source after a mobility event or to prevent a route from spuriously expiring.
The Babel protocol provides two kinds of explicit requests: route requests, which simply request an update for a given prefix, and seqno requests, which request an update for a given prefix with a specific sequence number. The former are never forwarded; the latter are forwarded if they cannot be satisfied by the receiver.
Upon receiving a request, a node either forwards the request or sends an update in reply to the request, as described in the following sections. If this causes an update to be sent, the update is either sent to a multicast address on the interface on which the request was received, or to the unicast address of the neighbour that sent the request.
The exact behaviour is different for route requests and seqno requests.
When a node receives a route request for a given prefix, it checks its route table for a selected route to this exact prefix. If such a route exists, it MUST send an update (over unicast or over multicast); if such a route does not exist, it MUST send a retraction for that prefix.
When a node receives a wildcard route request, it SHOULD send a full route table dump. Full route dumps MAY be rate-limited, especially if they are sent over multicast.
When a node receives a seqno request for a given router-id and sequence number, it checks whether its route table contains a selected entry for that prefix. If a selected route for the given prefix exists, it has finite metric, and either the router-ids are different or the router-ids are equal and the entry's sequence number is no smaller (modulo 2^16) than the requested sequence number, the node MUST send an update for the given prefix. If the router-ids match but the requested seqno is larger (modulo 2^16) than the route entry's, the node compares the router-id against its own router-id. If the router-id is its own, then it increases its sequence number by 1 (modulo 2^16) and sends an update. A node MUST NOT increase its sequence number by more than 1 in response to a seqno request.
Otherwise, if the requested router-id is not its own, the received request's hop count is 2 or more, and the node is advertising the prefix to its neighbours, the node selects a neighbour to forward the request to as follows:
In order to actually forward the request, the node decrements the hop count and sends the request in a unicast packet destined to the selected neighbour.
A node SHOULD maintain a list of recently forwarded seqno requests and forward the reply (an update with a seqno sufficiently large to satisfy the request) in a timely manner. A node SHOULD compare every incoming seqno request against its list of recently forwarded seqno requests and avoid forwarding it if it is redundant (i.e., if it has recently sent a request with the same prefix, router-id and a seqno that is not smaller modulo 2^16).
Since the request-forwarding mechanism does not necessarily obey the feasibility condition, it may get caught in routing loops; hence, requests carry a hop count to limit the time during which they remain in the network. However, since requests are only ever forwarded as unicast packets, the initial hop count need not be kept particularly low, and performing an expanding horizon search is not necessary. A single request MUST NOT be duplicated: it MUST NOT be forwarded to a multicast address, and it MUST NOT be forwarded to multiple neighbours. However, if a seqno request is resent by its originator, the subsequent copies MAY be forwarded to a different neighbour than the initial one.
A Babel node MAY send a route or seqno request at any time, to a multicast or a unicast address; there is only one case when originating requests is required (Section 3.8.2.1).
When a route is retracted or expires, a Babel node usually switches to another feasible route for the same prefix. It may be the case, however, that no such routes are available.
A node that has lost all feasible routes to a given destination but still has unexpired unfeasible routes to that destination MUST send a seqno request; if it doesn't have any such routes, it MAY still send a seqno request. The router-id of the request is set to the router-id of the route that it has just lost, and the requested seqno is the value contained in the source table plus 1.
If the node has any (unfeasible) routes to the requested destination, then it MUST send the request to at least one of the next-hop neighbours that advertised these routes, and SHOULD send it to all of them; in any case, it MAY send the request to any other neighbours, whether they advertise a route to the requested destination or not. A simple implementation strategy is therefore to unconditionally multicast the request over all interfaces.
Similar requests will be sent by other nodes that are affected by the route's loss. If the network is still connected, and assuming no packet loss, then at least one of these requests will be forwarded to the source, resulting in a route being advertised with a new sequence number. (Due to duplicate suppression, only a small number of such requests will actually reach the source.)
In order to compensate for packet loss, a node SHOULD repeat such a request a small number of times if no route becomes feasible within a short time. In the presence of heavy packet loss, however, all such requests might be lost; in that case, the mechanism in the next section will eventually ensure that a new seqno is received.
When a route's metric increases, a node might receive an unfeasible update for a route that it has currently selected. As specified in Section 3.5.1, the receiving node will either ignore the update or unselect the route.
In order to keep routes from spuriously expiring because they have become unfeasible, a node SHOULD send a unicast seqno request when it receives an unfeasible update for a route that is currently selected. The requested sequence number is computed from the source table as in Section 3.8.2.1 above.
Additionally, since metric computation does not necessarily coincide with the delay in propagating updates, a node might receive an unfeasible update from a currently unselected neighbour that is preferable to the currently selected route (e.g., because it has a much smaller metric); in that case, the node SHOULD send a unicast seqno request to the neighbour that advertised the preferable update.
In normal operation, a route's expiry timer never triggers: since a route's hold time is computed from an explicit interval included in Update TLVs, a new update (possibly a retraction) should arrive in time to prevent a route from expiring.
In the presence of packet loss, however, it may be the case that no update is successfully received for an extended period of time, causing a route to expire. In order to avoid such spurious expiry, shortly before a selected route expires, a Babel node SHOULD send a unicast route request to the neighbour that advertised this route; since nodes always send either updates or retractions in response to non-wildcard route requests (Section 3.8.1.1), this will usually result in the route being either refreshed or retracted.
In order to speed up convergence after a mobility event, a node MAY send a unicast wildcard request after acquiring a new neighbour. Additionally, a node MAY send a small number of multicast wildcard requests shortly after booting. Note however that doing that carelessly can cause serious congestion when a whole network is rebooted, especially on link layers with high per-packet overhead (e.g., IEEE 802.11).
A Babel packet is sent as the body of a UDP datagram, with network-layer hop count set to 1, destined to a well-known multicast address or to a unicast address, over IPv4 or IPv6; in the case of IPv6, these addresses are link-local. Both the source and destination UDP port are set to a well-known port number. A Babel packet MUST be silently ignored unless its source address is either a link-local IPv6 address or an IPv4 address belonging to the local network, and its source port is the well-known Babel port. It MAY be silently ignored if its destination address is a global IPv6 address.
In order to minimise the number of packets being sent while avoiding lower-layer fragmentation, a Babel node SHOULD attempt to maximise the size of the packets it sends, up to the outgoing interface's MTU adjusted for lower-layer headers (28 octets for UDP over IPv4, 48 octets for UDP over IPv6). It MUST NOT send packets larger than the attached interface's MTU adjusted for lower-layer headers or 512 octets, whichever is larger, but not exceeding 2^16 - 1 adjusted for lower-layer headers. Every Babel speaker MUST be able to receive packets that are as large as any attached interface's MTU adjusted for lower-layer headers or 512 octets, whichever is larger. Babel packets MUST NOT be sent in IPv6 Jumbograms.
In order to avoid global synchronisation of a Babel network and to aggregate multiple TLVs into large packets, a Babel node SHOULD buffer every TLV and delay sending a packet by a small, randomly chosen delay [JITTER]. In order to allow accurate computation of packet loss rates, this delay MUST NOT be larger than half the advertised Hello interval.
Relative times are carried as 16-bit values specifying a number of centiseconds (hundredths of a second). This allows times up to roughly 11 minutes with a granularity of 10ms, which should cover all reasonable applications of Babel.
A router-id is an arbitrary 8-octet value. A router-id MUST NOT consist of either all zeroes or all ones.
Since the bulk of the protocol is taken by addresses, multiple ways of encoding addresses are defined. Additionally, a common subnet prefix may be omitted when multiple addresses are sent in a single packet — this is known as address compression (Section 4.6.9).
Address encodings:
The address family associated to an address encoding is either IPv4 or IPv6; it is undefined for AE 0, IPv4 for AE 1, and IPv6 for AEs 2 and 3.
A network prefix is encoded just like a network address, but it is stored in the smallest number of octets that are enough to hold the significant bits (up to the prefix length).
A Babel packet consists of a 4-octet header, followed by a sequence of TLVs (the packet body), optionally followed by a second sequence of TLVs (the packet trailer).
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Magic | Version | Body length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Packet Body ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+- | Packet Trailer... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Fields :
The packet body and trailer are both sequences of TLVs. The packet body is the normal place to store TLVs; the packet trailer only contains specialised TLVs that do not need to be protected by cryptographic security mechanisms. When parsing the trailer, the receiver MUST ignore any TLV unless its definition explicitly states that it is allowed to appear there. Among the TLVs defined in this document, only Pad1 and PadN are allowed in the trailer; since these TLVs are ignored in any case, an implementation MAY silently ignore the packet trailer without even parsing it, unless it implements at least one extension that defines TLVs that are allowed to appear in the trailer.
With the exception of Pad1, all TLVs have the following structure:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | Payload... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Fields :
TLVs with an unknown type value MUST be silently ignored.
Every TLV carries an explicit length in its header; however, most TLVs are self-terminating, in the sense that it is possible to determine the length of the body without reference to the explicit Length field. If a TLV has a self-terminating format, then it MAY allow a sequence of sub-TLVs to follow the body.
Sub-TLVs have the same structure as TLVs. With the exception of PAD1, all TLVs have the following structure:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | Body... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Fields :
The most-significant bit of the sub-TLV, called the mandatory bit, indicates how to handle unknown sub-TLVs. If the mandatory bit is not set, then an unknown sub-TLV MUST be silently ignored, and the rest of the TLV processed normally. If the mandatory bit is set, then the whole enclosing TLV MUST be silently ignored (except for updating the parser state by a Router-Id, Next-Hop or Update TLV, see Section 4.6.7, Section 4.6.8, and Section 4.6.9).
Babel uses a stateful parser: a TLV may refer to data from a previous TLV. The parser state consists of the following pieces of data:
Since the parser state is separate from the bulk of Babel's state, and since for correct parsing it must be identical across implementations, it is updated before checking for mandatory TLVs: parsing a TLV MUST update the parser state even if the TLV is otherwise ignored due to an unknown mandatory sub-TLV.
None of the TLVs that modify the parser state are allowed in the packet trailer; hence, an implementation may choose to use a dedicated stateless parser to parse the packet trailer.
0 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+ | Type = 0 | +-+-+-+-+-+-+-+-+
Fields :
This TLV is silently ignored on reception. It is allowed in the packet trailer.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 | Length | MBZ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Fields :
This TLV is silently ignored on reception. It is allowed in the packet trailer.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 2 | Length | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Nonce | Interval | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This TLV requests that the receiver send an Acknowledgment TLV within the number of centiseconds specified by the Interval field.
Fields :
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 3 | Length | Nonce | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This TLV is sent by a node upon receiving an Acknowledgment Request.
Fields :
Since nonce values are not globally unique, this TLV MUST be sent to a unicast address.
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 4 | Length | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Seqno | Interval | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
This TLV is used for neighbour discovery and for determining a neighbour's reception cost.
Fields :
0 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |U|X|X|X|X|X|X|X|X|X|X|X|X|X|X|X| +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The Flags field is interpreted as follows:
Every time a Hello is sent, the corresponding seqno counter MUST be incremented. Since there is a single seqno counter for all the Multicast Hellos sent by a given node over a given interface, if the Unicast flag is not set, this TLV MUST be sent to all neighbors on this link, which can be achieved by sending to a multicast destination, or by sending multiple packets to the unicast addresses of all reachable neighbours. Conversely, if the Unicast flag is set, this TLV MUST be sent to a single neighbour, which can achieved by sending to a unicast destination. In order to avoid large discontinuities in link quality, multiple Hello TLVs SHOULD NOT be sent in the same packet.
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 5 | Length | AE | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Rxcost | Interval | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Address... +-+-+-+-+-+-+-+-+-+-+-+-
An IHU ("I Heard You") TLV is used for confirming bidirectional reachability and carrying a link's transmission cost.
Fields :
Conceptually, an IHU is destined to a single neighbour. However, IHU TLVs contain an explicit destination address, and MAY be sent to a multicast address, as this allows aggregation of IHUs destined to distinct neighbours into a single packet and avoids the need for an ARP or Neighbour Discovery exchange when a neighbour is not being used for data traffic.
IHU TLVs with an unknown value in the AE field MUST be silently ignored.
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 6 | Length | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + Router-Id + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A Router-Id TLV establishes a router-id that is implied by subsequent Update TLVs. This TLV sets the router-id even if it is otherwise ignored due to an unknown mandatory sub-TLV.
Fields :
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 7 | Length | AE | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Next hop... +-+-+-+-+-+-+-+-+-+-+-+-
A Next Hop TLV establishes a next-hop address for a given address family (IPv4 or IPv6) that is implied in subsequent Update TLVs. This TLV sets up the next-hop for subsequent Update TLVs even if it is otherwise ignored due to an unknown mandatory sub-TLV.
Fields :
When the address family matches the network-layer protocol that this packet is transported over, a Next Hop TLV is not needed: in the absence of a Next Hop TLV in a given address family, the next hop address is taken to be the source address of the packet.
Next Hop TLVs with an unknown value for the AE field MUST be silently ignored.
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 8 | Length | AE | Flags | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Plen | Omitted | Interval | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Seqno | Metric | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Prefix... +-+-+-+-+-+-+-+-+-+-+-+-
An Update TLV advertises or retracts a route. As an optimisation, it can optionally have the side effect of establishing a new implied router-id and a new default prefix.
Fields :
0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+ |P|R|X|X|X|X|X|X| +-+-+-+-+-+-+-+-+
The Flags field is interpreted as follows:
The prefix being advertised by an Update TLV is computed as follows:
If the Metric field is finite, the router-id of the originating node for this announcement is taken from the prefix advertised by this Update if the Router-Id flag is set, computed as described above. Otherwise, it is taken either from the preceding Router-Id packet, or the preceding Update packet with the Router-Id flag set, whichever comes last, even if that TLV is otherwise ignored due to an unknown mandatory sub-TLV.
The next-hop address for this update is taken from the last preceding Next Hop TLV with a matching address family (IPv4 or IPv6) in the same packet even if it was otherwise ignored due to an unknown mandatory sub-TLV; if no such TLV exists, it is taken from the network-layer source address of this packet.
If the metric field is FFFF hexadecimal, this TLV specifies a retraction. In that case, the router-id, next-hop and seqno are not used. AE MAY then be 0, in which case this Update retracts all of the routes previously advertised by the sending interface. If the metric is finite, AE MUST NOT be 0. If the metric is infinite and AE is 0, Plen and Omitted MUST both be 0.
Update TLVs with an unknown value in the AE field MUST be silently ignored.
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 9 | Length | AE | Plen | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Prefix... +-+-+-+-+-+-+-+-+-+-+-+-
A Route Request TLV prompts the receiver to send an update for a given prefix, or a full route table dump.
Fields :
A Request TLV prompts the receiver to send an update message (possibly a retraction) for the prefix specified by the AE, Plen, and Prefix fields, or a full dump of its route table if AE is 0 (in which case Plen MUST be 0 and Prefix is of length 0).
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 10 | Length | AE | Plen | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Seqno | Hop Count | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + Router-Id + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Prefix... +-+-+-+-+-+-+-+-+-+-+
A Seqno Request TLV prompts the receiver to send an Update for a given prefix with a given sequence number, or to forward the request further if it cannot be satisfied locally.
Fields :
A Seqno Request TLV prompts the receiving node to send a finite-metric Update for the prefix specified by the AE, Plen, and Prefix fields, with either a router-id different from what is specified by the Router-Id field, or a Seqno no less (modulo 2^16) than what is specified by the Seqno field. If this request cannot be satisfied locally, then it is forwarded according to the rules set out in Section 3.8.1.2.
While a Seqno Request MAY be sent to a multicast address, it MUST NOT be forwarded to a multicast address and MUST NOT be forwarded to more than one neighbour. A request MUST NOT be forwarded if its Hop Count field is 1.
This TLV is self-terminating, and allows sub-TLVs.
0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+ | Type = 0 | +-+-+-+-+-+-+-+-+
Fields :
This sub-TLV is silently ignored on reception. It is allowed within any TLV that allows sub-TLVs.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type = 1 | Length | MBZ... +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-
Fields :
This sub-TLV is silently ignored on reception. It is allowed within any TLV that allows sub-TLVs.
IANA has registered the UDP port number 6696, called "babel", for use by the Babel protocol.
IANA has registered the IPv6 multicast group ff02::1:6 and the IPv4 multicast group 224.0.0.111 for use by the Babel protocol.
IANA has created a registry called "Babel TLV Types". The values in this registry are not changed by this specification.
IANA has created a registry called "Babel sub-TLV Types". Due to the addition of a Mandatory bit to the Babel protocol, the values in the "Babel sub-TLV Types" registry are amended as follows:
Type | Name | Reference |
---|---|---|
0 | Pad1 | this document |
1 | PadN | this document |
112-126 | Reserved for Experimental Use | this document |
127 | Reserved for expansion of the type space | this document |
240-254 | Reserved for Experimental Use | this document |
255 | Reserved for expansion of the type space | this document |
Existing assignments in the "Babel sub-TLV Types" registry in the range 2 to 111 are not changed by this specification. The values 224 through 239, previously reserved for Experimental Use, are now unassigned.
IANA has created a registry called "Babel Flags Values". IANA is instructed to rename this registry to "Babel Update Flags Values", with its contents unchanged.
IANA is instructed to create a new registry called "Babel Hello Flags Values". The allocation policy for this registry is Specification Required [RFC8126]. The initial values in this registry are as follows:
Bit | Name | Reference |
---|---|---|
0 | Unicast | this document |
1-15 | Unassigned |
IANA is instructed to replace all references to RFCs 6126 and 7557 in all of the registries mentioned above by references to this document.
As defined in this document, Babel is a completely insecure protocol. Any attacker can misdirect data traffic by advertising routes with a low metric or a high seqno. This issue can be solved either by a lower-layer security mechanism (e.g., link-layer security or IPsec), or by deploying a suitable authentication mechanism within Babel itself. There are currently two such mechanisms: Babel over DTLS [BABEL-DTLS] and HMAC-based authentication [BABEL-HMAC]. Both mechanisms ensure integrity of messages and prevent message replay, but only DTLS supports asymmetric keying and message confidentiality. HMAC is simpler and does not depend on DTLS, and therefore its use is RECOMMENDED whenever both mechanisms are applicable.
The information that a Babel node announces to the whole routing domain is often sufficient to determine a mobile node's physical location with reasonable precision. The privacy issues that this causes can be mitigated somewhat by using randomly chosen router-ids and randomly chosen IP addresses, and changing them periodically.
When carried over IPv6, Babel packets are ignored unless they are sent from a link-local IPv6 address; since routers don't forward link-local IPv6 packets, this provides protection against spoofed Babel packets being sent from the global Internet. No such natural protection exists when Babel packets are carried over IPv4.
A number of people have contributed text and ideas to this specification. The authors are particularly indebted to Matthieu Boutier, Gwendoline Chouasne, Margaret Cullen, Donald Eastlake and Toke Hoiland-Jorgensen. Earlier versions of this document greatly benefited from the input of Joel Halpern. The address compression technique was inspired by [PACKETBB].
[BABEL-DTLS] | Decimo, A., Schinazi, D. and J. Chroboczek, "Babel Routing Protocol over Datagram Transport Layer Security", Internet Draft draft-ietf-babel-dtls-01, October 2018. |
[BABEL-HMAC] | Do, C., Kolodziejak, W. and J. Chroboczek, "HMAC authentication for the Babel routing protocol", Internet Draft draft-ietf-babel-hmac-01, November 2018. |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC8126] | Cotton, M., Leiba, B. and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, June 2017. |
[RFC8174] | Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017. |
The strategy for computing link costs and route metrics is a local matter; Babel itself only requires that it comply with the conditions given in Section 3.4.3 and Section 3.5.2. Different nodes may use different strategies in a single network and may use different strategies on different interface types. This section describes the strategies used by the sample implementation of Babel.
The sample implementation of Babel sends periodic Multicast Hellos, and never sends Unicast Hellos. It maintains statistics about the last 16 received Hello TLVs of each kind (Appendix A.1), computes costs by using the 2-out-of-3 strategy (Appendix A.2.1) on wired links, and ETX (Appendix A.2.2) on wireless links. It uses an additive algebra for metric computation (Appendix A.3.1).
For each neighbour, the sample implementation of Babel maintains two sets of Hello history, one for each kind of Hello, and an expected sequence number, one for Multicast and one for Unicast Hellos. Each Hello history is a vector of 16 bits, where a 1 value represents a received Hello, and a 0 value a missed Hello. For each kind of Hello, the expected sequence number, written ne, is the sequence number that is expected to be carried by the next received Hello from this neighbour.
Whenever it receives a Hello packet of a given kind from a neighbour, a node compares the received sequence number nr for that kind of Hello with its expected sequence number ne. Depending on the outcome of this comparison, one of the following actions is taken:
The receiving node then appends a 1 bit to the Hello history and sets ne to (nr + 1). If the Interval field of the received Hello is not zero, it resets the neighbour's hello timer to 1.5 times the advertised Interval (the extra margin allows for delay due to jitter).
Whenever either Hello timer associated to a neighbour expires, the local node adds a 0 bit to this neighbour's Hello history, and increments the expected Hello number. If both Hello histories are empty (they contain 0 bits only), the neighbour entry is flushed; otherwise, the relevant hello timer is reset to the value advertised in the last Hello of that kind received from this neighbour (no extra margin is necessary in this case, since jitter was already taken into account when computing the timeout that has just expired).
This section discusses how to compute costs based on Hello history.
K-out-of-j link sensing is suitable for wired links that are either up, in which case they only occasionally drop a packet, or down, in which case they drop all packets.
The k-out-of-j strategy is parameterised by two small integers k and j, such that 0 < k ≤ j, and the nominal link cost, a constant K ≥ 1. A node keeps a history of the last j hellos; if k or more of those have been correctly received, the link is assumed to be up, and the rxcost is set to K; otherwise, the link is assumed to be down, and the rxcost is set to infinity.
Since Babel supports two kinds of Hellos, a Babel node performs k-out-of-j twice for each neighbour, once on the Unicast and once on the Multicast Hello history. If either of the instances of k-out-of-j indicates that the link is up, then the link is assumed to be up, and the rxcost is set to K; if both instances indicate that the link is down, then the link is assumed to be down, and the rxcost is set to infinity. In other words, the resulting rxcost is the minimum of the rxcosts yielded by the two instances of k-out-of-j link sensing.
The cost of a link performing k-out-of-j link sensing is defined as follows:
Unlike wired links, which are bimodal (either up or down), wireless links exhibit continuous variation of the link quality. Naive application of hop-count routing in networks that use wireless links for transit tends to select long, lossy links in preference to shorter, lossless links, which can dramatically reduce throughput. For that reason, a routing protocol designed to support wireless links must perform some form of link-quality estimation.
ETX [ETX] is a simple link-quality estimation algorithm that is designed to work well with the IEEE 802.11 MAC. By default, the IEEE 802.11 MAC performs ARQ and rate adaptation on unicast frames, but not on multicast frames, which are sent at a fixed rate with no ARQ; therefore, measuring the loss rate of multicast frames yields a useful estimate of a link's quality.
A node performing ETX link quality estimation uses a neighbour's Multicast Hello history to compute an estimate, written beta, of the probability that a Hello TLV is successfully received. Beta can be computed as the fraction of 1 bits within a small number (say, 6) of the most recent entries in the Multicast Hello history, or it can be an exponential average, or some combination of both approaches.
Let alpha be MIN(1, 256/txcost), an estimate of the probability of successfully sending a Hello TLV. The cost is then computed by
or, equivalently,
Since the IEEE 802.11 MAC performs ARQ on unicast frames, unicast frames do not provide a useful measure of link quality, and therefore ETX ignores the Unicast Hello history. Thus, a node performing ETX link-quality estimation will not route through neighbouring nodes unless they send periodic Multicast Hellos (possibly in addition to Unicast Hellos).
As described in Section 3.5.2, the metric advertised by a neighbour is combined with the link cost to yield a metric.
The simplest approach for obtaining a monotonic, left-distributive metric is to define the metric of a route as the sum of the costs of the component links. More formally, if a neighbour advertises a route with metric m over a link with cost c, then the resulting route has metric M(c, m) = c + m.
A multiplicative metric can be converted into an additive one by taking the logarithm (in some suitable base) of the link costs.
A node may want to vary its willingness to forward packets by taking into account information that is external to the Babel protocol, such as the monetary cost of a link, the node's battery status, CPU load, etc. This can be done by adding to every route's metric a value k that depends on the external data. For example, if a battery-powered node receives an update with metric m over a link with cost c, it might compute a metric M(c, m) = k + c + m, where k depends on the battery status.
In order to preserve strict monotonicity (Section 3.5.2), the value k must be greater than -c.
The choice of time constants is a trade-off between fast detection of mobility events and protocol overhead. Two implementations of Babel with different time constants will interoperate, although the resulting convergence time will most likely be dictated by the slower of the two.
Experience with the sample implementation of Babel indicates that the Hello interval is the most important time constant: a mobility event is detected within 1.5 to 3 Hello intervals. Due to Babel's reliance on triggered updates and explicit requests, the Update interval only has an effect on the time it takes for accurate metrics to be propagated after variations in link costs too small to trigger an unscheduled update or in the presence of packet loss.
At the time of writing, the sample implementation of Babel uses the following default values:
The amount of jitter applied to a packet depends on whether it contains any urgent TLVs or not (Section 3.1). Urgent triggered updates and urgent requests are delayed by no more than 200ms; acknowledgments, by no more than the associated deadline; and other TLVs by no more than one-half the Multicast Hello interval.
Babel is an extensible protocol, and this document defines a number of mechanisms that can be used to extend the protocol in a backwards compatible manner:
This appendix is intended to guide designers of protocol extensions in chosing a particular encoding.
The version number in the Babel header should only be increased if the new version is not backwards compatible with the original protocol.
In many cases, an extension could be implemented either by defining a new TLV, or by adding a new sub-TLV to an existing TLV. For example, an extension whose purpose is to attach additional data to route updates can be implemented either by creating a new "enriched" Update TLV, by adding a non-mandatory sub-TLV to the Update TLV, or by adding a mandatory sub-TLV.
The various encodings are treated differently by implementations that do not understand the extension. In the case of a new TLV or of a sub-TLV with the mandatory bit set, the whole TLV is ignored by implementations that do not implement the extension, while in the case of a non-mandatory sub-TLV, the TLV is parsed and acted upon, and only the unknown sub-TLV is silently ignored. Therefore, a non-mandatory sub-TLV should be used by extensions that extend the Update in a compatible manner (the extension data may be silently ignored), while a mandatory sub-TLV or a new TLV must be used by extensions that make incompatible extensions to the meaning of the TLV (the whole TLV must be thrown away if the extension data is not understood).
Experience shows that the need for additional data tends to crop up in the most unexpected places. Hence, it is recommended that extensions that define new TLVs should make them self-terminating, and allow attaching sub-TLVs to them.
Adding a new AE is essentially equivalent to adding a new TLV: Update TLVs with an unknown AE are ignored, just like unknown TLVs. However, adding a new AE is more involved than adding a new TLV, since it creates a new set of compression state. Additionally, since the Next Hop TLV creates state specific to a given address family, as opposed to a given AE, a new AE for a previously defined address family must not be used in the Next Hop TLV if backwards compatibility is required. A similar issue arises with Update TLVs with unknown AEs establishing a new router-id (due to the Router-Id flag being set). Therefore, defining new AEs must be done with care if compatibility with unextended implementations is required.
The packet trailer is intended to carry cryptographic signatures that only cover the packet body; storing the cryptographic signatures in the packet trailer avoids clearing the signature before computing a hash of the packet body, and makes it possible to check a cryptographic signature before running the full, stateful TLV parser. Hence, only TLVs that don't need to be protected by cryptographic security protocols should be allowed in the packet trailer. Any such TLVs should be easy to parse, and in particular should not require stateful parsing.
Babel is a fairly economic protocol. Updates take between 12 and 40 octets per destination, depending on the address family and how successful compression is; in a double-stack flat network, an average of less than 24 octets per update is typical. The route table occupies about 35 octets per IPv6 entry. To put these values into perspective, a single full-size Ethernet frame can carry some 65 route updates, and a megabyte of memory can contain a 20000-entry route table and the associated source table.
Babel is also a reasonably simple protocol. The sample implementation consists of less than 12 000 lines of C code, and it compiles to less than 120 kB of text on a 32-bit CISC architecture; about half of this figure is due to protocol extensions and user-interface code.
Nonetheless, in some very constrained environments, such as PDAs, microwave ovens, or abacuses, it may be desirable to have subset implementations of the protocol.
There are many different definitions of a stub router, but for the needs of this section a stub implementation of Babel is one that announces one or more directly attached prefixes into a Babel network but doesn't reannounce any routes that it has learnt from its neighbours. It may either maintain a full routing table, or simply select a default gateway amongst any one of its neighbours that announces a default route. Since a stub implementation never forwards packets except from or to directly attached links, it cannot possibly participate in a routing loop, and hence it need not evaluate the feasibility condition or maintain a source table.
No matter how primitive, a stub implementation MUST parse sub-TLVs attached to any TLVs that it understands and check the mandatory bit. It MUST answer acknowledgment requests and MUST participate in the Hello/IHU protocol. It MUST also be able to reply to seqno requests for routes that it announces and SHOULD be able to reply to route requests.
Experience shows that an IPv6-only stub implementation of Babel can be written in less than 1000 lines of C code and compile to 13 kB of text on 32-bit CISC architecture.
The sample implementation of Babel is available from <https://www.irif.fr/~jch/software/babel/>.
Minor editorial changes.