Calendaring extensions | N. Jenkins |
Internet-Draft | R. Stepanek |
Intended status: Standards Track | Fastmail |
Expires: January 24, 2020 | July 23, 2019 |
JSCalendar: A JSON representation of calendar data
draft-ietf-calext-jscalendar-18
This specification defines a data model and JSON representation of calendar data that can be used for storage and data exchange in a calendaring and scheduling environment. It aims to be an alternative, and over time successor to, the widely deployed iCalendar data format and to be unambiguous, extendable and simple to process. In contrast to the JSON-based jCal format, it is not a direct mapping from iCalendar and expands semantics where appropriate.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 24, 2020.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document defines a data model for calendar event and task objects, or groups of such objects, in electronic calendar applications and systems. It aims to be unambiguous, extendable and simple to process.
The key design considerations for this data model are as follows:
The representation of this data model is defined in the I-JSON format [RFC7493], which is a strict subset of the JavaScript Object Notation (JSON) Data Interchange Format [RFC8259]. Using JSON is mostly a pragmatic choice: its widespread use makes JSCalendar easier to adopt, and the ready availability of production-ready JSON implementations eliminates a whole category of parser-related interoperability issues, which iCalendar has often suffered from.
The iCalendar data format [RFC5545], a widely deployed interchange format for calendaring and scheduling data, has served calendaring vendors for a long while, but contains some ambiguities and pitfalls that can not be overcome without backward-incompatible changes.
For example, iCalendar defines various formats for local times, UTC time and dates, which confuses new users and often leads to implementation errors. Other sources for errors are the requirement for custom time zone definitions within a single calendar component, as well as the iCalendar format itself; the latter causing interoperability issues due to misuse of CR LF terminated strings, line continuations and subtle differences between iCalendar parsers. The definition of recurrence rules is ambiguous and has resulted in differing understandings even between experienced calendar developers.
In recent years, many new products and services have appeared that wish to use a JSON representation of calendar data within their API. The JSON format for iCalendar data, jCal, is a direct mapping between iCalendar and JSON. In its effort to represent full iCalendar semantics, it inherits all the same pitfalls and uses a complicated JSON structure unlike most common JSON data representations.
As a consequence, since the standardization of jCal, the majority of implementations and service providers either kept using iCalendar, or came up with their own proprietary JSON representations, which are incompatible with each other and often suffer from common pitfalls, such as storing event start times in UTC (which become incorrect if the timezone's rules change in the future). JSCalendar is intended to meet this demand for JSON-formatted calendar data, and to provide a standard, elegant representation as an alternative to new proprietary formats.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
The underlying format used for this specification is JSON. Consequently, the terms "object" and "array" as well as the four primitive types (strings, numbers, booleans, and null) are to be interpreted as described in Section 1 of [RFC8259].
Some examples in this document contain "partial" JSON documents used for illustrative purposes. In these examples, three periods "..." are used to indicate a portion of the document that has been removed for compactness.
Type signatures are given for all JSON values in this document. The following conventions are used:
Other types may also be given, with their representation defined elsewhere in this document.
In addition to the standard JSON data types, the following data types are used in this specification:
Where Int is given as a data type, it means an integer in the range -2^53+1 <= value <= 2^53-1, the safe range for integers stored in a floating-point double, represented as a JSON Number.
Where UnsignedInt is given as a data type, it means an Int where the value MUST be in the range 0 <= value <= 2^53-1.
This is a string in [RFC3339] date-time format, with the further restrictions that any letters MUST be in uppercase, the time component MUST be included and the time offset MUST be the character Z. Fractional second values MUST NOT be included unless non-zero and MUST NOT have trailing zeros, to ensure there is only a single representation for each date-time.
For example 2010-10-10T10:10:10.003Z is OK, but 2010-10-10T10:10:10.000Z is invalid and MUST be encoded as 2010-10-10T10:10:10Z.
In common notation, it should be of the form YYYY-MM-DDTHH:MM:SSZ.
This is a date-time string with no time zone/offset information. It is otherwise in the same format as UTCDateTime, including fractional seconds. For example 2006-01-02T15:04:05 and 2006-01-02T15:04:05.003 are both valid. The time zone to associate the LocalDateTime with comes from an associated property, or if no time zone is associated it defines floating time. Floating date-times are not tied to any specific time zone. Instead, they occur in every time zone at the same wall-clock time (as opposed to the same instant point in time).
Where Duration is given as a type, it means a length of time represented by a subset of ISO8601 duration format, as specified by the following ABNF:
dur-secfrac = "." 1*DIGIT dur-second = 1*DIGIT [dur-secfrac] "S" dur-minute = 1*DIGIT "M" [dur-second] dur-hour = 1*DIGIT "H" [dur-minute] dur-time = "T" (dur-hour / dur-minute / dur-second) dur-day = 1*DIGIT "D" dur-week = 1*DIGIT "W" duration = "P" (dur-day [dur-time] / dur-time / dur-week)
In addition, the duration MUST NOT include fractional second values unless the fraction is non-zero.
A SignedDuration represents a length of time that may be positive or negative and is typically used to express the offset of a point in time relative to an associated time. It is represented as a Duration, optionally preceded by a sign character. It is specified by the following ABNF:
signed-duration = (["+"] / "-") duration
A negative sign indicates a point in time at or before the associated time, a positive or no sign a time at or after the associated time.
Where Id is given as a data type, it means a String of at least 1 and a maximum of 255 octets in size, and it MUST only contain characters from the "URL and Filename Safe" base64 alphabet, as defined in Section 5 of [RFC4648], excluding the pad character (=). This means the allowed characters are the ASCII alphanumeric characters (A-Za-z0-9), hyphen (-), and underscore (_).
Unless otherwise specified, Ids are arbitrary and only have meaning within the object where they are being used. Ids need not be unique between different objects. For example, two JSEvent objects MAY use the same ids in their respective links properties. Or within the same JSEvent object the same Id could appear in the participants and alerts properties. This does not imply any semantic connection between the two.
Nevertheless, a UUID is typically a good choice.
A PatchObject is of type String[*], and represents an unordered set of patches on a JSON object. The keys are a path in a subset of [RFC6901] JSON pointer format, with an implicit leading / (i.e. prefix each key with / before applying the JSON pointer evaluation algorithm).
A patch within a PatchObject is only valid if all of the following conditions apply:
The value associated with each pointer is either:
Implementations MUST reject a PatchObject if any of its patches are invalid.
By default, time zones in JSCalendar are identified by their name in the IANA Time Zone Database, and the zone rules of the respective zone record apply.
Implementations MAY embed the definition of custom time zones in the timeZones property (see Section 4.7.2).
This section describes the calendar object types specified by JSCalendar.
MIME type: application/jscalendar+json;type=jsevent
A JSEvent represents a scheduled amount of time on a calendar, typically a meeting, appointment, reminder or anniversary. Multiple participants may partake in the event at multiple locations.
The @type property value MUST be jsevent.
MIME type: application/jscalendar+json;type=jstask
A JSTask represents an action-item, assignment, to-do or work item.
The @type property value MUST be jstask.
A JSTask may start and be due at certain points in time, may take some estimated time to complete and may recur; none of which is required. This notably differs from JSEvent which is required to start at a certain point in time and typically takes some non-zero duration to complete.
MIME type: application/jscalendar+json;type=jsgroup
A JSGroup is a collection of JSEvent and/or JSTask objects. Typically, objects are grouped by topic (e.g. by keywords) or calendar membership.
The @type property value MUST be jsgroup.
A JSCalendar object is a JSON object, which MUST be valid I-JSON (a stricter subset of JSON), as specified in [RFC8259]. Property names and values are case-sensitive.
The object has a collection of properties, as specified in the following sections. Properties are specified as being either mandatory or optional. Optional properties may have a default value, if explicitly specified in the property definition.
JSCalendar aims to provide unambiguous definitions for value types and properties, but does not define a general normalization or equivalence method for JSCalendar objects and types. This is because the notion of equivalence might range from byte-level equivalence to semantic equivalence, depending on the respective use case (for example, the CalDAV protocol [RFC4791] requires octet equivalence of the encoded calendar object to determine ETag equivalence).
Normalization of JSCalendar objects is hindered because of the following reasons:
Considering this, the definition of equivalence and normalization is left to client and server implementations and to be negotiated by a calendar exchange protocol or defined by another RFC.
Vendors MAY add additional properties to the calendar object to support their custom features. The names of these properties MUST be prefixed with a domain name controlled by the vendor to avoid conflict, e.g. example.com/customprop.
Some JSCalendar properties allow vendor-specific value extensions. If so, vendor specific values MUST be prefixed with a domain name controlled by the vendor, e.g. example.com/customrel, unless otherwise noted.
Vendors are strongly encouraged to standardize any new property values or extensions that are useful to other systems as well, rather than use a vendor-specific prefix.
This section describes the properties that are common to the various JSCalendar object types. Specific JSCalendar object types may only support a subset of these properties. The object type definitions in Section 5 describe the set of supported properties per type.
Type: String (mandatory).
Specifies the type which this object represents. This MUST be one of the following values, registered in a future RFC, or a vendor-specific value:
Type: String (mandatory).
A globally unique identifier, used to associate the object as the same across different systems, calendars and views. The value of this property MUST be unique across all JSCalendar objects, even if they are of different type. [RFC4122] describes a range of established algorithms to generate universally unique identifiers (UUID), and the random or pseudo-random version is recommended.
For compatibility with [RFC5545] UIDs, implementations MUST be able to receive and persist values of at least 255 octets for this property, but they MUST NOT truncate values in the middle of a UTF-8 multi-octet sequence.
Type: String[Relation] (optional).
Relates the object to other JSCalendar objects. This is represented as a map of the UIDs of the related objects to information about the relation.
A Relation object has the following property:
The value for each key in the set MUST be true.
Note, the Relation object only has one property; it is specified as an object with a single property rather than mapping directly from the UID to relation types to allow for extension in the future.
If an object is split to make a "this and future" change to a recurrence, the original object MUST be truncated to end at the previous occurrence before this split, and a new object created to represent all the occurrences after the split. A next relation MUST be set on the original object's relatedTo property for the UID of the new object. A first relation for the UID of the first object in the series MUST be set on the new object. Clients can then follow these UIDs to get the complete set of objects if the user wishes to modify them all at once.
Type: String (optional).
The identifier for the product that created the JSCalendar object.
The vendor of the implementation SHOULD ensure that this is a globally unique identifier, using some technique such as an FPI value, as defined in [ISO.9070.1991]. It MUST only use characters of an iCalendar TEXT data value (see Section 3.3.11 of [RFC5545]).
This property SHOULD NOT be used to alter the interpretation of a JSCalendar object beyond the semantics specified in this document. For example, it is not to be used to further the understanding of non-standard properties.
Type: UTCDateTime (optional).
The date and time this object was initially created.
Type: UTCDateTime (mandatory).
The date and time the data in this object was last modified.
Type: UnsignedInt (optional, default: 0).
Initially zero, this MUST be incremented by one every time a change is made to the object, except if the change only modifies the participants property (see Section 4.4.5).
This is used as part of iTIP [RFC5546] to know which version of the object a scheduling message relates to.
Type: String (optional).
The iTIP [RFC5546] method, in lowercase. This MUST only be present if the JSCalendar object represents an iTIP scheduling message.
Type: String (optional, default: empty String).
A short summary of the object.
Type: String (optional, default: empty String).
A longer-form text description of the object. The content is formatted according to the descriptionContentType property.
Type: String (optional, default: text/plain).
Describes the media type [RFC6838] of the contents of the description property. Media types MUST be sub-types of type text, and SHOULD be text/plain or text/html [MIME]. They MAY define parameters and the charset parameter value MUST be utf-8, if specified. Descriptions of type text/html MAY contain cid URLs [RFC2392] to reference links in the calendar object by use of the cid property of the Link object.
Type: Boolean (optional, default: false).
Indicates the time is not important to display to the user when rendering this calendar object, for example an event that conceptually occurs all day or across multiple days, such as "New Year's Day" or "Italy Vacation". While the time component is important for free-busy calculations and checking for scheduling clashes, calendars may choose to omit displaying it and/or display the object separately to other objects to enhance the user's view of their schedule.
Such events are also commonly known as "all-day" events.
Type: Id[Location] (optional).
A map of location ids to Location objects, representing locations associated with the object.
A Location object has the following properties. It MUST have at least one property other than the relativeTo property.
Type: Id[VirtualLocation] (optional).
A map of ids to VirtualLocation objects, representing virtual locations, such as video conferences or chat rooms, associated with the object.
A VirtualLocation object has the following properties.
Type: Id[Link] (optional).
A map of link ids to Link objects, representing external resources associated with the object.
A Link object has the following properties:
Type: String (optional).
The language tag as defined in [RFC5646] that best describes the locale used for the text in the calendar object, if known.
Type: String[Boolean] (optional).
A set of keywords or tags that relate to the object. The set is represented as a map, with the keys being the keywords. The value for each key in the map MUST be true.
Type: String[Boolean] (optional).
A set of categories that relate to the calendar object. The set is represented as a map, with the keys being the categories specified as URIs. The value for each key in the map MUST be true.
In contrast to keywords, categories typically are structured. For example, a vendor owning the domain example.com might define the categories http://example.com/categories/sports/american-football" and http://example.com/categories/music/r-b.
Type: String (optional).
A color clients MAY use when displaying this calendar object. The value is a case-insensitive color name taken from the CSS3 set of names, defined in Section 4.3 of W3C.REC-css3-color-20110607 or a CSS3 RGB color hex value.
Some events and tasks occur at regular, or indeed irregular, intervals. Rather than having to copy the data for every occurrence, you can instead have a master event with a recurrence rule generating the occurrences, and/or overrides that add extra dates or exceptions to the rule.
Type: LocalDateTime (optional).
If present, this JSCalendar object represents one occurrence of a recurring JSCalendar object. If present the recurrenceRule and recurrenceOverrides properties MUST NOT be present.
The value is a date-time either produced by the recurrenceRule of the master event, or added as a key to the recurrenceOverrides property of the master event.
Type: Recurrence (optional).
Defines a recurrence rule (repeating pattern) for recurring calendar objects.
A JSEvent recurs by applying the recurrence rule to the start date-time.
A JSTask recurs by applying the recurrence rule to the start date-time, if defined, otherwise it recurs by the due date-time, if defined. If the task defines neither a start nor due date-time, its recurrenceRule property value MUST be null.
A Recurrence object is a JSON object mapping of a RECUR value type in iCalendar [RFC5545] [RFC7529] and has the same semantics. It has the following properties:
This is the FREQ part from iCalendar, converted to lowercase.
This is the SKIP part from iCalendar
RSCALE, converted to lowercase.This is the WKST part from iCalendar.
A recurrence rule specifies a set of date-times for recurring calendar objects. A recurrence rule has the following semantics. Note, wherever "year", "month" or "day of month" is used, this is within the calendar system given by the "rscale" property, which defaults to gregorian if omitted.
If a skip property is defined and is not "omit", there may be candidates that do not correspond to valid dates (e.g. 31st February in the gregorian calendar). In this case, the properties MUST be considered in the order above and:
When determining the set of occurrence dates for an event or task, the following extra rules must be applied:
Type: LocalDateTime[PatchObject] (optional).
A map of the recurrence ids (the date-time produced by the recurrence rule) to an object of patches to apply to the generated occurrence object.
If the recurrence id does not match a date-time from the recurrence rule (or no rule is specified), it is to be treated as an additional occurrence (like an RDATE from iCalendar). The patch object may often be empty in this case.
If the patch object defines the excluded property value to be true, then the recurring calendar object does not occur at the recurrence id date-time (like an EXDATE from iCalendar). Such a patch object MUST NOT patch any other property.
By default, an occurrence inherits all properties from the main object except the start (or due) date-time, which is shifted to match the recurrence id LocalDateTime. However, individual properties of the occurrence can be modified by a patch, or multiple patches. It is valid to patch the start property value, and this patch takes precedence over the value generated from the recurrence id. Both the recurrence id as well as the patched start date-time may occur before the original JSCalendar object's start or due date.
A pointer in the PatchObject MUST be ignored if it starts with one of the following prefixes:
Type: Boolean (optional, default: false).
Defines if this object is an overridden, excluded instance of a recurring JSCalendar object (see Section 4.3.3). If this property value is true, this calendar object instance MUST be removed from the occurrence expansion. The absence of this property or its default value false indicates that this instance MUST be included in the occurrence expansion.
Type: Int (optional, default: 0).
Specifies a priority for the calendar object. This may be used as part of scheduling systems to help resolve conflicts for a time period.
The priority is specified as an integer in the range 0 to 9. A value of 0 specifies an undefined priority. A value of 1 is the highest priority. A value of 2 is the second highest priority. Subsequent numbers specify a decreasing ordinal priority. A value of 9 is the lowest priority. Other integer values are reserved for future use.
Type: String (optional, default: busy).
Specifies how this property should be treated when calculating free-busy state. The value MUST be one of:
Type: String (optional, default: public).
Calendar objects are normally collected together and may be shared with other users. The privacy property allows the object owner to indicate that it should not be shared, or should only have the time information shared but the details withheld. Enforcement of the restrictions indicated by this property are up to the API via which this object is accessed.
This property MUST NOT affect the information sent to scheduled participants; it is only interpreted when the object is shared as part of a shared calendar.
The value MUST be either one of the following values, registered in a future RFC, or a vendor-specific value. Vendor specific values MUST be prefixed with a domain name controlled by the vendor, e.g. example.com/topsecret. Any value the client or server doesn't understand should be preserved but treated as equivalent to private.
Type: String[String] (optional).
Represents methods by which participants may submit their RSVP response to the organizer of the calendar object. The keys in the property value are the available methods and MUST only contain ASCII alphanumeric characters (A-Za-z0-9). The value is a URI to use that method. Future methods may be defined in future specifications; a calendar client MUST ignore any method it does not understand, but MUST preserve the method key and URI. This property MUST be omitted if no method is defined (rather than an empty object). If this property is set, the participants property of this calendar object MUST contain at least one participant.
The following methods are defined:
Type: Id[Participant] (optional).
A map of participant ids to participants, describing their participation in the calendar object.
If this property is set, then the replyTo property of this calendar object MUST define at least one reply method.
A Participant object has the following properties:
The value for each key in the set MUST be true. Roles that are unknown to the implementation MUST be preserved.
Type: Boolean (optional, default: false).
If true, use the user's default alerts and ignore the value of the alerts property. Fetching user defaults is dependent on the API from which this JSCalendar object is being fetched, and is not defined in this specification. If an implementation cannot determine the user's default alerts, or none are set, it MUST process the alerts property as if useDefaultAlerts is set to false.
Type: Id[Alert] (optional).
A map of alert ids to Alert objects, representing alerts/reminders to display or send to the user for this calendar object.
An Alert Object has the following properties:
An
AbsoluteTrigger object has the following properties:An
UnknownTrigger object is an object that contains a type property whose value is not recognized (i.e., not offset or absolute), plus zero or more other properties. This is for compatibility with client extensions and future RFCs. Implementations SHOULD NOT trigger for trigger types they do not understand, but MUST preserve them.Type: String[PatchObject] (optional).
A map of [RFC5646] language tags to patch objects, which localize the calendar object into the locale of the respective language tag.
See the description of PatchObject for the structure of the PatchObject. The patches are applied to the top-level calendar object. In addition, the locale property of the patched object is set to the language tag. All pointers for patches MUST end with one of the following suffixes; any patch that does not follow this MUST be ignored unless otherwise specified in a future RFC: recurrenceOverrides/2018-01-05T14:00:00/locations/abcd1234/title is permissible, but a patch to uid is not.
For example, a patch to
Note that this specification does not define how to maintain validity of localized content. For example, a client application changing a JSCalendar object's title property might also need to update any localizations of this property. Client implementations SHOULD provide the means to manage localizations, but how to achieve this is specific to the application's workflow and requirements.
Type: String|null (optional, default: null).
Identifies the time zone the object is scheduled in, or null for floating time. This is either a name from the IANA Time Zone Database or the id of a custom time zone from the timeZones property (see Section 1.4.9). If omitted, this MUST be presumed to be null (i.e., floating time).
Type: String[TimeZone] (optional).
Maps identifiers of custom time zones to their time zone definition. The following restrictions apply for each key in the map:
An identifier need only be unique to this JSCalendar object.
A TimeZone object maps a VTIMEZONE component from iCalendar [RFC5545] and the semantics are as defined there. A valid time zone MUST define at least one transition rule in the standard or daylight property. Its properties are:
A TimeZoneRule object maps a STANDARD or DAYLIGHT sub-component from iCalendar, with the restriction that at most one recurrence rule is allowed per rule. It has the following properties:
In addition to the common JSCalendar object properties a JSEvent has the following properties:
Type: LocalDateTime (mandatory).
The date/time the event starts in the event's time zone (as specified in the timeZone property, see Section 4.7.1).
Type: Duration (optional, default: PT0S).
The zero or positive duration of the event in the event's start time zone.
Note that a duration specified using weeks or days does not always correspond to an exact multiple of 24 hours. The number of hours/minutes/seconds may vary if it overlaps a period of discontinuity in the event's time zone, for example a change from standard time to daylight-savings time. Leap seconds MUST NOT be considered when computing an exact duration. When computing an exact duration, the greatest order time components MUST be added first, that is, the number of days MUST be added first, followed by the number of hours, number of minutes, and number of seconds. Fractional seconds MUST be added last. These semantics match the iCalendar DURATION value type ([RFC5545], Section 3.3.6).
A JSEvent MAY involve start and end locations that are in different time zones (e.g. a trans-continental flight). This can be expressed using the relativeTo and timeZone properties of the JSEvent's Location objects (see Section 4.2.5).
Type: String (optional, default: confirmed).
The scheduling status (Section 4.4) of a JSEvent. If set, it MUST be one of:
In addition to the common JSCalendar object properties a JSTask has the following properties:
Type: LocalDateTime (optional).
The date/time the task is due in the task's time zone.
Type: LocalDateTime (optional).
The date/time the task should start in the task's time zone.
Type: Duration (optional).
Specifies the estimated positive duration of time the task takes to complete.
Type: UTCDateTime (optional).
Specifies the date/time the status property of either the task overall (Section 5.2.6) or a specific participant (Section 5.2.5) was last updated.
If the task is recurring and has future instances, a client may want to keep track of the last status update timestamp of a specific task recurrence, but leave other instances unchanged. One way to achieve this is by overriding the statusUpdatedAt property in the task recurrenceOverrides property. However, this could produce a long list of timestamps for regularly recurring tasks. An alternative approach is to split the JSTask into a current, single instance of JSTask with this instance status update time and a future recurring instance. See also Section 4.1.3 on splitting.
In addition to the common properties of a Participant object (Section 4.4.5), a Participant within a JSTask supports the following property:
A ParticipantProgress object has the following properties:
Type: String (optional).
Defines the overall status of this task. If omitted, the default status (Section 4.4) of a JSTask is defined as follows (in order of evaluation):
If set, it MUST be one of:
JSGroup supports the following common JSCalendar properties:
In addition, the following JSGroup-specific properties are supported:
Type: String[JSTask|JSEvent] (mandatory).
A collection of group members. This is represented as a map of the uid property value to the JSCalendar object member having that uid. Implementations MUST ignore entries of unknown type.
Type: String (optional).
The source from which updated versions of this group may be retrieved from. The value MUST be a URI.
The following examples illustrate several aspects of the JSCalendar data model and format. The examples may omit mandatory or additional properties, which is indicated by a placeholder property with key .... While most of the examples use calendar event objects, they are also illustrative for tasks.
This example illustrates a simple one-time event. It specifies a one-time event that begins on January 15, 2018 at 1pm New York local time and ends at 2pm.
{ "@type": "jsevent", "uid": "2a358cee-6489-4f14-a57f-c104db4dc2f1", "updated": "2018-01-01T12:00:00Z", "title": "Some event", "start": "2018-01-15T13:00:00", "timeZone": "America/New_York", "duration": "PT1H" }
This example illustrates a simple task for a plain to-do item.
{ "@type": "jstask", "uid": "2a358cee-6489-4f14-a57f-c104db4dc2f2", "updated": "2018-01-19T18:00:00Z", "title": "Do something" }
This example illustrates a simple calendar object group that contains an event and a task.
{ "@type": "jsgroup", "uid": "2a358cee-6489-4f14-a57f-c104db4dc343", "updated": "2018-01-15T18:00:00Z", "title": "A simple group", "entries": [ { "@type": "jsevent", "uid": "2a358cee-6489-4f14-a57f-c104db4dc2f1", "updated": "2018-01-15T18:00:00Z", "title": "Some event", "start": "2018-01-15T13:00:00", "timeZone": "America/New_York", "duration": "PT1H" }, { "@type": "jstask", "uid": "2a358cee-6489-4f14-a57f-c104db4dc2f2", "updated": "2018-01-15T18:00:00Z", "title": "Do something" } ] }
This example illustrates an event for an international holiday. It specifies an all-day event on April 1 that occurs every year since the year 1900.
{ "...": "", "title": "April Fool's Day", "showWithoutTime": true, "start": "1900-04-01T00:00:00", "duration": "P1D", "recurrenceRule": { "frequency": "yearly" } }
This example illustrates a task with a due date. It is a reminder to buy groceries before 6pm Vienna local time on January 19, 2018. The calendar user expects to need 1 hour for shopping.
{ "...": "", "title": "Buy groceries", "due": "2018-01-19T18:00:00", "timeZone": "Europe/Vienna", "estimatedDuration": "PT1H" }
This example illustrates the use of end time-zones by use of an international flight. The flight starts on April 1, 2018 at 9am in Berlin local time. The duration of the flight is scheduled at 10 hours 30 minutes. The time at the flights destination is in the same time-zone as Tokyo. Calendar clients could use the end time-zone to display the arrival time in Tokyo local time and highlight the time-zone difference of the flight. The location names can serve as input for navigation systems.
{ "...": "", "title": "Flight XY51 to Tokyo", "start": "2018-04-01T09:00:00", "timeZone": "Europe/Berlin", "duration": "PT10H30M", "locations": { "2a358cee-6489-4f14-a57f-c104db4dc2f1": { "rel": "start", "name": "Frankfurt Airport (FRA)" }, "c2c7ac67-dc13-411e-a7d4-0780fb61fb08": { "rel": "end", "name": "Narita International Airport (NRT)", "timeZone": "Asia/Tokyo" } } }
This example illustrates the use of floating-time. Since January 1, 2018, a calendar user blocks 30 minutes every day to practice Yoga at 7am local time, in whatever time-zone the user is located on that date.
{ "...": "", "title": "Yoga", "start": "2018-01-01T07:00:00", "duration": "PT30M", "recurrenceRule": { "frequency": "daily" } }
This example illustrates an event that happens at both a physical and a virtual location. Fans can see a live convert on premises or online. The event title and descriptions are localized.
{ "...": "", "title": "Live from Music Bowl: The Band", "description": "Go see the biggest music event ever!", "locale": "en", "start": "2018-07-04T17:00:00", "timeZone": "America/New_York", "duration": "PT3H", "locations": { "c0503d30-8c50-4372-87b5-7657e8e0fedd": { "name": "The Music Bowl", "description": "Music Bowl, Central Park, New York", "coordinates": "geo:40.7829,73.9654" } }, "virtualLocations": { "6f3696c6-1e07-47d0-9ce1-f50014b0041a": { "name": "Free live Stream from Music Bowl", "uri": "https://stream.example.com/the_band_2018" } }, "localizations": { "de": { "title": "Live von der Music Bowl: The Band!", "description": "Schau dir das größte Musikereignis an!", "virtualLocations/6f3696c6-1e07-47d0-9ce1-f50014b0041a/name": "Gratis Live-Stream aus der Music Bowl" } } }
This example illustrates the use of recurrence overrides. A math course at a University is held for the first time on January 8, 2018 at 9am London time and occurs every week until June 25, 2018 (inclusive). Each lecture lasts for one hour and thirty minutes and is located at the Mathematics department. This event has exceptional occurrences: at the last occurrence of the course is an exam, which lasts for 2 hours and starts at 10am. Also, the location of the exam differs from the usual location. On April 2 no course is held. On January 5 at 2pm is an optional introduction course, that occurs before the first regular lecture.
{ "...": "", "title": "Calculus I", "start": "2018-01-08T09:00:00", "timeZone": "Europe/London", "duration": "PT1H30M", "locations": { "2a358cee-6489-4f14-a57f-c104db4dc2f1": { "title": "Math lab room 1", "description": "Math Lab I, Department of Mathematics\n1 University Drive" } }, "recurrenceRule": { "frequency": "weekly", "until": "2018-06-25T09:00:00" }, "recurrenceOverrides": { "2018-01-05T14:00:00": { "title": "Introduction to Calculus I (optional)" }, "2018-04-02T09:00:00": { "excluded": true }, "2018-06-25T09:00:00": { "title": "Calculus I Exam", "start": "2018-06-25T10:00:00", "duration": "PT2H", "locations": { "2a358cee-6489-4f14-a57f-c104db4dc2f1": { "title": "Big Auditorium", "description": "Big Auditorium, Other Road" } } } } }
This example illustrates scheduled events. A team meeting occurs every week since January 8, 2018 at 9am Johannesburg time. The event owner also chairs the event. Participants meet in a virtual meeting room. An attendee has accepted the invitation, but on March 8, 2018 he is unavailable and declined participation for this occurrence, leaving a short explanation for the organizer.
{ "...": "", "title": "FooBar team meeting", "start": "2018-01-08T09:00:00", "timeZone": "Africa/Johannesburg", "duration": "PT1H", "virtualLocations": { "2a358cee-6489-4f14-a57f-c104db4dc2f1": { "name": "ChatMe meeting room", "uri": "https://chatme.example.com?id=1234567" } }, "recurrenceRule": { "frequency": "weekly" }, "replyTo": { "imip": "mailto:6489-4f14-a57f-c1@schedule.example.com" }, "participants": { "dG9tQGZvb2Jhci5leGFtcGxlLmNvbQ": { "name": "Tom Tool", "email": "tom@foobar.example.com", "sendTo": { "imip": "mailto:41f3-8b10-516a4d0f42bc@calendar.example.com" }, "participationStatus": "accepted", "roles": { "attendee": true } }, "em9lQGZvb2Jhci5leGFtcGxlLmNvbQ": { "name": "Zoe Zelda", "email": "zoe@foobar.example.com", "sendTo": { "imip": "mailto:zoe@foobar.example.com" }, "participationStatus": "accepted", "roles": { "owner": true, "attendee": true, "chair": true } }, "...": "" }, "recurrenceOverrides": { "2018-03-08T09:00:00": { "participants/dG9tQGZvb2Jhci5leGFtcGxlLmNvbQ/participationStatus": "declined", "participants/dG9tQGZvb2Jhci5leGFtcGxlLmNvbQ/participationComment": "Sorry, kid's recital this week, can't make it." } } }
Calendaring and scheduling information is very privacy-sensitive. The transmission of such information must be careful to protect it from possible threats, such as eavesdropping, replay, message insertion, deletion, modification, and man-in-the-middle attacks. This document just defines the data format; such considerations are primarily the concern of the API or method of storage and transmission of such files.
A recurrence rule may produce infinite occurrences of an event. Implementations MUST handle expansions carefully to prevent accidental or deliberate resource exhaustion.
Conversely, a recurrence rule may be specified that does not expand to anything. It is not always possible to tell this through static analysis of the rule, so implementations MUST be careful to avoid getting stuck in an infinite loop, or otherwise exhausting resources, searching for the next occurrence.
The Security Considerations of [RFC8259] apply to the use of JSON as the data interchange format.
As for any serialization format, parsers need to thoroughly check the syntax of the supplied data. JSON uses opening and closing tags for several types and structures, and it is possible that the end of the supplied data will be reached when scanning for a matching closing tag; this is an error condition, and implementations need to stop scanning at the end of the supplied data.
JSON also uses a string encoding with some escape sequences to encode special characters within a string. Care is needed when processing these escape sequences to ensure that they are fully formed before the special processing is triggered, with special care taken when the escape sequences appear adjacent to other (non-escaped) special characters or adjacent to the end of data (as in the previous paragraph).
If parsing JSON into a non-textual structured data format, implementations may need to allocate storage to hold JSON string elements. Since JSON does not use explicit string lengths, the risk of denial of service due to resource exhaustion is small, but implementations may still wish to place limits on the size of allocations they are willing to make in any given context, to avoid untrusted data causing excessive memory allocation.
Several JSCalendar properties contain URIs as values, and processing these properties requires extra care. Section 7 of [RFC3986] discusses security risk related to URIs.
This document defines a MIME media type for use with JSCalendar data formatted in JSON.
The authors would like to thank the members of CalConnect for their valuable contributions. This specification originated from the work of the API technical committee of CalConnect, the Calendaring and Scheduling Consortium.
[MIME] | "IANA Media Types" |