Network Working Group | J. Abley |
Internet-Draft | Dyn, Inc. |
Intended status: Informational | B. Dickson |
Expires: May 23, 2015 | Twitter, Inc. |
W. Kumari | |
G. Michaelson | |
APNIC | |
November 19, 2014 |
AS112 Redirection using DNAME
draft-ietf-dnsop-as112-dname-05
AS112 provides a mechanism for handling reverse lookups on IP addresses that are not unique (e.g., RFC 1918 addresses). This document describes modifications to the deployment and use of AS112 infrastructure that will allow zones to be added and dropped much more easily, using DNAME resource records.
This approach makes it possible for any DNS zone administrator to sink traffic relating to parts of the global DNS namespace under their control to the AS112 infrastructure without coordination with the operators of AS112 infrastructure.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on May 23, 2015.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Many sites connected to the Internet make use of IPv4 addresses that are not globally unique. Examples are the addresses designated in [RFC1918] for private use within individual sites.
Devices in such environments may occasionally originate Domain Name System (DNS) queries (so-called "reverse lookups") corresponding to those private-use addresses. Since the addresses concerned have only local significance, it is good practice for site administrators to ensure that such queries are answered locally. However, it is not uncommon for such queries to follow the normal delegation path in the public DNS instead of being answered within the site.
It is not possible for public DNS servers to give useful answers to such queries. In addition, due to the wide deployment of private-use addresses and the continuing growth of the Internet, the volume of such queries is large and growing. The AS112 project aims to provide a distributed sink for such queries in order to reduce the load on the IN-ADDR.ARPA authoritative servers. The AS112 project is named after the Autonomous System Number (ASN) that was assigned to it.
Prior to implementation of this technique, the AS112 project did not accommodate the addition and removal of DNS zones elegantly. Since additional zones of definitively local significance are known to exist, this presents a problem. This document describes modifications to the deployment and use of AS112 infrastructure that will allow zones to be added and dropped much more easily.
The AS112 project is described in detail in [I-D.ietf-dnsop-rfc6304bis].
The AS112 nameservers (PRISONER.IANA.ORG, BLACKHOLE-1.IANA.ORG and BLACKHOLE-2.IANA.ORG) are required to answer authoritatively for each and every zone that is delegated to them. If a zone is delegated to AS112 nameservers without those nameservers being configured ahead of time to answer authoritatively for that zone, there is a detrimental impact on clients following referrals for queries within that zone. This misconfiguration is colloquially known as a "lame delegation".
AS112 nameserver operators are only loosely-coordinated, and hence adding support for a new zone (or, correspondingly, removing support for a zone that is no longer delegated to the AS112 nameservers) is difficult to accomplish with accuracy. Testing AS112 nameservers remotely to see whether they are configured to answer authoritatively for a particular zone is similarly challenging since AS112 nodes are distributed using anycast [RFC4786].
This document defines a more flexible approach for sinking queries on AS112 infrastructure that can be deployed alongside unmodified, existing AS112 nodes. Instead of delegating additional zones directly to AS112 nameservers, DNAME [RFC6672] redirection is used. This approach has the advantage that query traffic for arbitrary parts of the namespace can be directed to AS112 servers without those servers having to be reconfigured every time a zone is added or removed.
This approach makes it possible for any DNS zone administrator to sink traffic relating to parts of the global DNS namespace under their control to the AS112 infrastructure without coordination with the operators of AS112 infrastructure.
A new zone, EMPTY.AS112.ARPA, is delegated to a single nameserver BLACKHOLE.AS112.ARPA (IPv4 address TBAv4-1, IPv6 address TBAv6-1).
The IPv4 address TBAv4-1 has been assigned by the IANA such that the address is coverable by a single IPv4 /24 prefix, and that no other address covered by that prefix is in use. The IPv6 address TBAv6-1 has been similarly assigned such that no other address within a covering /48 is in use. This addressing plan accommodates the anycast distribution of the BLACKHOLE.AS112.ARPA service using a single IPv4 service prefix and a single IPv6 service prefix. See [RFC4786] for more discussion of anycast service distribution; see Section 8 for the specific requests this document makes of the IANA.
Some or all of the existing AS112 nodes SHOULD be extended to support these new nameserver addresses, and to host the EMPTY.AS112.ARPA zone. See [I-D.ietf-dnsop-rfc6304bis] for revised guidance to AS112 server operators.
Each part of the DNS namespace for which it is desirable to sink queries at AS112 nameservers should be redirected to the EMPTY.AS112.ARPA zone using DNAME [RFC6672]. See Section 3.2 for guidance to zone administrators.
Guidance to operators of AS112 nodes is extended to include configuration of the TBAv4-1, and TBAv6-1 addresses, and the corresponding announcement of covering routes for those addresses, and to host the EMPTY.AS112.ARPA zone.
IPv4-only AS112 nodes should only configure the TBAv4-1 nameserver address; IPv6-only AS112 nodes should only configure the TBAv6-1 nameserver address.
It is only necessary for a single AS112 server operator to implement these extensions for this mechanism to function as intended. It is beneficial if many more than one AS112 server operators make these changes, however, since that provides for greater distribution and capacity for the nameservers serving the EMPTY.AS112.ARPA zone. It is not necessary for all AS112 server operators to make these changes for the mechanism to be viable.
Detailed instructions for the implementation of these extensions is included in [I-D.ietf-dnsop-rfc6304bis].
Once the EMPTY.AS112.ARPA zone has been deployed using the nameservers described in Section 3.1, redirections may be installed in the DNS namespace for queries that are intended to be answered by the AS112 infrastructure.
For example, reverse queries corresponding to TEST-NET-1 (192.0.2.0/24) [RFC5737] could be redirected to AS112 nameservers by installing a DNAME resource record in the 192.IN-ADDR.ARPA zone, as illustrated in Figure 1.
$ORIGIN 192.IN-ADDR.ARPA. ... 2.0 IN DNAME EMPTY.AS112.ARPA. ...
Figure 1
There is no practical limit to the number of redirections that can be configured in this fashion. Redirection of a particular part of the namespace to EMPTY.AS112.ARPA can be removed at any time, under the control of the administrators of the corresponding part of the DNS namespace. No changes to deployed AS112 nodes incorporating the extensions described in this document are required to support additional redirections. A list of possible candidates for AS112 redirection can be found in Section 5.
DNAME resource records deployed for this purpose can be signed with DNSSEC [RFC4033], providing a secure means of authenticating the legitimacy of each redirection.
Existing guidance to AS112 server operators to accept and respond to queries directed at the PRISONER.IANA.ORG, BLACKHOLE-1.IANA.ORG and BLACKHOLE-2.IANA.ORG nameservers should continue to be followed, and no changes to the delegation of existing zones hosted on AS112 servers should occur. These measures are intended to provide continuity of operations for zones currently delegated to AS112 servers and avoid any accidental client impact due to the changes proposed in this document.
Once it has become empirically and quantitatively clear that the EMPTY.AS112.ARPA zone is well-hosted to the extent that it is thought that the existing, unmodified AS112 servers host 10.IN-ADDR.ARPA, the decision might be made to replace the delegation of those [RFC1918] zones with DNAME redirection. Once implemented, the PRISONER.IANA.ORG, BLACKHOLE-1.IANA.ORG and BLACKHOLE-2.IANA.ORG nameservers could be retired. This document gives no such direction to the IANA, however.
All zones listed in [RFC6303] are candidates for AS112 redirection.
Since no pre-provisioning is required on the part of AS112 operators to facilitate sinking of any name in the DNS namespace by AS112 infrastructure, this mechanism supports AS112 redirection by any zone owner in the DNS.
This document is simply concerned with provision of the AS112 redirection service, and does not specify that any particular AS112 redirection be put in place.
DNAME was specified years after the original implementations of [RFC1035], and hence universal deployment cannot be expected. [RFC6672] specifies a fall-back mechanism which makes use of synthesised CNAME RRSets for this reason. The expectation that design choices in the DNAME specification ought to mitigate any lack of deployment is reviewed below. Experimental validation of those expectations is included in Appendix A.
It is a fundamental design requirement of AS112 service that responses be cached. We can safely declare DNAME support on the authoritative server to be a prerequisite for DNAME redirection, but the cases where individual elements in resolver chains do not support DNAME processing deserve closer examination.
The expected behaviour when a DNAME response is supplied to a resolver that does not support DNAME is that the accompanying, synthesised CNAME will be accepted and cached. Re-query frequency will be determined by the TTLs returned by the DNAME-responding authoritative servers.
Resolution of the CNAME target is straightforward and functions exactly as the AS112 project has operated since it was deployed. The negative caching [RFC2308] of the CNAME target follows the parameters defined in the target zone, EMPTY.AS112.ARPA. This has the side-effects that all redirected names ultimately landing on an AS112 node will be negatively-cached with the same parameters, but this lack of flexibility seems non-controversial; the effect of reducing the negative cache TTL would be increased query volume on the AS112 node operator concerned, and hence controls seem well-aligned with operation.
Validating resolvers (i.e. those requesting and processing DNSSEC [RFC4033] metadata) are required to implement DNAME, and hence should not make use of synthesised CNAME RRs. The lack of signature over a received CNAME RR should hence not limit the ability to sign the redirection point, and for those signatures to be validated.
In the case where a recursive server implements DNAME, but DNAME is not implemented in a stub resolver, CNAME synthesis will again provide a viable path.
DNAME support on AS112 nodes themselves is never required under this proposal.
This document proposes a delegation within the ARPA domain, and, in accordance with [RFC3172], IAB review and approval of the delegation of AS112.ARPA as described in Section 8 is required.
Once IAB approval has been obtained, this section may be removed prior to publication or updated to include text that confirms the IAB's decision, at the IAB's discretion.
This document requests that IANA assign IPv4 and IPv6 number resources in conformance with section 4 of [RFC2860].
The IANA is requested to assign one IPv4 /24 netblock and register its use in the IPv4 Special-Purpose Address Registry [RFC6890] as follows:
Name | Value |
---|---|
Address Block | As determined by IANA |
Name | AS112-v4 |
RFC | [THIS DOCUMENT] |
Allocation Date | As determined by IANA |
Termination Date | N/A |
Source | True |
Destination | True |
Forwardable | True |
Global | True |
Reserved-by-Protocol | False |
We suggest that IANA assign 192.31.196.0/24 from the IPv4 Recovered Address Space Registry, but any /24 which has been unassigned and unadvertised for at least twelve months is acceptable.
The IANA is requested to assign one IPv6 /48 netblock and register its use in the IPv6 Special-Purpose Address Registry [RFC6890] as follows:
Name | Value |
---|---|
Address Block | As determined by IANA |
Name | AS112-v6 |
RFC | [THIS DOCUMENT] |
Allocation Date | As determined by IANA |
Termination Date | N/A |
Source | True |
Destination | True |
Forwardable | True |
Global | True |
Reserved-by-Protocol | False |
We suggest that IANA assign 2001:112::/48 from the IETF Protocol Assignments allocation [RFC2928], but /48 which has been unassigned and unadvertised for at least twelve months is acceptable.
Once assigned, all occurrences of TBAv4 in this document should be replaced by the IPv4 netblock assigned, in conventional notation. Occurrences of TBAv4-1 should be replaced with an address from the netblock with lowest octet set to 1. Similarly, all occurrences of TBAv6 in this document should be replaced by the IPv6 netblock assigned, in conventional notation, and TBAv6-1 replaced with an address from that netblock with the lowest 48 bits set to the value 1. Once those changes are made, this paragraph may be removed prior to publication.
The netblocks assigned by the IANA for this purpose are TBAv4 and TBAv6.
The IANA is requested to host and sign the zone AS112.ARPA using nameservers and DNSSEC signing infrastructure of their choosing, as shown in Figure 2. SOA RDATA may be adjusted by the IANA to suit their operational requirements.
$ORIGIN AS112.ARPA. $TTL 3600 @ IN SOA BLACKHOLE.AS112.ARPA. NOC.DNS.ICANN.ORG. ( 1 ; serial 10800 ; refresh 3600 ; retry 1209600 ; expire 3600 ) ; negative cache TTL NS A.IANA-SERVERS.NET. NS B.IANA-SERVERS.NET. NS C.IANA-SERVERS.NET. BLACKHOLE A TBAv4-1 AAAA TBAv6-1 HOSTNAME NS BLACKHOLE EMPTY NS BLACKHOLE
Figure 2
Once the AS112.ARPA zone is being hosted in production, the IANA is requested to arrange delegation from the ARPA zone according to normal IANA procedure for ARPA zone management, to the nameservers used in carrying out the direction in Section 8.2. The following metadata is suggested for the delegation, but may be changed by the IANA if required:
Name | Value |
---|---|
Domain: | AS112.ARPA |
Administrative Contact: | Internet Architecture Board (IAB) c/o IETF Administrative Support Activity, ISOC |
Technical Contact: | Internet Assigned Numbers Authority (IANA) |
Nameservers: | As chosen by the IANA, see Section 8.2 |
DS-RDATA: | As chosen by the IANA, see Section 8.2 |
This document presents no known additional security concerns to the Internet.
For security considerations relating to AS112 service in general, see [I-D.ietf-dnsop-rfc6304bis].
The authors acknowledge the valuable contributions of Bob Harold and other participants in the DNSOP working group in the preparation of this document.
[I-D.ietf-dnsop-rfc6304bis] | Abley, J. and W. Maton, "AS112 Nameserver Operations", Internet-Draft draft-ietf-dnsop-rfc6304bis-04, July 2014. |
[RFC1035] | Mockapetris, P., "Domain names - implementation and specification", STD 13, RFC 1035, November 1987. |
[RFC2308] | Andrews, M., "Negative Caching of DNS Queries (DNS NCACHE)", RFC 2308, March 1998. |
[RFC6672] | Rose, S. and W. Wijngaards, "DNAME Redirection in the DNS", RFC 6672, June 2012. |
To measure the extent to which the DNAME construct is supported in the Internet, we have used an experimental technique to test the DNS resolvers used by end hosts, and derive from the test a measurement of DNAME support within the Internet.
The test was conducted by loading a user's browser with 4 URLs to retrieve. The first three comprise the test setup, while the final URL communicates the result the the experiment controller. The URLs are:
The A URL is designed to test the end users capability to resolve a name that has never been seen before, so that the resolution of this domain name will reliably result in a query at the authoritative name server. This is intended to test the use of domain names where there is a dynamic component that also uses the DNAME construct.
The B URL is deliberately designed to be cached by caching resolvers that are used in the process of resolving the domain name.
The C URL is a control URL. This is a unique URL, similar to A, but does not refer to a DNAME structure.
The D URL uses a static cacheable domain name.
The <unique_string> value is common to the four URLs used in each individual instance of this test, but varies from test to test. The result is that each end user is presented with a unique string.
The contents of the EXAMPLE.COM, TARGET.EXAMPLE.NET and RECORDER.EXAMPLE.NET zones are shown in Figure 3.
$ORIGIN EXAMPLE.COM. ... DNAME. IN DNAME TARGET.EXAMPLE.NET. ... $ORIGIN TARGET.EXAMPLE.NET. ... B IN A 192.0.2.0 * IN A 192.0.2.0 ... $ORIGIN RECORDER.EXAMPLE.NET. ... RESULTS IN A 192.0.2.0 ...
Figure 3
The first three URLs (A, B and C) are loaded as tasks into the user's browser upon execution of the test's script. The script starts a timer with each of these URLs to measure the elapsed time to fetch the URL. The script then waits for the three fetches to complete, or 10 seconds, whichever occurs first. The script then loads the results of the three timers into the GET arguments of the D URL, and performs a fetch to pass these results back to the experiment's server.
Logs on the web server reached at RESULTS.EXAMPLE.NET will include entries of the form shown in Figure 4. If any of the URLs fail to load within 10 secords the D URL will report the failure as a "null" timer value.
GET /1x1.png?results.<unique_string>?za=1822&zb=1674&zc=1582 GET /1x1.png?results.<unique_string>?za=null&zb=null&zc=161
Figure 4
The script has been encoded in Adobe Flash with a simple image in the form of an online advertisement. An online advertisement network has been used to distribute the script. The script is invoked when the advertisement is presented in the end user's browser or application, and does not require the user to click on the supplied image in any way. The advertisement placement parameters were set to to broadest possible scope to sample users from across the entire internet.
The test was loaded into an advertisement distributed on 2013-10-10 and 2013-10-11.
Count | Percentage | |
---|---|---|
Recorded Results: | 338,478 | |
A or B Loaded: | 331,896 | 98.1% |
A Fail and B Fail: | 6,492 | 1.9% |
A Fail and B Load: | 4,249 | 1.3% |
A Load and B Fail: | 1,624 | 0.5% |
C Fail: | 9,355 | 2.8% |
These results indicate that at most 1.9% of tested clients use DNS resolvers that fail to resolve a domain name that contains a DNAME redirection. However the failure rate of slightly lower than 3% for the control URL indicates that the failure rate for the DNAME construct lies within the bounds of error within the experimental framework. We conclude that there is no evidence of a consistent failure on the part of deployed DNS resolvers to correctly resolve a DNAME construct.
This experiment was conducted by Geoff Huston and George Michaelson.
This section (and sub-sections) to be removed prior to publication.