TOC 
HTTPbis Working GroupR. Fielding, Ed.
Internet-DraftDay Software
Obsoletes: 2616 (if approved)J. Gettys
Updates: 2817 (if approved)One Laptop per Child
Intended status: Standards TrackJ. Mogul
Expires: April 29, 2010HP
 H. Frystyk
 Microsoft
 L. Masinter
 Adobe Systems
 P. Leach
 Microsoft
 T. Berners-Lee
 W3C/MIT
 Y. Lafon, Ed.
 W3C
 J. Reschke, Ed.
 greenbytes
 October 26, 2009


HTTP/1.1, part 2: Message Semantics
draft-ietf-httpbis-p2-semantics-08

Status of this Memo

This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79. This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”

The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.

The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.

This Internet-Draft will expire on April 29, 2010.

Copyright Notice

Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents in effect on the date of publication of this document (http://trustee.ietf.org/license-info). Please review these documents carefully, as they describe your rights and restrictions with respect to this document.

Abstract

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative, hypermedia information systems. HTTP has been in use by the World Wide Web global information initiative since 1990. This document is Part 2 of the seven-part specification that defines the protocol referred to as "HTTP/1.1" and, taken together, obsoletes RFC 2616. Part 2 defines the semantics of HTTP messages as expressed by request methods, request-header fields, response status codes, and response-header fields.

Editorial Note (To be removed by RFC Editor)

Discussion of this draft should take place on the HTTPBIS working group mailing list (ietf-http-wg@w3.org). The current issues list is at http://tools.ietf.org/wg/httpbis/trac/report/11 and related documents (including fancy diffs) can be found at http://tools.ietf.org/wg/httpbis/.

The changes in this draft are summarized in Appendix C.9 (Since draft-ietf-httpbis-p2-semantics-07).



Table of Contents

1.  Introduction
    1.1.  Requirements
    1.2.  Syntax Notation
        1.2.1.  Core Rules
        1.2.2.  ABNF Rules defined in other Parts of the Specification
2.  Method
    2.1.  Method Registry
3.  Request Header Fields
4.  Status Code and Reason Phrase
    4.1.  Status Code Registry
5.  Response Header Fields
6.  Entity
    6.1.  Identifying the Resource Associated with a Representation
7.  Method Definitions
    7.1.  Safe and Idempotent Methods
        7.1.1.  Safe Methods
        7.1.2.  Idempotent Methods
    7.2.  OPTIONS
    7.3.  GET
    7.4.  HEAD
    7.5.  POST
    7.6.  PUT
    7.7.  DELETE
    7.8.  TRACE
    7.9.  CONNECT
8.  Status Code Definitions
    8.1.  Informational 1xx
        8.1.1.  100 Continue
        8.1.2.  101 Switching Protocols
    8.2.  Successful 2xx
        8.2.1.  200 OK
        8.2.2.  201 Created
        8.2.3.  202 Accepted
        8.2.4.  203 Non-Authoritative Information
        8.2.5.  204 No Content
        8.2.6.  205 Reset Content
        8.2.7.  206 Partial Content
    8.3.  Redirection 3xx
        8.3.1.  300 Multiple Choices
        8.3.2.  301 Moved Permanently
        8.3.3.  302 Found
        8.3.4.  303 See Other
        8.3.5.  304 Not Modified
        8.3.6.  305 Use Proxy
        8.3.7.  306 (Unused)
        8.3.8.  307 Temporary Redirect
    8.4.  Client Error 4xx
        8.4.1.  400 Bad Request
        8.4.2.  401 Unauthorized
        8.4.3.  402 Payment Required
        8.4.4.  403 Forbidden
        8.4.5.  404 Not Found
        8.4.6.  405 Method Not Allowed
        8.4.7.  406 Not Acceptable
        8.4.8.  407 Proxy Authentication Required
        8.4.9.  408 Request Timeout
        8.4.10.  409 Conflict
        8.4.11.  410 Gone
        8.4.12.  411 Length Required
        8.4.13.  412 Precondition Failed
        8.4.14.  413 Request Entity Too Large
        8.4.15.  414 URI Too Long
        8.4.16.  415 Unsupported Media Type
        8.4.17.  416 Requested Range Not Satisfiable
        8.4.18.  417 Expectation Failed
    8.5.  Server Error 5xx
        8.5.1.  500 Internal Server Error
        8.5.2.  501 Not Implemented
        8.5.3.  502 Bad Gateway
        8.5.4.  503 Service Unavailable
        8.5.5.  504 Gateway Timeout
        8.5.6.  505 HTTP Version Not Supported
9.  Header Field Definitions
    9.1.  Allow
    9.2.  Expect
    9.3.  From
    9.4.  Location
    9.5.  Max-Forwards
    9.6.  Referer
    9.7.  Retry-After
    9.8.  Server
    9.9.  User-Agent
10.  IANA Considerations
    10.1.  Method Registry
    10.2.  Status Code Registry
    10.3.  Message Header Registration
11.  Security Considerations
    11.1.  Transfer of Sensitive Information
    11.2.  Encoding Sensitive Information in URIs
    11.3.  Location Headers and Spoofing
12.  Acknowledgments
13.  References
    13.1.  Normative References
    13.2.  Informative References
Appendix A.  Compatibility with Previous Versions
    A.1.  Changes from RFC 2068
    A.2.  Changes from RFC 2616
Appendix B.  Collected ABNF
Appendix C.  Change Log (to be removed by RFC Editor before publication)
    C.1.  Since RFC2616
    C.2.  Since draft-ietf-httpbis-p2-semantics-00
    C.3.  Since draft-ietf-httpbis-p2-semantics-01
    C.4.  Since draft-ietf-httpbis-p2-semantics-02
    C.5.  Since draft-ietf-httpbis-p2-semantics-03
    C.6.  Since draft-ietf-httpbis-p2-semantics-04
    C.7.  Since draft-ietf-httpbis-p2-semantics-05
    C.8.  Since draft-ietf-httpbis-p2-semantics-06
    C.9.  Since draft-ietf-httpbis-p2-semantics-07
§  Index
§  Authors' Addresses




 TOC 

1.  Introduction

This document defines HTTP/1.1 request and response semantics. Each HTTP message, as defined in [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.), is in the form of either a request or a response. An HTTP server listens on a connection for HTTP requests and responds to each request, in the order received on that connection, with one or more HTTP response messages. This document defines the commonly agreed upon semantics of the HTTP uniform interface, the intentions defined by each request method, and the various response messages that might be expected as a result of applying that method for the requested resource.

This document is currently disorganized in order to minimize the changes between drafts and enable reviewers to see the smaller errata changes. The next draft will reorganize the sections to better reflect the content. In particular, the sections will be ordered according to the typical processing of an HTTP request message (after message parsing): resource mapping, general header fields, methods, request modifiers, response status, and resource metadata. The current mess reflects how widely dispersed these topics and associated requirements had become in [RFC2616] (Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.).



 TOC 

1.1.  Requirements

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.).

An implementation is not compliant if it fails to satisfy one or more of the MUST or REQUIRED level requirements for the protocols it implements. An implementation that satisfies all the MUST or REQUIRED level and all the SHOULD level requirements for its protocols is said to be "unconditionally compliant"; one that satisfies all the MUST level requirements but not all the SHOULD level requirements for its protocols is said to be "conditionally compliant."



 TOC 

1.2.  Syntax Notation

This specification uses the ABNF syntax defined in Section 1.2 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.) (which extends the syntax defined in [RFC5234] (Crocker, D., Ed. and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” January 2008.) with a list rule). Appendix B (Collected ABNF) shows the collected ABNF, with the list rule expanded.

The following core rules are included by reference, as defined in [RFC5234] (Crocker, D., Ed. and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” January 2008.), Appendix B.1: ALPHA (letters), CR (carriage return), CRLF (CR LF), CTL (controls), DIGIT (decimal 0-9), DQUOTE (double quote), HEXDIG (hexadecimal 0-9/A-F/a-f), LF (line feed), OCTET (any 8-bit sequence of data), SP (space), VCHAR (any visible USASCII character), and WSP (whitespace).



 TOC 

1.2.1.  Core Rules

The core rules below are defined in Section 1.2.2 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.):

  quoted-string = <quoted-string, defined in [Part1], Section 1.2.2>
  token         = <token, defined in [Part1], Section 1.2.2>
  OWS           = <OWS, defined in [Part1], Section 1.2.2>
  RWS           = <RWS, defined in [Part1], Section 1.2.2>
  obs-text      = <obs-text, defined in [Part1], Section 1.2.2>


 TOC 

1.2.2.  ABNF Rules defined in other Parts of the Specification

The ABNF rules below are defined in other parts:

  absolute-URI  = <absolute-URI, defined in [Part1], Section 2.6>
  comment       = <comment, defined in [Part1], Section 3.2>
  Host          = <Host, defined in [Part1], Section 2.6>
  HTTP-date     = <HTTP-date, defined in [Part1], Section 6.1>
  partial-URI   = <partial-URI, defined in [Part1], Section 2.6>
  product       = <product, defined in [Part1], Section 6.3>
  TE            = <TE, defined in [Part1], Section 9.8>
  URI           = <URI, defined in [Part1], Section 2.6>
  Accept        = <Accept, defined in [Part3], Section 5.1>
  Accept-Charset =
             <Accept-Charset, defined in [Part3], Section 5.2>
  Accept-Encoding =
             <Accept-Encoding, defined in [Part3], Section 5.3>
  Accept-Language =
             <Accept-Language, defined in [Part3], Section 5.4>
  ETag          = <ETag, defined in [Part4], Section 6.1>
  If-Match      = <If-Match, defined in [Part4], Section 6.2>
  If-Modified-Since =
             <If-Modified-Since, defined in [Part4], Section 6.3>
  If-None-Match = <If-None-Match, defined in [Part4], Section 6.4>
  If-Unmodified-Since =
             <If-Unmodified-Since, defined in [Part4], Section 6.5>
  Accept-Ranges = <Accept-Ranges, defined in [Part5], Section 5.1>
  If-Range      = <If-Range, defined in [Part5], Section 5.3>
  Range         = <Range, defined in [Part5], Section 5.4>
  Age           = <Age, defined in [Part6], Section 3.1>
  Vary          = <Vary, defined in [Part6], Section 3.5>
  Authorization = <Authorization, defined in [Part7], Section 3.1>
  Proxy-Authenticate =
             <Proxy-Authenticate, defined in [Part7], Section 3.2>
  Proxy-Authorization =
             <Proxy-Authorization, defined in [Part7], Section 3.3>
  WWW-Authenticate =
             <WWW-Authenticate, defined in [Part7], Section 3.4>


 TOC 

2.  Method

The Method token indicates the method to be performed on the resource identified by the request-target. The method is case-sensitive.

  Method         = %x4F.50.54.49.4F.4E.53   ; "OPTIONS", Section 7.2
                 / %x47.45.54               ; "GET", Section 7.3
                 / %x48.45.41.44            ; "HEAD", Section 7.4
                 / %x50.4F.53.54            ; "POST", Section 7.5
                 / %x50.55.54               ; "PUT", Section 7.6
                 / %x44.45.4C.45.54.45      ; "DELETE", Section 7.7
                 / %x54.52.41.43.45         ; "TRACE", Section 7.8
                 / %x43.4F.4E.4E.45.43.54   ; "CONNECT", Section 7.9
                 / extension-method
  extension-method = token

The list of methods allowed by a resource can be specified in an Allow header field (Section 9.1 (Allow)). The return code of the response always notifies the client whether a method is currently allowed on a resource, since the set of allowed methods can change dynamically. An origin server SHOULD return the status code 405 (Method Not Allowed) if the method is known by the origin server but not allowed for the requested resource, and 501 (Not Implemented) if the method is unrecognized or not implemented by the origin server. The methods GET and HEAD MUST be supported by all general-purpose servers. All other methods are OPTIONAL; however, if the above methods are implemented, they MUST be implemented with the same semantics as those specified in Section 7 (Method Definitions).



 TOC 

2.1.  Method Registry

The HTTP Method Registry defines the name space for the Method token in the Request line of an HTTP request.

Registrations MUST include the following fields:

Values to be added to this name space are subject to IETF review ([RFC5226] (Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” May 2008.), Section 4.1).

The registry itself is maintained at http://www.iana.org/assignments/http-methods.



 TOC 

3.  Request Header Fields

The request-header fields allow the client to pass additional information about the request, and about the client itself, to the server. These fields act as request modifiers, with semantics equivalent to the parameters on a programming language method invocation.

  request-header = Accept                   ; [Part3], Section 5.1
                 / Accept-Charset           ; [Part3], Section 5.2
                 / Accept-Encoding          ; [Part3], Section 5.3
                 / Accept-Language          ; [Part3], Section 5.4
                 / Authorization            ; [Part7], Section 3.1
                 / Expect                   ; Section 9.2
                 / From                     ; Section 9.3
                 / Host                     ; [Part1], Section 9.4
                 / If-Match                 ; [Part4], Section 6.2
                 / If-Modified-Since        ; [Part4], Section 6.3
                 / If-None-Match            ; [Part4], Section 6.4
                 / If-Range                 ; [Part5], Section 5.3
                 / If-Unmodified-Since      ; [Part4], Section 6.5
                 / Max-Forwards             ; Section 9.5
                 / Proxy-Authorization      ; [Part7], Section 3.3
                 / Range                    ; [Part5], Section 5.4
                 / Referer                  ; Section 9.6
                 / TE                       ; [Part1], Section 9.8
                 / User-Agent               ; Section 9.9

Request-header field names can be extended reliably only in combination with a change in the protocol version. However, new or experimental header fields MAY be given the semantics of request-header fields if all parties in the communication recognize them to be request-header fields. Unrecognized header fields are treated as entity-header fields.



 TOC 

4.  Status Code and Reason Phrase

The Status-Code element is a 3-digit integer result code of the attempt to understand and satisfy the request. The status codes listed below are defined in Section 8 (Status Code Definitions). The Reason-Phrase is intended to give a short textual description of the Status-Code. The Status-Code is intended for use by automata and the Reason-Phrase is intended for the human user. The client is not required to examine or display the Reason-Phrase.

The individual values of the numeric status codes defined for HTTP/1.1, and an example set of corresponding Reason-Phrase's, are presented below. The reason phrases listed here are only recommendations -- they MAY be replaced by local equivalents without affecting the protocol.

  Status-Code    =
         "100"  ; Section 8.1.1: Continue
       / "101"  ; Section 8.1.2: Switching Protocols
       / "200"  ; Section 8.2.1: OK
       / "201"  ; Section 8.2.2: Created
       / "202"  ; Section 8.2.3: Accepted
       / "203"  ; Section 8.2.4: Non-Authoritative Information
       / "204"  ; Section 8.2.5: No Content
       / "205"  ; Section 8.2.6: Reset Content
       / "206"  ; [Part5], Section 3.1: Partial Content
       / "300"  ; Section 8.3.1: Multiple Choices
       / "301"  ; Section 8.3.2: Moved Permanently
       / "302"  ; Section 8.3.3: Found
       / "303"  ; Section 8.3.4: See Other
       / "304"  ; [Part4], Section 3.1: Not Modified
       / "305"  ; Section 8.3.6: Use Proxy
       / "307"  ; Section 8.3.8: Temporary Redirect
       / "400"  ; Section 8.4.1: Bad Request
       / "401"  ; [Part7], Section 2.1: Unauthorized
       / "402"  ; Section 8.4.3: Payment Required
       / "403"  ; Section 8.4.4: Forbidden
       / "404"  ; Section 8.4.5: Not Found
       / "405"  ; Section 8.4.6: Method Not Allowed
       / "406"  ; Section 8.4.7: Not Acceptable
       / "407"  ; [Part7], Section 2.2: Proxy Authentication Required
       / "408"  ; Section 8.4.9: Request Time-out
       / "409"  ; Section 8.4.10: Conflict
       / "410"  ; Section 8.4.11: Gone
       / "411"  ; Section 8.4.12: Length Required
       / "412"  ; [Part4], Section 3.2: Precondition Failed
       / "413"  ; Section 8.4.14: Request Entity Too Large
       / "414"  ; Section 8.4.15: URI Too Long
       / "415"  ; Section 8.4.16: Unsupported Media Type
       / "416"  ; status-416;: Requested range not satisfiable
       / "417"  ; Section 8.4.18: Expectation Failed
       / "500"  ; Section 8.5.1: Internal Server Error
       / "501"  ; Section 8.5.2: Not Implemented
       / "502"  ; Section 8.5.3: Bad Gateway
       / "503"  ; Section 8.5.4: Service Unavailable
       / "504"  ; Section 8.5.5: Gateway Time-out
       / "505"  ; Section 8.5.6: HTTP Version not supported
       / extension-code

  extension-code = 3DIGIT
  Reason-Phrase  = *( WSP / VCHAR / obs-text )

HTTP status codes are extensible. HTTP applications are not required to understand the meaning of all registered status codes, though such understanding is obviously desirable. However, applications MUST understand the class of any status code, as indicated by the first digit, and treat any unrecognized response as being equivalent to the x00 status code of that class, with the exception that an unrecognized response MUST NOT be cached. For example, if an unrecognized status code of 431 is received by the client, it can safely assume that there was something wrong with its request and treat the response as if it had received a 400 status code. In such cases, user agents SHOULD present to the user the entity returned with the response, since that entity is likely to include human-readable information which will explain the unusual status.



 TOC 

4.1.  Status Code Registry

The HTTP Status Code Registry defines the name space for the Status-Code token in the Status line of an HTTP response.

Values to be added to this name space are subject to IETF review ([RFC5226] (Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” May 2008.), Section 4.1).

The registry itself is maintained at http://www.iana.org/assignments/http-status-codes.



 TOC 

5.  Response Header Fields

The response-header fields allow the server to pass additional information about the response which cannot be placed in the Status-Line. These header fields give information about the server and about further access to the resource identified by the request-target.

  response-header = Accept-Ranges           ; [Part5], Section 5.1
                  / Age                     ; [Part6], Section 3.1
                  / Allow                   ; Section 9.1
                  / ETag                    ; [Part4], Section 6.1
                  / Location                ; Section 9.4
                  / Proxy-Authenticate      ; [Part7], Section 3.2
                  / Retry-After             ; Section 9.7
                  / Server                  ; Section 9.8
                  / Vary                    ; [Part6], Section 3.5
                  / WWW-Authenticate        ; [Part7], Section 3.4

Response-header field names can be extended reliably only in combination with a change in the protocol version. However, new or experimental header fields MAY be given the semantics of response-header fields if all parties in the communication recognize them to be response-header fields. Unrecognized header fields are treated as entity-header fields.



 TOC 

6.  Entity

Request and Response messages MAY transfer an entity if not otherwise restricted by the request method or response status code. An entity consists of entity-header fields and an entity-body, although some responses will only include the entity-headers. HTTP entity-body and entity-header fields are defined in [Part3] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 3: Message Payload and Content Negotiation,” October 2009.).

An entity-body is only present in a message when a message-body is present, as described in Section 3.3 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.). The entity-body is obtained from the message-body by decoding any Transfer-Encoding that might have been applied to ensure safe and proper transfer of the message.



 TOC 

6.1.  Identifying the Resource Associated with a Representation

It is sometimes necessary to determine the identity of the resource associated with a representation.

An HTTP request representation, when present, is always associated with an anonymous (i.e., unidentified) resource.

In the common case, an HTTP response is a representation of the resource located at the request-URI. However, this is not always the case. To determine the URI of the resource a response is associated with, the following rules are used (first match winning):

  1. If the response status code is 200 or 203 and the request method was GET, the response is a representation of the resource at the request-URI.
  2. If the response status is 204, 206, or 304 and the request method was GET or HEAD, the response is a partial representation of the resource at the request-URI (see Section 2.7 of [Part6] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., Nottingham, M., Ed., and J. Reschke, Ed., “HTTP/1.1, part 6: Caching,” October 2009.)).
  3. If the response has a Content-Location header, and that URI is the same as the request-URI [anchor1] ((see [ref])), the response is a representation of the resource at the request-URI.
  4. If the response has a Content-Location header, and that URI is not the same as the request-URI, the response asserts that it is a representation of the resource at the Content-Location URI (but it may not be).
  5. Otherwise, the response is a representation of an anonymous (i.e., unidentified) resource.

[TODO-req-uri] (Note that 'request-URI' is used here; however, we need to come up with a term to denote "the URI that can be inferred from examining the request-target and the Host header." (see <http://tools.ietf.org/wg/httpbis/trac/ticket/196>). Also, the comparison function is going to have to be defined somewhere, because we already need to compare URIs for things like cache invalidation.)



 TOC 

7.  Method Definitions

The set of common methods for HTTP/1.1 is defined below. Although this set can be expanded, additional methods cannot be assumed to share the same semantics for separately extended clients and servers.



 TOC 

7.1.  Safe and Idempotent Methods



 TOC 

7.1.1.  Safe Methods

Implementors should be aware that the software represents the user in their interactions over the Internet, and should be careful to allow the user to be aware of any actions they might take which may have an unexpected significance to themselves or others.

In particular, the convention has been established that the GET, HEAD, OPTIONS, and TRACE methods SHOULD NOT have the significance of taking an action other than retrieval. These methods ought to be considered "safe". This allows user agents to represent other methods, such as POST, PUT and DELETE, in a special way, so that the user is made aware of the fact that a possibly unsafe action is being requested.

Naturally, it is not possible to ensure that the server does not generate side-effects as a result of performing a GET request; in fact, some dynamic resources consider that a feature. The important distinction here is that the user did not request the side-effects, so therefore cannot be held accountable for them.



 TOC 

7.1.2.  Idempotent Methods

Methods can also have the property of "idempotence" in that, aside from error or expiration issues, the intended effect of multiple identical requests is the same as for a single request. The methods PUT, DELETE, and all safe methods are idempotent. It is important to note that idempotence refers only to changes requested by the client: a server is free to change its state due to multiple requests for the purpose of tracking those requests, versioning of results, etc.



 TOC 

7.2.  OPTIONS

The OPTIONS method represents a request for information about the communication options available on the request/response chain identified by the request-target. This method allows the client to determine the options and/or requirements associated with a resource, or the capabilities of a server, without implying a resource action or initiating a resource retrieval.

Responses to this method are not cacheable.

If the OPTIONS request includes an entity-body (as indicated by the presence of Content-Length or Transfer-Encoding), then the media type MUST be indicated by a Content-Type field. Although this specification does not define any use for such a body, future extensions to HTTP might use the OPTIONS body to make more detailed queries on the server.

If the request-target is an asterisk ("*"), the OPTIONS request is intended to apply to the server in general rather than to a specific resource. Since a server's communication options typically depend on the resource, the "*" request is only useful as a "ping" or "no-op" type of method; it does nothing beyond allowing the client to test the capabilities of the server. For example, this can be used to test a proxy for HTTP/1.1 compliance (or lack thereof).

If the request-target is not an asterisk, the OPTIONS request applies only to the options that are available when communicating with that resource.

A 200 response SHOULD include any header fields that indicate optional features implemented by the server and applicable to that resource (e.g., Allow), possibly including extensions not defined by this specification. The response body, if any, SHOULD also include information about the communication options. The format for such a body is not defined by this specification, but might be defined by future extensions to HTTP. Content negotiation MAY be used to select the appropriate response format. If no response body is included, the response MUST include a Content-Length field with a field-value of "0".

The Max-Forwards request-header field MAY be used to target a specific proxy in the request chain. When a proxy receives an OPTIONS request on an absolute-URI for which request forwarding is permitted, the proxy MUST check for a Max-Forwards field. If the Max-Forwards field-value is zero ("0"), the proxy MUST NOT forward the message; instead, the proxy SHOULD respond with its own communication options. If the Max-Forwards field-value is an integer greater than zero, the proxy MUST decrement the field-value when it forwards the request. If no Max-Forwards field is present in the request, then the forwarded request MUST NOT include a Max-Forwards field.



 TOC 

7.3.  GET

The GET method means retrieve whatever information (in the form of an entity) is identified by the request-target. If the request-target refers to a data-producing process, it is the produced data which shall be returned as the entity in the response and not the source text of the process, unless that text happens to be the output of the process.

The semantics of the GET method change to a "conditional GET" if the request message includes an If-Modified-Since, If-Unmodified-Since, If-Match, If-None-Match, or If-Range header field. A conditional GET method requests that the entity be transferred only under the circumstances described by the conditional header field(s). The conditional GET method is intended to reduce unnecessary network usage by allowing cached entities to be refreshed without requiring multiple requests or transferring data already held by the client.

The semantics of the GET method change to a "partial GET" if the request message includes a Range header field. A partial GET requests that only part of the entity be transferred, as described in Section 5.4 of [Part5] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 5: Range Requests and Partial Responses,” October 2009.). The partial GET method is intended to reduce unnecessary network usage by allowing partially-retrieved entities to be completed without transferring data already held by the client.

The response to a GET request is cacheable if and only if it meets the requirements for HTTP caching described in [Part6] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., Nottingham, M., Ed., and J. Reschke, Ed., “HTTP/1.1, part 6: Caching,” October 2009.).

See Section 11.2 (Encoding Sensitive Information in URIs) for security considerations when used for forms.



 TOC 

7.4.  HEAD

The HEAD method is identical to GET except that the server MUST NOT return a message-body in the response. The metainformation contained in the HTTP headers in response to a HEAD request SHOULD be identical to the information sent in response to a GET request. This method can be used for obtaining metainformation about the entity implied by the request without transferring the entity-body itself. This method is often used for testing hypertext links for validity, accessibility, and recent modification.

The response to a HEAD request MAY be cacheable in the sense that the information contained in the response MAY be used to update a previously cached entity from that resource. If the new field values indicate that the cached entity differs from the current entity (as would be indicated by a change in Content-Length, Content-MD5, ETag or Last-Modified), then the cache MUST treat the cache entry as stale.



 TOC 

7.5.  POST

The POST method is used to request that the origin server accept the entity enclosed in the request as data to be processed by the resource identified by the request-target in the Request-Line. POST is designed to allow a uniform method to cover the following functions:

The actual function performed by the POST method is determined by the server and is usually dependent on the request-target.

The action performed by the POST method might not result in a resource that can be identified by a URI. In this case, either 200 (OK) or 204 (No Content) is the appropriate response status, depending on whether or not the response includes an entity that describes the result.

If a resource has been created on the origin server, the response SHOULD be 201 (Created) and contain an entity which describes the status of the request and refers to the new resource, and a Location header (see Section 9.4 (Location)).

Responses to this method are not cacheable, unless the response includes appropriate Cache-Control or Expires header fields. However, the 303 (See Other) response can be used to direct the user agent to retrieve a cacheable resource.



 TOC 

7.6.  PUT

The PUT method requests that the enclosed entity be stored at the supplied request-target. If the request-target refers to an already existing resource, the enclosed entity SHOULD be considered as a modified version of the one residing on the origin server. If the request-target does not point to an existing resource, and that URI is capable of being defined as a new resource by the requesting user agent, the origin server can create the resource with that URI. If a new resource is created at the request-target, the origin server MUST inform the user agent via the 201 (Created) response. If an existing resource is modified, either the 200 (OK) or 204 (No Content) response codes SHOULD be sent to indicate successful completion of the request. If the resource could not be created or modified with the request-target, an appropriate error response SHOULD be given that reflects the nature of the problem. The recipient of the entity MUST NOT ignore any Content-* headers (headers starting with the prefix 'Content-') that it does not understand or implement and MUST return a 501 (Not Implemented) response in such cases.

If the request passes through a cache and the request-target identifies one or more currently cached entities, those entries SHOULD be treated as stale. Responses to this method are not cacheable.

The fundamental difference between the POST and PUT requests is reflected in the different meaning of the request-target. The URI in a POST request identifies the resource that will handle the enclosed entity. That resource might be a data-accepting process, a gateway to some other protocol, or a separate entity that accepts annotations. In contrast, the URI in a PUT request identifies the entity enclosed with the request -- the user agent knows what URI is intended and the server MUST NOT attempt to apply the request to some other resource. If the server desires that the request be applied to a different URI, it MUST send a 301 (Moved Permanently) response; the user agent MAY then make its own decision regarding whether or not to redirect the request.

A single resource MAY be identified by many different URIs. For example, an article might have a URI for identifying "the current version" which is separate from the URI identifying each particular version. In this case, a PUT request on a general URI might result in several other URIs being defined by the origin server.

HTTP/1.1 does not define how a PUT method affects the state of an origin server.

Unless otherwise specified for a particular entity-header, the entity-headers in the PUT request SHOULD be applied to the resource created or modified by the PUT.



 TOC 

7.7.  DELETE

The DELETE method requests that the origin server delete the resource identified by the request-target. This method MAY be overridden by human intervention (or other means) on the origin server. The client cannot be guaranteed that the operation has been carried out, even if the status code returned from the origin server indicates that the action has been completed successfully. However, the server SHOULD NOT indicate success unless, at the time the response is given, it intends to delete the resource or move it to an inaccessible location.

A successful response SHOULD be 200 (OK) if the response includes an entity describing the status, 202 (Accepted) if the action has not yet been enacted, or 204 (No Content) if the action has been enacted but the response does not include an entity.

If the request passes through a cache and the request-target identifies one or more currently cached entities, those entries SHOULD be treated as stale. Responses to this method are not cacheable.



 TOC 

7.8.  TRACE

The TRACE method is used to invoke a remote, application-layer loop-back of the request message. The final recipient of the request SHOULD reflect the message received back to the client as the entity-body of a 200 (OK) response. The final recipient is either the origin server or the first proxy or gateway to receive a Max-Forwards value of zero (0) in the request (see Section 9.5 (Max-Forwards)). A TRACE request MUST NOT include an entity.

TRACE allows the client to see what is being received at the other end of the request chain and use that data for testing or diagnostic information. The value of the Via header field (Section 9.9 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.)) is of particular interest, since it acts as a trace of the request chain. Use of the Max-Forwards header field allows the client to limit the length of the request chain, which is useful for testing a chain of proxies forwarding messages in an infinite loop.

If the request is valid, the response SHOULD contain the entire request message in the entity-body, with a Content-Type of "message/http" (see Section 10.3.1 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.)). Responses to this method MUST NOT be cached.



 TOC 

7.9.  CONNECT

This specification reserves the method name CONNECT for use with a proxy that can dynamically switch to being a tunnel (e.g. SSL tunneling [RFC2817] (Khare, R. and S. Lawrence, “Upgrading to TLS Within HTTP/1.1,” May 2000.)).



 TOC 

8.  Status Code Definitions

Each Status-Code is described below, including any metainformation required in the response.



 TOC 

8.1.  Informational 1xx

This class of status code indicates a provisional response, consisting only of the Status-Line and optional headers, and is terminated by an empty line. There are no required headers for this class of status code. Since HTTP/1.0 did not define any 1xx status codes, servers MUST NOT send a 1xx response to an HTTP/1.0 client except under experimental conditions.

A client MUST be prepared to accept one or more 1xx status responses prior to a regular response, even if the client does not expect a 100 (Continue) status message. Unexpected 1xx status responses MAY be ignored by a user agent.

Proxies MUST forward 1xx responses, unless the connection between the proxy and its client has been closed, or unless the proxy itself requested the generation of the 1xx response. (For example, if a proxy adds a "Expect: 100-continue" field when it forwards a request, then it need not forward the corresponding 100 (Continue) response(s).)



 TOC 

8.1.1.  100 Continue

The client SHOULD continue with its request. This interim response is used to inform the client that the initial part of the request has been received and has not yet been rejected by the server. The client SHOULD continue by sending the remainder of the request or, if the request has already been completed, ignore this response. The server MUST send a final response after the request has been completed. See Section 7.2.3 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.) for detailed discussion of the use and handling of this status code.



 TOC 

8.1.2.  101 Switching Protocols

The server understands and is willing to comply with the client's request, via the Upgrade message header field (Section 5.4 of [Part5] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 5: Range Requests and Partial Responses,” October 2009.)), for a change in the application protocol being used on this connection. The server will switch protocols to those defined by the response's Upgrade header field immediately after the empty line which terminates the 101 response.

The protocol SHOULD be switched only when it is advantageous to do so. For example, switching to a newer version of HTTP is advantageous over older versions, and switching to a real-time, synchronous protocol might be advantageous when delivering resources that use such features.



 TOC 

8.2.  Successful 2xx

This class of status code indicates that the client's request was successfully received, understood, and accepted.



 TOC 

8.2.1.  200 OK

The request has succeeded. The information returned with the response is dependent on the method used in the request, for example:

GET
an entity corresponding to the requested resource is sent in the response;
HEAD
the entity-header fields corresponding to the requested resource are sent in the response without any message-body;
POST
an entity describing or containing the result of the action;
TRACE
an entity containing the request message as received by the end server.



 TOC 

8.2.2.  201 Created

The request has been fulfilled and resulted in a new resource being created. The newly created resource can be referenced by the URI(s) returned in the entity of the response, with the most specific URI for the resource given by a Location header field. The response SHOULD include an entity containing a list of resource characteristics and location(s) from which the user or user agent can choose the one most appropriate. The entity format is specified by the media type given in the Content-Type header field. The origin server MUST create the resource before returning the 201 status code. If the action cannot be carried out immediately, the server SHOULD respond with 202 (Accepted) response instead.

A 201 response MAY contain an ETag response header field indicating the current value of the entity tag for the requested variant just created, see Section 6.1 of [Part4] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 4: Conditional Requests,” October 2009.).



 TOC 

8.2.3.  202 Accepted

The request has been accepted for processing, but the processing has not been completed. The request might or might not eventually be acted upon, as it might be disallowed when processing actually takes place. There is no facility for re-sending a status code from an asynchronous operation such as this.

The 202 response is intentionally non-committal. Its purpose is to allow a server to accept a request for some other process (perhaps a batch-oriented process that is only run once per day) without requiring that the user agent's connection to the server persist until the process is completed. The entity returned with this response SHOULD include an indication of the request's current status and either a pointer to a status monitor or some estimate of when the user can expect the request to be fulfilled.



 TOC 

8.2.4.  203 Non-Authoritative Information

The returned metainformation in the entity-header is not the definitive set as available from the origin server, but is gathered from a local or a third-party copy. The set presented MAY be a subset or superset of the original version. For example, including local annotation information about the resource might result in a superset of the metainformation known by the origin server. Use of this response code is not required and is only appropriate when the response would otherwise be 200 (OK).



 TOC 

8.2.5.  204 No Content

The server has fulfilled the request but does not need to return an entity-body, and might want to return updated metainformation. The response MAY include new or updated metainformation in the form of entity-headers, which if present SHOULD be associated with the requested variant.

If the client is a user agent, it SHOULD NOT change its document view from that which caused the request to be sent. This response is primarily intended to allow input for actions to take place without causing a change to the user agent's active document view, although any new or updated metainformation SHOULD be applied to the document currently in the user agent's active view.

The 204 response MUST NOT include a message-body, and thus is always terminated by the first empty line after the header fields.



 TOC 

8.2.6.  205 Reset Content

The server has fulfilled the request and the user agent SHOULD reset the document view which caused the request to be sent. This response is primarily intended to allow input for actions to take place via user input, followed by a clearing of the form in which the input is given so that the user can easily initiate another input action. The response MUST NOT include an entity.



 TOC 

8.2.7.  206 Partial Content

The server has fulfilled the partial GET request for the resource and the enclosed entity is a partial representation as defined in Section 3.1 of [Part5] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 5: Range Requests and Partial Responses,” October 2009.).



 TOC 

8.3.  Redirection 3xx

This class of status code indicates that further action needs to be taken by the user agent in order to fulfill the request. The action required MAY be carried out by the user agent without interaction with the user if and only if the method used in the second request is GET or HEAD. A client SHOULD detect infinite redirection loops, since such loops generate network traffic for each redirection.

Note: an earlier version of this specification recommended a maximum of five redirections ([RFC2068] (Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” January 1997.), Section 10.3). Content developers should be aware that there might be clients that implement such a fixed limitation.



 TOC 

8.3.1.  300 Multiple Choices

The requested resource corresponds to any one of a set of representations, each with its own specific location, and agent-driven negotiation information (Section 4 of [Part3] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 3: Message Payload and Content Negotiation,” October 2009.)) is being provided so that the user (or user agent) can select a preferred representation and redirect its request to that location.

Unless it was a HEAD request, the response SHOULD include an entity containing a list of resource characteristics and location(s) from which the user or user agent can choose the one most appropriate. The entity format is specified by the media type given in the Content-Type header field. Depending upon the format and the capabilities of the user agent, selection of the most appropriate choice MAY be performed automatically. However, this specification does not define any standard for such automatic selection.

If the server has a preferred choice of representation, it SHOULD include the specific URI for that representation in the Location field; user agents MAY use the Location field value for automatic redirection. This response is cacheable unless indicated otherwise.



 TOC 

8.3.2.  301 Moved Permanently

The requested resource has been assigned a new permanent URI and any future references to this resource SHOULD use one of the returned URIs. Clients with link editing capabilities ought to automatically re-link references to the request-target to one or more of the new references returned by the server, where possible. This response is cacheable unless indicated otherwise.

The new permanent URI SHOULD be given by the Location field in the response. Unless the request method was HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(s).

If the 301 status code is received in response to a request method that is known to be "safe", as defined in Section 7.1.1 (Safe Methods), then the request MAY be automatically redirected by the user agent without confirmation. Otherwise, the user agent MUST NOT automatically redirect the request unless it can be confirmed by the user, since this might change the conditions under which the request was issued.

Note: When automatically redirecting a POST request after receiving a 301 status code, some existing HTTP/1.0 user agents will erroneously change it into a GET request.



 TOC 

8.3.3.  302 Found

The requested resource resides temporarily under a different URI. Since the redirection might be altered on occasion, the client SHOULD continue to use the request-target for future requests. This response is only cacheable if indicated by a Cache-Control or Expires header field.

The temporary URI SHOULD be given by the Location field in the response. Unless the request method was HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(s).

If the 302 status code is received in response to a request method that is known to be "safe", as defined in Section 7.1.1 (Safe Methods), then the request MAY be automatically redirected by the user agent without confirmation. Otherwise, the user agent MUST NOT automatically redirect the request unless it can be confirmed by the user, since this might change the conditions under which the request was issued.

Note: HTTP/1.0 ([RFC1945] (Berners-Lee, T., Fielding, R., and H. Nielsen, “Hypertext Transfer Protocol -- HTTP/1.0,” May 1996.), Section 9.3) and the first version of HTTP/1.1 ([RFC2068] (Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” January 1997.), Section 10.3.3) specify that the client is not allowed to change the method on the redirected request. However, most existing user agent implementations treat 302 as if it were a 303 response, performing a GET on the Location field-value regardless of the original request method. Therefore, a previous version of this specification ([RFC2616] (Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.), Section 10.3.3) has added the status codes 303 (303 See Other) and 307 (307 Temporary Redirect) for servers that wish to make unambiguously clear which kind of reaction is expected of the client.



 TOC 

8.3.4.  303 See Other

The server directs the user agent to a different resource, indicated by a URI in the Location header field, that provides an indirect response to the original request. The user agent MAY perform a GET request on the URI in the Location field in order to obtain a representation corresponding to the response, be redirected again, or end with an error status. The Location URI is not a substitute reference for the originally requested resource.

The 303 status is generally applicable to any HTTP method. It is primarily used to allow the output of a POST action to redirect the user agent to a selected resource, since doing so provides the information corresponding to the POST response in a form that can be separately identified, bookmarked, and cached independent of the original request.

A 303 response to a GET request indicates that the requested resource does not have a representation of its own that can be transferred by the server over HTTP. The Location URI indicates a resource that is descriptive of the requested resource such that the follow-on representation may be useful without implying that it adequately represents the previously requested resource. Note that answers to the questions of what can be represented, what representations are adequate, and what might be a useful description are outside the scope of HTTP and thus entirely determined by the URI owner(s).

A 303 response SHOULD NOT be cached unless it is indicated as cacheable by Cache-Control or Expires header fields. Except for responses to a HEAD request, the entity of a 303 response SHOULD contain a short hypertext note with a hyperlink to the Location URI.



 TOC 

8.3.5.  304 Not Modified

The response to the request has not been modified since the conditions indicated by the client's conditional GET request, as defined in Section 3.1 of [Part4] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 4: Conditional Requests,” October 2009.).



 TOC 

8.3.6.  305 Use Proxy

The 305 status was defined in a previous version of this specification (see Appendix A.2 (Changes from RFC 2616)), and is now deprecated.



 TOC 

8.3.7.  306 (Unused)

The 306 status code was used in a previous version of the specification, is no longer used, and the code is reserved.



 TOC 

8.3.8.  307 Temporary Redirect

The requested resource resides temporarily under a different URI. Since the redirection MAY be altered on occasion, the client SHOULD continue to use the request-target for future requests. This response is only cacheable if indicated by a Cache-Control or Expires header field.

The temporary URI SHOULD be given by the Location field in the response. Unless the request method was HEAD, the entity of the response SHOULD contain a short hypertext note with a hyperlink to the new URI(s) , since many pre-HTTP/1.1 user agents do not understand the 307 status. Therefore, the note SHOULD contain the information necessary for a user to repeat the original request on the new URI.

If the 307 status code is received in response to a request method that is known to be "safe", as defined in Section 7.1.1 (Safe Methods), then the request MAY be automatically redirected by the user agent without confirmation. Otherwise, the user agent MUST NOT automatically redirect the request unless it can be confirmed by the user, since this might change the conditions under which the request was issued.



 TOC 

8.4.  Client Error 4xx

The 4xx class of status code is intended for cases in which the client seems to have erred. Except when responding to a HEAD request, the server SHOULD include an entity containing an explanation of the error situation, and whether it is a temporary or permanent condition. These status codes are applicable to any request method. User agents SHOULD display any included entity to the user.

If the client is sending data, a server implementation using TCP SHOULD be careful to ensure that the client acknowledges receipt of the packet(s) containing the response, before the server closes the input connection. If the client continues sending data to the server after the close, the server's TCP stack will send a reset packet to the client, which may erase the client's unacknowledged input buffers before they can be read and interpreted by the HTTP application.



 TOC 

8.4.1.  400 Bad Request

The request could not be understood by the server due to malformed syntax. The client SHOULD NOT repeat the request without modifications.



 TOC 

8.4.2.  401 Unauthorized

The request requires user authentication (see Section 2.1 of [Part7] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 7: Authentication,” October 2009.)).



 TOC 

8.4.3.  402 Payment Required

This code is reserved for future use.



 TOC 

8.4.4.  403 Forbidden

The server understood the request, but is refusing to fulfill it. Authorization will not help and the request SHOULD NOT be repeated. If the request method was not HEAD and the server wishes to make public why the request has not been fulfilled, it SHOULD describe the reason for the refusal in the entity. If the server does not wish to make this information available to the client, the status code 404 (Not Found) can be used instead.



 TOC 

8.4.5.  404 Not Found

The server has not found anything matching the request-target. No indication is given of whether the condition is temporary or permanent. The 410 (Gone) status code SHOULD be used if the server knows, through some internally configurable mechanism, that an old resource is permanently unavailable and has no forwarding address. This status code is commonly used when the server does not wish to reveal exactly why the request has been refused, or when no other response is applicable.



 TOC 

8.4.6.  405 Method Not Allowed

The method specified in the Request-Line is not allowed for the resource identified by the request-target. The response MUST include an Allow header containing a list of valid methods for the requested resource.



 TOC 

8.4.7.  406 Not Acceptable

The resource identified by the request is only capable of generating response entities which have content characteristics not acceptable according to the accept headers sent in the request.

Unless it was a HEAD request, the response SHOULD include an entity containing a list of available entity characteristics and location(s) from which the user or user agent can choose the one most appropriate. The entity format is specified by the media type given in the Content-Type header field. Depending upon the format and the capabilities of the user agent, selection of the most appropriate choice MAY be performed automatically. However, this specification does not define any standard for such automatic selection.

Note: HTTP/1.1 servers are allowed to return responses which are not acceptable according to the accept headers sent in the request. In some cases, this may even be preferable to sending a 406 response. User agents are encouraged to inspect the headers of an incoming response to determine if it is acceptable.

If the response could be unacceptable, a user agent SHOULD temporarily stop receipt of more data and query the user for a decision on further actions.



 TOC 

8.4.8.  407 Proxy Authentication Required

This code is similar to 401 (Unauthorized), but indicates that the client must first authenticate itself with the proxy (see Section 2.2 of [Part7] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 7: Authentication,” October 2009.)).



 TOC 

8.4.9.  408 Request Timeout

The client did not produce a request within the time that the server was prepared to wait. The client MAY repeat the request without modifications at any later time.



 TOC 

8.4.10.  409 Conflict

The request could not be completed due to a conflict with the current state of the resource. This code is only allowed in situations where it is expected that the user might be able to resolve the conflict and resubmit the request. The response body SHOULD include enough information for the user to recognize the source of the conflict. Ideally, the response entity would include enough information for the user or user agent to fix the problem; however, that might not be possible and is not required.

Conflicts are most likely to occur in response to a PUT request. For example, if versioning were being used and the entity being PUT included changes to a resource which conflict with those made by an earlier (third-party) request, the server might use the 409 response to indicate that it can't complete the request. In this case, the response entity would likely contain a list of the differences between the two versions in a format defined by the response Content-Type.



 TOC 

8.4.11.  410 Gone

The requested resource is no longer available at the server and no forwarding address is known. This condition is expected to be considered permanent. Clients with link editing capabilities SHOULD delete references to the request-target after user approval. If the server does not know, or has no facility to determine, whether or not the condition is permanent, the status code 404 (Not Found) SHOULD be used instead. This response is cacheable unless indicated otherwise.

The 410 response is primarily intended to assist the task of web maintenance by notifying the recipient that the resource is intentionally unavailable and that the server owners desire that remote links to that resource be removed. Such an event is common for limited-time, promotional services and for resources belonging to individuals no longer working at the server's site. It is not necessary to mark all permanently unavailable resources as "gone" or to keep the mark for any length of time -- that is left to the discretion of the server owner.



 TOC 

8.4.12.  411 Length Required

The server refuses to accept the request without a defined Content-Length. The client MAY repeat the request if it adds a valid Content-Length header field containing the length of the message-body in the request message.



 TOC 

8.4.13.  412 Precondition Failed

The precondition given in one or more of the request-header fields evaluated to false when it was tested on the server, as defined in Section 3.2 of [Part4] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 4: Conditional Requests,” October 2009.).



 TOC 

8.4.14.  413 Request Entity Too Large

The server is refusing to process a request because the request entity is larger than the server is willing or able to process. The server MAY close the connection to prevent the client from continuing the request.

If the condition is temporary, the server SHOULD include a Retry-After header field to indicate that it is temporary and after what time the client MAY try again.



 TOC 

8.4.15.  414 URI Too Long

The server is refusing to service the request because the request-target is longer than the server is willing to interpret. This rare condition is only likely to occur when a client has improperly converted a POST request to a GET request with long query information, when the client has descended into a URI "black hole" of redirection (e.g., a redirected URI prefix that points to a suffix of itself), or when the server is under attack by a client attempting to exploit security holes present in some servers using fixed-length buffers for reading or manipulating the request-target.



 TOC 

8.4.16.  415 Unsupported Media Type

The server is refusing to service the request because the entity of the request is in a format not supported by the requested resource for the requested method.



 TOC 

8.4.17.  416 Requested Range Not Satisfiable

The request included a Range request-header field (Section 5.4 of [Part5] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 5: Range Requests and Partial Responses,” October 2009.)) and none of the range-specifier values in this field overlap the current extent of the selected resource. See Section 3.2 of [Part5] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 5: Range Requests and Partial Responses,” October 2009.)



 TOC 

8.4.18.  417 Expectation Failed

The expectation given in an Expect request-header field (see Section 9.2 (Expect)) could not be met by this server, or, if the server is a proxy, the server has unambiguous evidence that the request could not be met by the next-hop server.



 TOC 

8.5.  Server Error 5xx

Response status codes beginning with the digit "5" indicate cases in which the server is aware that it has erred or is incapable of performing the request. Except when responding to a HEAD request, the server SHOULD include an entity containing an explanation of the error situation, and whether it is a temporary or permanent condition. User agents SHOULD display any included entity to the user. These response codes are applicable to any request method.



 TOC 

8.5.1.  500 Internal Server Error

The server encountered an unexpected condition which prevented it from fulfilling the request.



 TOC 

8.5.2.  501 Not Implemented

The server does not support the functionality required to fulfill the request. This is the appropriate response when the server does not recognize the request method and is not capable of supporting it for any resource.



 TOC 

8.5.3.  502 Bad Gateway

The server, while acting as a gateway or proxy, received an invalid response from the upstream server it accessed in attempting to fulfill the request.



 TOC 

8.5.4.  503 Service Unavailable

The server is currently unable to handle the request due to a temporary overloading or maintenance of the server. The implication is that this is a temporary condition which will be alleviated after some delay. If known, the length of the delay MAY be indicated in a Retry-After header. If no Retry-After is given, the client SHOULD handle the response as it would for a 500 response.

Note: The existence of the 503 status code does not imply that a server must use it when becoming overloaded. Some servers may wish to simply refuse the connection.



 TOC 

8.5.5.  504 Gateway Timeout

The server, while acting as a gateway or proxy, did not receive a timely response from the upstream server specified by the URI (e.g. HTTP, FTP, LDAP) or some other auxiliary server (e.g. DNS) it needed to access in attempting to complete the request.

Note: Note to implementors: some deployed proxies are known to return 400 or 500 when DNS lookups time out.



 TOC 

8.5.6.  505 HTTP Version Not Supported

The server does not support, or refuses to support, the protocol version that was used in the request message. The server is indicating that it is unable or unwilling to complete the request using the same major version as the client, as described in Section 2.5 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.), other than with this error message. The response SHOULD contain an entity describing why that version is not supported and what other protocols are supported by that server.



 TOC 

9.  Header Field Definitions

This section defines the syntax and semantics of HTTP/1.1 header fields related to request and response semantics.

For entity-header fields, both sender and recipient refer to either the client or the server, depending on who sends and who receives the entity.



 TOC 

9.1.  Allow

The "Allow" response-header field lists the set of methods advertised as supported by the resource identified by the request-target. The purpose of this field is strictly to inform the recipient of valid methods associated with the resource.

  Allow   = "Allow" ":" OWS Allow-v
  Allow-v = #Method

Example of use:

  Allow: GET, HEAD, PUT

The actual set of allowed methods is defined by the origin server at the time of each request.

A proxy MUST NOT modify the Allow header field even if it does not understand all the methods specified, since the user agent might have other means of communicating with the origin server.



 TOC 

9.2.  Expect

The "Expect" request-header field is used to indicate that particular server behaviors are required by the client.

  Expect       = "Expect" ":" OWS Expect-v
  Expect-v     = 1#expectation

  expectation  = "100-continue" / expectation-extension
  expectation-extension = token [ "=" ( token / quoted-string )
                           *expect-params ]
  expect-params = ";" token [ "=" ( token / quoted-string ) ]

A server that does not understand or is unable to comply with any of the expectation values in the Expect field of a request MUST respond with appropriate error status. The server MUST respond with a 417 (Expectation Failed) status if any of the expectations cannot be met or, if there are other problems with the request, some other 4xx status.

This header field is defined with extensible syntax to allow for future extensions. If a server receives a request containing an Expect field that includes an expectation-extension that it does not support, it MUST respond with a 417 (Expectation Failed) status.

Comparison of expectation values is case-insensitive for unquoted tokens (including the 100-continue token), and is case-sensitive for quoted-string expectation-extensions.

The Expect mechanism is hop-by-hop: that is, an HTTP/1.1 proxy MUST return a 417 (Expectation Failed) status if it receives a request with an expectation that it cannot meet. However, the Expect request-header itself is end-to-end; it MUST be forwarded if the request is forwarded.

Many older HTTP/1.0 and HTTP/1.1 applications do not understand the Expect header.

See Section 7.2.3 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.) for the use of the 100 (Continue) status.



 TOC 

9.3.  From

The "From" request-header field, if given, SHOULD contain an Internet e-mail address for the human user who controls the requesting user agent. The address SHOULD be machine-usable, as defined by "mailbox" in Section 3.4 of [RFC5322] (Resnick, P., “Internet Message Format,” October 2008.):

  From    = "From" ":" OWS From-v
  From-v  = mailbox

  mailbox = <mailbox, defined in [RFC5322], Section 3.4>

An example is:

  From: webmaster@example.org

This header field MAY be used for logging purposes and as a means for identifying the source of invalid or unwanted requests. It SHOULD NOT be used as an insecure form of access protection. The interpretation of this field is that the request is being performed on behalf of the person given, who accepts responsibility for the method performed. In particular, robot agents SHOULD include this header so that the person responsible for running the robot can be contacted if problems occur on the receiving end.

The Internet e-mail address in this field MAY be separate from the Internet host which issued the request. For example, when a request is passed through a proxy the original issuer's address SHOULD be used.

The client SHOULD NOT send the From header field without the user's approval, as it might conflict with the user's privacy interests or their site's security policy. It is strongly recommended that the user be able to disable, enable, and modify the value of this field at any time prior to a request.



 TOC 

9.4.  Location

The "Location" response-header field is used to identify a newly created resource, or to redirect the recipient to a different location for completion of the request.

For 201 (Created) responses, the Location is the URI of the new resource which was created by the request. For 3xx responses, the location SHOULD indicate the server's preferred URI for automatic redirection to the resource.

The field value consists of a single URI.

  Location       = "Location" ":" OWS Location-v
  Location-v     = URI

An example is:

  Location: http://www.example.org/pub/WWW/People.html

There are circumstances in which a fragment identifier in a Location URI would not be appropriate:

Note: The Content-Location header field (Section 5.7 of [Part3] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 3: Message Payload and Content Negotiation,” October 2009.)) differs from Location in that the Content-Location identifies the original location of the entity enclosed in the response. It is therefore possible for a response to contain header fields for both Location and Content-Location.



 TOC 

9.5.  Max-Forwards

The "Max-Forwards" request-header field provides a mechanism with the TRACE (Section 7.8 (TRACE)) and OPTIONS (Section 7.2 (OPTIONS)) methods to limit the number of times that the request is forwarded by proxies or gateways. This can be useful when the client is attempting to trace a request which appears to be failing or looping in mid-chain.

  Max-Forwards   = "Max-Forwards" ":" OWS Max-Forwards-v
  Max-Forwards-v = 1*DIGIT

The Max-Forwards value is a decimal integer indicating the remaining number of times this request message may be forwarded.

Each proxy or gateway recipient of a TRACE or OPTIONS request containing a Max-Forwards header field MUST check and update its value prior to forwarding the request. If the received value is zero (0), the recipient MUST NOT forward the request; instead, it MUST respond as the final recipient. If the received Max-Forwards value is greater than zero, then the forwarded message MUST contain an updated Max-Forwards field with a value decremented by one (1).

The Max-Forwards header field MAY be ignored for all other methods defined by this specification and for any extension methods for which it is not explicitly referred to as part of that method definition.



 TOC 

9.6.  Referer

The "Referer" [sic] request-header field allows the client to specify the URI of the resource from which the request-target was obtained (the "referrer", although the header field is misspelled.).

The Referer header allows servers to generate lists of back-links to resources for interest, logging, optimized caching, etc. It also allows obsolete or mistyped links to be traced for maintenance. Some servers use Referer as a means of controlling where they allow links from (so-called "deep linking"), but it should be noted that legitimate requests are not required to contain a Referer header field.

If the request-target was obtained from a source that does not have its own URI (e.g., input from the user keyboard), the Referer field MUST either be sent with the value "about:blank", or not be sent at all. Note that this requirement does not apply to sources with non-HTTP URIs (e.g., FTP).

  Referer        = "Referer" ":" OWS Referer-v
  Referer-v      = absolute-URI / partial-URI

Example:

  Referer: http://www.example.org/hypertext/Overview.html

If the field value is a relative URI, it SHOULD be interpreted relative to the request-target. The URI MUST NOT include a fragment. See Section 11.2 (Encoding Sensitive Information in URIs) for security considerations.



 TOC 

9.7.  Retry-After

The response-header "Retry-After" field can be used with a 503 (Service Unavailable) response to indicate how long the service is expected to be unavailable to the requesting client. This field MAY also be used with any 3xx (Redirection) response to indicate the minimum time the user-agent is asked wait before issuing the redirected request.

The value of this field can be either an HTTP-date or an integer number of seconds (in decimal) after the time of the response.

  Retry-After   = "Retry-After" ":" OWS Retry-After-v
  Retry-After-v = HTTP-date / delta-seconds

Time spans are non-negative decimal integers, representing time in seconds.

  delta-seconds  = 1*DIGIT

Two examples of its use are

  Retry-After: Fri, 31 Dec 1999 23:59:59 GMT
  Retry-After: 120

In the latter example, the delay is 2 minutes.



 TOC 

9.8.  Server

The "Server" response-header field contains information about the software used by the origin server to handle the request.

The field can contain multiple product tokens (Section 6.3 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.)) and comments (Section 3.2 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.)) identifying the server and any significant subproducts. The product tokens are listed in order of their significance for identifying the application.

  Server         = "Server" ":" OWS Server-v
  Server-v       = product
                   *( RWS ( product / comment ) )

Example:

  Server: CERN/3.0 libwww/2.17

If the response is being forwarded through a proxy, the proxy application MUST NOT modify the Server response-header. Instead, it MUST include a Via field (as described in Section 9.9 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.)).

Note: Revealing the specific software version of the server might allow the server machine to become more vulnerable to attacks against software that is known to contain security holes. Server implementors are encouraged to make this field a configurable option.



 TOC 

9.9.  User-Agent

The "User-Agent" request-header field contains information about the user agent originating the request. This is for statistical purposes, the tracing of protocol violations, and automated recognition of user agents for the sake of tailoring responses to avoid particular user agent limitations.

User agents SHOULD include this field with requests. The field can contain multiple product tokens (Section 6.3 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.)) and comments (Section 3.2 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.)) identifying the agent and any subproducts which form a significant part of the user agent. By convention, the product tokens are listed in order of their significance for identifying the application.

  User-Agent     = "User-Agent" ":" OWS User-Agent-v
  User-Agent-v   = product
                   *( RWS ( product / comment ) )

Example:

  User-Agent: CERN-LineMode/2.15 libwww/2.17b3


 TOC 

10.  IANA Considerations



 TOC 

10.1.  Method Registry

The registration procedure for HTTP Methods is defined by Section 2.1 (Method Registry) of this document.

The HTTP Method Registry located at http://www.iana.org/assignments/http-methods should be populated with the registrations below:



MethodSafeReference
CONNECT no Section 7.9 (CONNECT)
DELETE no Section 7.7 (DELETE)
GET yes Section 7.3 (GET)
HEAD yes Section 7.4 (HEAD)
OPTIONS yes Section 7.2 (OPTIONS)
POST no Section 7.5 (POST)
PUT no Section 7.6 (PUT)
TRACE yes Section 7.8 (TRACE)



 TOC 

10.2.  Status Code Registry

The registration procedure for HTTP Status Codes -- previously defined in Section 7.1 of [RFC2817] (Khare, R. and S. Lawrence, “Upgrading to TLS Within HTTP/1.1,” May 2000.) -- is now defined by Section 4.1 (Status Code Registry) of this document.

The HTTP Status Code Registry located at http://www.iana.org/assignments/http-status-codes should be updated with the registrations below:



ValueDescriptionReference
100 Continue Section 8.1.1 (100 Continue)
101 Switching Protocols Section 8.1.2 (101 Switching Protocols)
200 OK Section 8.2.1 (200 OK)
201 Created Section 8.2.2 (201 Created)
202 Accepted Section 8.2.3 (202 Accepted)
203 Non-Authoritative Information Section 8.2.4 (203 Non-Authoritative Information)
204 No Content Section 8.2.5 (204 No Content)
205 Reset Content Section 8.2.6 (205 Reset Content)
300 Multiple Choices Section 8.3.1 (300 Multiple Choices)
301 Moved Permanently Section 8.3.2 (301 Moved Permanently)
302 Found Section 8.3.3 (302 Found)
303 See Other Section 8.3.4 (303 See Other)
305 Use Proxy Section 8.3.6 (305 Use Proxy)
306 (Unused) Section 8.3.7 (306 (Unused))
307 Temporary Redirect Section 8.3.8 (307 Temporary Redirect)
400 Bad Request Section 8.4.1 (400 Bad Request)
402 Payment Required Section 8.4.3 (402 Payment Required)
403 Forbidden Section 8.4.4 (403 Forbidden)
404 Not Found Section 8.4.5 (404 Not Found)
405 Method Not Allowed Section 8.4.6 (405 Method Not Allowed)
406 Not Acceptable Section 8.4.7 (406 Not Acceptable)
407 Proxy Authentication Required Section 8.4.8 (407 Proxy Authentication Required)
408 Request Timeout Section 8.4.9 (408 Request Timeout)
409 Conflict Section 8.4.10 (409 Conflict)
410 Gone Section 8.4.11 (410 Gone)
411 Length Required Section 8.4.12 (411 Length Required)
413 Request Entity Too Large Section 8.4.14 (413 Request Entity Too Large)
414 URI Too Long Section 8.4.15 (414 URI Too Long)
415 Unsupported Media Type Section 8.4.16 (415 Unsupported Media Type)
417 Expectation Failed Section 8.4.18 (417 Expectation Failed)
500 Internal Server Error Section 8.5.1 (500 Internal Server Error)
501 Not Implemented Section 8.5.2 (501 Not Implemented)
502 Bad Gateway Section 8.5.3 (502 Bad Gateway)
503 Service Unavailable Section 8.5.4 (503 Service Unavailable)
504 Gateway Timeout Section 8.5.5 (504 Gateway Timeout)
505 HTTP Version Not Supported Section 8.5.6 (505 HTTP Version Not Supported)



 TOC 

10.3.  Message Header Registration

The Message Header Registry located at http://www.iana.org/assignments/message-headers/message-header-index.html should be updated with the permanent registrations below (see [RFC3864] (Klyne, G., Nottingham, M., and J. Mogul, “Registration Procedures for Message Header Fields,” September 2004.)):



Header Field NameProtocolStatusReference
Allow http standard Section 9.1 (Allow)
Expect http standard Section 9.2 (Expect)
From http standard Section 9.3 (From)
Location http standard Section 9.4 (Location)
Max-Forwards http standard Section 9.5 (Max-Forwards)
Referer http standard Section 9.6 (Referer)
Retry-After http standard Section 9.7 (Retry-After)
Server http standard Section 9.8 (Server)
User-Agent http standard Section 9.9 (User-Agent)

The change controller is: "IETF (iesg@ietf.org) - Internet Engineering Task Force".



 TOC 

11.  Security Considerations

This section is meant to inform application developers, information providers, and users of the security limitations in HTTP/1.1 as described by this document. The discussion does not include definitive solutions to the problems revealed, though it does make some suggestions for reducing security risks.



 TOC 

11.1.  Transfer of Sensitive Information

Like any generic data transfer protocol, HTTP cannot regulate the content of the data that is transferred, nor is there any a priori method of determining the sensitivity of any particular piece of information within the context of any given request. Therefore, applications SHOULD supply as much control over this information as possible to the provider of that information. Four header fields are worth special mention in this context: Server, Via, Referer and From.

Revealing the specific software version of the server might allow the server machine to become more vulnerable to attacks against software that is known to contain security holes. Implementors SHOULD make the Server header field a configurable option.

Proxies which serve as a portal through a network firewall SHOULD take special precautions regarding the transfer of header information that identifies the hosts behind the firewall. In particular, they SHOULD remove, or replace with sanitized versions, any Via fields generated behind the firewall.

The Referer header allows reading patterns to be studied and reverse links drawn. Although it can be very useful, its power can be abused if user details are not separated from the information contained in the Referer. Even when the personal information has been removed, the Referer header might indicate a private document's URI whose publication would be inappropriate.

The information sent in the From field might conflict with the user's privacy interests or their site's security policy, and hence it SHOULD NOT be transmitted without the user being able to disable, enable, and modify the contents of the field. The user MUST be able to set the contents of this field within a user preference or application defaults configuration.

We suggest, though do not require, that a convenient toggle interface be provided for the user to enable or disable the sending of From and Referer information.

The User-Agent (Section 9.9 (User-Agent)) or Server (Section 9.8 (Server)) header fields can sometimes be used to determine that a specific client or server have a particular security hole which might be exploited. Unfortunately, this same information is often used for other valuable purposes for which HTTP currently has no better mechanism.

Some methods, like TRACE (Section 7.8 (TRACE)) may expose information sent in request headers in the response entity. Clients SHOULD be careful with sensitive information, like Cookies, Authorization credentials and other headers that might be used to collect data from the client.



 TOC 

11.2.  Encoding Sensitive Information in URIs

Because the source of a link might be private information or might reveal an otherwise private information source, it is strongly recommended that the user be able to select whether or not the Referer field is sent. For example, a browser client could have a toggle switch for browsing openly/anonymously, which would respectively enable/disable the sending of Referer and From information.

Clients SHOULD NOT include a Referer header field in a (non-secure) HTTP request if the referring page was transferred with a secure protocol.

Authors of services should not use GET-based forms for the submission of sensitive data because that data will be encoded in the Request-target. Many existing servers, proxies, and user agents log or display the Request-target in places where it might be visible to third parties. Such services can use POST-based form submission instead.



 TOC 

11.3.  Location Headers and Spoofing

If a single server supports multiple organizations that do not trust one another, then it MUST check the values of Location and Content-Location headers in responses that are generated under control of said organizations to make sure that they do not attempt to invalidate resources over which they have no authority.



 TOC 

12.  Acknowledgments



 TOC 

13.  References



 TOC 

13.1. Normative References

[Part1] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” draft-ietf-httpbis-p1-messaging-08 (work in progress), October 2009.
[Part3] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 3: Message Payload and Content Negotiation,” draft-ietf-httpbis-p3-payload-08 (work in progress), October 2009.
[Part4] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 4: Conditional Requests,” draft-ietf-httpbis-p4-conditional-08 (work in progress), October 2009.
[Part5] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 5: Range Requests and Partial Responses,” draft-ietf-httpbis-p5-range-08 (work in progress), October 2009.
[Part6] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., Nottingham, M., Ed., and J. Reschke, Ed., “HTTP/1.1, part 6: Caching,” draft-ietf-httpbis-p6-cache-08 (work in progress), October 2009.
[Part7] Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 7: Authentication,” draft-ietf-httpbis-p7-auth-08 (work in progress), October 2009.
[RFC2119] Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997.
[RFC5234] Crocker, D., Ed. and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” STD 68, RFC 5234, January 2008.


 TOC 

13.2. Informative References

[RFC1945] Berners-Lee, T., Fielding, R., and H. Nielsen, “Hypertext Transfer Protocol -- HTTP/1.0,” RFC 1945, May 1996.
[RFC2068] Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” RFC 2068, January 1997.
[RFC2616] Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” RFC 2616, June 1999.
[RFC2817] Khare, R. and S. Lawrence, “Upgrading to TLS Within HTTP/1.1,” RFC 2817, May 2000.
[RFC3864] Klyne, G., Nottingham, M., and J. Mogul, “Registration Procedures for Message Header Fields,” BCP 90, RFC 3864, September 2004.
[RFC5226] Narten, T. and H. Alvestrand, “Guidelines for Writing an IANA Considerations Section in RFCs,” BCP 26, RFC 5226, May 2008.
[RFC5322] Resnick, P., “Internet Message Format,” RFC 5322, October 2008.


 TOC 

Appendix A.  Compatibility with Previous Versions



 TOC 

A.1.  Changes from RFC 2068

Clarified which error code should be used for inbound server failures (e.g. DNS failures). (Section 8.5.5 (504 Gateway Timeout)).

201 (Created) had a race that required an Etag be sent when a resource is first created. (Section 8.2.2 (201 Created)).

303 (See Also) and 307 (Temporary Redirect) added to address user agent failure to implement status code 302 properly. (Section 8.3.4 (303 See Other) and 8.3.8 (307 Temporary Redirect))

Rewrite of message transmission requirements to make it much harder for implementors to get it wrong, as the consequences of errors here can have significant impact on the Internet, and to deal with the following problems:

  1. Changing "HTTP/1.1 or later" to "HTTP/1.1", in contexts where this was incorrectly placing a requirement on the behavior of an implementation of a future version of HTTP/1.x
  2. Made it clear that user-agents should retry requests, not "clients" in general.
  3. Converted requirements for clients to ignore unexpected 100 (Continue) responses, and for proxies to forward 100 responses, into a general requirement for 1xx responses.
  4. Modified some TCP-specific language, to make it clearer that non-TCP transports are possible for HTTP.
  5. Require that the origin server MUST NOT wait for the request body before it sends a required 100 (Continue) response.
  6. Allow, rather than require, a server to omit 100 (Continue) if it has already seen some of the request body.
  7. Allow servers to defend against denial-of-service attacks and broken clients.

This change adds the Expect header and 417 status code.

Clean up confusion between 403 and 404 responses. (Section 8.4.4 (403 Forbidden), 8.4.5 (404 Not Found), and 8.4.11 (410 Gone))

The PATCH, LINK, UNLINK methods were defined but not commonly implemented in previous versions of this specification. See Section 19.6.1 of [RFC2068] (Fielding, R., Gettys, J., Mogul, J., Nielsen, H., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” January 1997.).



 TOC 

A.2.  Changes from RFC 2616

This document takes over the Status Code Registry, previously defined in Section 7.1 of [RFC2817] (Khare, R. and S. Lawrence, “Upgrading to TLS Within HTTP/1.1,” May 2000.). (Section 4.1 (Status Code Registry))

Clarify definition of POST. (Section 7.5 (POST))

Failed to consider that there are many other request methods that are safe to automatically redirect, and further that the user agent is able to make that determination based on the request method semantics. (Sections 8.3.2 (301 Moved Permanently), 8.3.3 (302 Found) and 8.3.8 (307 Temporary Redirect))

Deprecate 305 Use Proxy status code, because user agents did not implement it. It used to indicate that the requested resource must be accessed through the proxy given by the Location field. The Location field gave the URI of the proxy. The recipient was expected to repeat this single request via the proxy. (Section 8.3.6 (305 Use Proxy))

Reclassify Allow header as response header, removing the option to specify it in a PUT request. Relax the server requirement on the contents of the Allow header and remove requirement on clients to always trust the header value. (Section 9.1 (Allow))

Correct syntax of Location header to allow fragment, as referred symbol wasn't what was expected, and add some clarifications as to when it would not be appropriate. (Section 9.4 (Location))

Allow Referer value of "about:blank" as alternative to not specifying it. (Section 9.6 (Referer))

In the description of the Server header, the Via field was described as a SHOULD. The requirement was and is stated correctly in the description of the Via header in Section 9.9 of [Part1] (Fielding, R., Ed., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., Berners-Lee, T., Lafon, Y., Ed., and J. Reschke, Ed., “HTTP/1.1, part 1: URIs, Connections, and Message Parsing,” October 2009.). (Section 9.8 (Server))



 TOC 

Appendix B.  Collected ABNF

Accept = <Accept, defined in [Part3], Section 5.1>
Accept-Charset = <Accept-Charset, defined in [Part3], Section 5.2>
Accept-Encoding = <Accept-Encoding, defined in [Part3], Section 5.3>
Accept-Language = <Accept-Language, defined in [Part3], Section 5.4>
Accept-Ranges = <Accept-Ranges, defined in [Part5], Section 5.1>
Age = <Age, defined in [Part6], Section 3.1>
Allow = "Allow:" OWS Allow-v
Allow-v = [ ( "," / Method ) *( OWS "," [ OWS Method ] ) ]
Authorization = <Authorization, defined in [Part7], Section 3.1>

ETag = <ETag, defined in [Part4], Section 6.1>
Expect = "Expect:" OWS Expect-v
Expect-v = *( "," OWS ) expectation *( OWS "," [ OWS expectation ] )

From = "From:" OWS From-v
From-v = mailbox

HTTP-date = <HTTP-date, defined in [Part1], Section 6.1>
Host = <Host, defined in [Part1], Section 2.6>

If-Match = <If-Match, defined in [Part4], Section 6.2>
If-Modified-Since =
 <If-Modified-Since, defined in [Part4], Section 6.3>
If-None-Match = <If-None-Match, defined in [Part4], Section 6.4>
If-Range = <If-Range, defined in [Part5], Section 5.3>
If-Unmodified-Since =
 <If-Unmodified-Since, defined in [Part4], Section 6.5>

Location = "Location:" OWS Location-v
Location-v = URI

Max-Forwards = "Max-Forwards:" OWS Max-Forwards-v
Max-Forwards-v = 1*DIGIT
Method = %x4F.50.54.49.4F.4E.53 ; OPTIONS
 / %x47.45.54 ; GET
 / %x48.45.41.44 ; HEAD
 / %x50.4F.53.54 ; POST
 / %x50.55.54 ; PUT
 / %x44.45.4C.45.54.45 ; DELETE
 / %x54.52.41.43.45 ; TRACE
 / %x43.4F.4E.4E.45.43.54 ; CONNECT
 / extension-method

OWS = <OWS, defined in [Part1], Section 1.2.2>

Proxy-Authenticate =
 <Proxy-Authenticate, defined in [Part7], Section 3.2>
Proxy-Authorization =
 <Proxy-Authorization, defined in [Part7], Section 3.3>

RWS = <RWS, defined in [Part1], Section 1.2.2>
Range = <Range, defined in [Part5], Section 5.4>
Reason-Phrase = *( WSP / VCHAR / obs-text )
Referer = "Referer:" OWS Referer-v
Referer-v = absolute-URI / partial-URI
Retry-After = "Retry-After:" OWS Retry-After-v
Retry-After-v = HTTP-date / delta-seconds

Server = "Server:" OWS Server-v
Server-v = product *( RWS ( product / comment ) )
Status-Code = "100" / "101" / "200" / "201" / "202" / "203" / "204" /
 "205" / "206" / "300" / "301" / "302" / "303" / "304" / "305" /
 "307" / "400" / "401" / "402" / "403" / "404" / "405" / "406" /
 "407" / "408" / "409" / "410" / "411" / "412" / "413" / "414" /
 "415" / "416" / "417" / "500" / "501" / "502" / "503" / "504" /
 "505" / extension-code

TE = <TE, defined in [Part1], Section 9.8>

URI = <URI, defined in [Part1], Section 2.6>
User-Agent = "User-Agent:" OWS User-Agent-v
User-Agent-v = product *( RWS ( product / comment ) )

Vary = <Vary, defined in [Part6], Section 3.5>

WWW-Authenticate =
 <WWW-Authenticate, defined in [Part7], Section 3.4>

absolute-URI = <absolute-URI, defined in [Part1], Section 2.6>

comment = <comment, defined in [Part1], Section 3.2>

delta-seconds = 1*DIGIT

expect-params = ";" token [ "=" ( token / quoted-string ) ]
expectation = "100-continue" / expectation-extension
expectation-extension = token [ "=" ( token / quoted-string )
 *expect-params ]
extension-code = 3DIGIT
extension-method = token

mailbox = <mailbox, defined in [RFC5322], Section 3.4>

obs-text = <obs-text, defined in [Part1], Section 1.2.2>

partial-URI = <partial-URI, defined in [Part1], Section 2.6>
product = <product, defined in [Part1], Section 6.3>

quoted-string = <quoted-string, defined in [Part1], Section 1.2.2>

request-header = Accept / Accept-Charset / Accept-Encoding /
 Accept-Language / Authorization / Expect / From / Host / If-Match /
 If-Modified-Since / If-None-Match / If-Range / If-Unmodified-Since /
 Max-Forwards / Proxy-Authorization / Range / Referer / TE /
 User-Agent
response-header = Accept-Ranges / Age / Allow / ETag / Location /
 Proxy-Authenticate / Retry-After / Server / Vary / WWW-Authenticate

token = <token, defined in [Part1], Section 1.2.2>

ABNF diagnostics:

; Reason-Phrase defined but not used
; Status-Code defined but not used
; request-header defined but not used
; response-header defined but not used


 TOC 

Appendix C.  Change Log (to be removed by RFC Editor before publication)



 TOC 

C.1.  Since RFC2616

Extracted relevant partitions from [RFC2616] (Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.).



 TOC 

C.2.  Since draft-ietf-httpbis-p2-semantics-00

Closed issues:

Other changes:



 TOC 

C.3.  Since draft-ietf-httpbis-p2-semantics-01

Closed issues:

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/ticket/36):



 TOC 

C.4.  Since draft-ietf-httpbis-p2-semantics-02

Closed issues:

Ongoing work on IANA Message Header Registration (http://tools.ietf.org/wg/httpbis/trac/ticket/40):

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/ticket/36):



 TOC 

C.5.  Since draft-ietf-httpbis-p2-semantics-03

Closed issues:

Ongoing work on Method Registry (http://tools.ietf.org/wg/httpbis/trac/ticket/72):



 TOC 

C.6.  Since draft-ietf-httpbis-p2-semantics-04

Closed issues:

Ongoing work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/ticket/36):



 TOC 

C.7.  Since draft-ietf-httpbis-p2-semantics-05

Closed issues:

Final work on ABNF conversion (http://tools.ietf.org/wg/httpbis/trac/ticket/36):



 TOC 

C.8.  Since draft-ietf-httpbis-p2-semantics-06

Closed issues:



 TOC 

C.9.  Since draft-ietf-httpbis-p2-semantics-07

Closed issues:

Partly resolved issues:



 TOC 

Index

1 
 100 Continue (status code)
 101 Switching Protocols (status code)
2 
 200 OK (status code)
 201 Created (status code)
 202 Accepted (status code)
 203 Non-Authoritative Information (status code)
 204 No Content (status code)
 205 Reset Content (status code)
 206 Partial Content (status code)
3 
 300 Multiple Choices (status code)
 301 Moved Permanently (status code)
 302 Found (status code)
 303 See Other (status code)
 304 Not Modified (status code)
 305 Use Proxy (status code)
 306 (Unused) (status code)
 307 Temporary Redirect (status code)
4 
 400 Bad Request (status code)
 401 Unauthorized (status code)
 402 Payment Required (status code)
 403 Forbidden (status code)
 404 Not Found (status code)
 405 Method Not Allowed (status code)
 406 Not Acceptable (status code)
 407 Proxy Authentication Required (status code)
 408 Request Timeout (status code)
 409 Conflict (status code)
 410 Gone (status code)
 411 Length Required (status code)
 412 Precondition Failed (status code)
 413 Request Entity Too Large (status code)
 414 URI Too Long (status code)
 415 Unsupported Media Type (status code)
 416 Requested Range Not Satisfiable (status code)
 417 Expectation Failed (status code)
5 
 500 Internal Server Error (status code)
 501 Not Implemented (status code)
 502 Bad Gateway (status code)
 503 Service Unavailable (status code)
 504 Gateway Timeout (status code)
 505 HTTP Version Not Supported (status code)
A 
 Allow header
C 
 CONNECT method
D 
 DELETE method
E 
 Expect header
F 
 From header
G 
 GET method
 Grammar
   Allow
   Allow-v
   delta-seconds
   Expect
   expect-params
   Expect-v
   expectation
   expectation-extension
   extension-code
   extension-method
   From
   From-v
   Location
   Location-v
   Max-Forwards
   Max-Forwards-v
   Method
   Reason-Phrase
   Referer
   Referer-v
   request-header
   response-header
   Retry-After
   Retry-After-v
   Server
   Server-v
   Status-Code
   User-Agent
   User-Agent-v
H 
 HEAD method
 Headers
   Allow
   Expect
   From
   Location
   Max-Forwards
   Referer
   Retry-After
   Server
   User-Agent
I 
 Idempotent Methods
L 
 LINK method
 Location header
M 
 Max-Forwards header
 Methods
   CONNECT
   DELETE
   GET
   HEAD
   LINK
   OPTIONS
   PATCH
   POST
   PUT
   TRACE
   UNLINK
O 
 OPTIONS method
P 
 PATCH method
 POST method
 PUT method
R 
 Referer header
 Retry-After header
S 
 Safe Methods
 Server header
 Status Codes
   100 Continue
   101 Switching Protocols
   200 OK
   201 Created
   202 Accepted
   203 Non-Authoritative Information
   204 No Content
   205 Reset Content
   206 Partial Content
   300 Multiple Choices
   301 Moved Permanently
   302 Found
   303 See Other
   304 Not Modified
   305 Use Proxy
   306 (Unused)
   307 Temporary Redirect
   400 Bad Request
   401 Unauthorized
   402 Payment Required
   403 Forbidden
   404 Not Found
   405 Method Not Allowed
   406 Not Acceptable
   407 Proxy Authentication Required
   408 Request Timeout
   409 Conflict
   410 Gone
   411 Length Required
   412 Precondition Failed
   413 Request Entity Too Large
   414 URI Too Long
   415 Unsupported Media Type
   416 Requested Range Not Satisfiable
   417 Expectation Failed
   500 Internal Server Error
   501 Not Implemented
   502 Bad Gateway
   503 Service Unavailable
   504 Gateway Timeout
   505 HTTP Version Not Supported
T 
 TRACE method
U 
 UNLINK method
 User-Agent header


 TOC 

Authors' Addresses

  Roy T. Fielding (editor)
  Day Software
  23 Corporate Plaza DR, Suite 280
  Newport Beach, CA 92660
  USA
Phone:  +1-949-706-5300
Fax:  +1-949-706-5305
Email:  fielding@gbiv.com
URI:  http://roy.gbiv.com/
  
  Jim Gettys
  One Laptop per Child
  21 Oak Knoll Road
  Carlisle, MA 01741
  USA
Email:  jg@laptop.org
URI:  http://www.laptop.org/
  
  Jeffrey C. Mogul
  Hewlett-Packard Company
  HP Labs, Large Scale Systems Group
  1501 Page Mill Road, MS 1177
  Palo Alto, CA 94304
  USA
Email:  JeffMogul@acm.org
  
  Henrik Frystyk Nielsen
  Microsoft Corporation
  1 Microsoft Way
  Redmond, WA 98052
  USA
Email:  henrikn@microsoft.com
  
  Larry Masinter
  Adobe Systems, Incorporated
  345 Park Ave
  San Jose, CA 95110
  USA
Email:  LMM@acm.org
URI:  http://larry.masinter.net/
  
  Paul J. Leach
  Microsoft Corporation
  1 Microsoft Way
  Redmond, WA 98052
Email:  paulle@microsoft.com
  
  Tim Berners-Lee
  World Wide Web Consortium
  MIT Computer Science and Artificial Intelligence Laboratory
  The Stata Center, Building 32
  32 Vassar Street
  Cambridge, MA 02139
  USA
Email:  timbl@w3.org
URI:  http://www.w3.org/People/Berners-Lee/
  
  Yves Lafon (editor)
  World Wide Web Consortium
  W3C / ERCIM
  2004, rte des Lucioles
  Sophia-Antipolis, AM 06902
  France
Email:  ylafon@w3.org
URI:  http://www.raubacapeu.net/people/yves/
  
  Julian F. Reschke (editor)
  greenbytes GmbH
  Hafenweg 16
  Muenster, NW 48155
  Germany
Phone:  +49 251 2807760
Fax:  +49 251 2807761
Email:  julian.reschke@greenbytes.de
URI:  http://greenbytes.de/tech/webdav/