Network Working Group | S. Hyun |
Internet-Draft | Chosun University |
Intended status: Standards Track | J. Jeong |
Expires: April 23, 2019 | T. Roh |
S. Wi | |
Sungkyunkwan University | |
J. Park | |
ETRI | |
October 20, 2018 |
I2NSF Registration Interface Data Model
draft-ietf-i2nsf-registration-interface-dm-00
This document defines an information model and a YANG data model for Interface to Network Security Functions (I2NSF) Registration Interface between Security Controller and Developer's Management System (DMS). The objective of these information and data models is to support NSF search, instantiation and registration according to required security capabilities via I2NSF Registration Interface.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 23, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
A number of virtual network security function instances typically exist in Interface to Network Security Functions (I2NSF) framework [RFC8329]. Since these NSF instances may have different security capabilities, it is important to register the security capabilities of each NSF instance into the security controller after they have been created. In addition, it is required to search or instantiate NSFs of some required security capabilities on demand. As an example, if additional security capabilities are required to meet the new security requirements that an I2NSF user requests, the security controller should be able to request the DMS for NSFs that have the required security capabilities.
This document describes an information model (see Section 5) and a YANG [RFC6020] data model (see Section 6) for the I2NSF Registration Interface [RFC8329] between the security controller and the developer's management system (DMS) to support NSF search, instantiation and registration according to required security capabilities. It also describes the procedure which should be performed by the security controller and the DMS via the Registration Interface using the defined model.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This document uses the following terms defined in [i2nsf-terminology], [capability-im], [RFC8329], [nsf-triggered-steering], [supa-policy-data-model], and [supa-policy-info-model]
The I2NSF registration interface was only used for registering new NSF instances to Security Controller. In this document, however, we extend its utilization to support on demand NSF instantiation/de-instantiation and describe the information that should be exchanged via the registration interface for the functionality. Moreover, we also define the information model of NSF Profile because, for registration interface, NSF Profile (i.e., capabilities of an NSF) needs to be clarified so that the components of I2NSF framework can exchange the set of capabilities in a standardized manner. This is typically done through the following process:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Registration Interface Information Model | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+ | | | Instance Management | | Registration | | | | Sub-Model | | Sub-Model | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+-+ | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: Registration Interface Information Model
As illustrated in Figure 1, the information model for Registration Interface consists of two sub-models: instance management, registration sub-models. The instance management functionality and the registration functionality use NSF Profile to achieve their goals. In this context, NSF Profile is the capability objects that describe and/or prescribe inspection capability an NSF instance can provide.
For the instance management of NSFs, Security Controller in I2NSF framework requires two types of requests: Instantiation Request and Deinstantiation Request. Security Controller sends the request messages to DMS when required. Once receiving the request, DMS conducts creating/eliminating the corresponding NSF instance and responds Security Controller with the results.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+-+ | Instantiation/Re-instantiation | | De-instantiation | | Request | | Request | +-+-+-+-+-+-+-+-+-^-+-+-+-+-+-+-+-+ +-+-+-+-+-^-+-+-+-+-+ | | | | | | | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+ | NSF Capability | | NSF Access | | Information | | Information | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+
Figure 2: Overview of Instance Management Sub-Model
In order to register a new NSF instance, DMS should generate a Registration Message to Security Controller. A Registration Message consists of an NSF Profile and an NSF Access Information. The former describes the inspection capability of the new NSF instance and the latter is for enabling network access to the new instance from other components. After this registration process, as explained in [capability-im], the I2NSF capability interface can conduct controlling and monitoring the new registered NSF instance.
+-+-+-+-+-+-+-+-+ | NSF | | Registration | +-+-+-+-^-+-+-+-+ | +-------------------------------------+ | | | | | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ | NSF Capability | | NSF Access | | NSF Rold-based | | Information | | Information | | ACL | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+
Figure 3: Registration Mechanism Sub-Model Overview
NSF Access Information contains the followings that are required to communicate with an NSF: IPv4 address, IPv6 address, port number, and supported transport protocol(s) (e.g., Virtual Extensible LAN (VXLAN) [RFC 7348], Generic Protocol Extension for VXLAN (VXLAN-GPE) [draft-ietf-nvo3-vxlan-gpe], Generic Route Encapsulation (GRE), Ethernet etc.). In this document, NSF Access Information is used to identify a specific NSF instance (i.e. NSF Access Information is the signature(unique identifier) of an NSF instance in the overall system).
NSF Profile basically describes the inspection capabilities of an NSF instance. In Figure 4, we show capability objects of an NSF instance. Following the information model of NSF capabilities defiend in [capability-im], we share the same security capabilities: Network-Security Capabilities, Content-Security Capabilities, and Attack Mitigation Capabilities. Also, NSF Profile additionally contains the performance capabilities and role-Based access control list (ACL) as shown in Figure 4.
+-+-+-+-+-+-+-+-+ | Capability | | Objects | +-+-+-+-^-+-+-+-+ | | +---------------+-------+--------------+ | | | | | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ | |Network-Security | |Content-Security | | | Capabilities | | Capabilities | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ | | +-----------------------+--------------+ | | | | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+ | Performance | |Attack Mitigation| | Capabilities | | Capabilities | +-+-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+-+-+
Figure 4: NSF Profile Overview
This information represents the processing capability of an NSF. This information can be used to determine whether the NSF is in congestion by comparing this with the workload that the NSF currently undergoes. Moreover, this information can specify an available amount of each type of resources such as processing power which are available on the NSF. (The registration interface can control the usages and limitations of the created instance and make the appropriate request according to the status.) As illustrated in Figure 5, this information consists of two items: Processing and Bandwidth. Processing information describes the NSF's available processing power. Bandwidth describes the information about available network amount in two cases, outbound, inbound. This two information can be used for the NSF's instance request.
+-+-+-+-+-+-+-+-+-+ | Performance | | Capabilities | +-+-+-+-^-+-+-+-+-+ | +----------------------------+ | | | | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+ | Processing | | Bandwidth | +-+-+-+-+-+-+-+-+ +-+-+-+-+-+-+-+
Figure 5: Performance Capability Overview
This information specifies access policies of an NSF to determine whether to permit or deny the access of an entity to the NSF based on the role given to the entity. Each NSF is associated with a role-based access control list (ACL) so that it can determine whether to permit or deny the access request from an entity. Figure 6 and Figure 7 show the structure of the role-based ACL, which is composed of role-id, access-type, and permit/deny. The role-id identifies roles of entities (e.g., administrator, developer etc.). The access-type identifies the specific type of access requests such as NSF rule configuration/update and NSF monitoring. Consequently, the role-based ACL in Figure 6 and Figure 7 specifies a set of access-types to be permitted and to be denied by each role-id.
+-+-+-+-+-+-+-+-+ | Role-based | | ACL | +-+-+-+-+-+-+-+-+ | +-----------------------------------+ | | +-+-+-+-+-+-+ +-+-+-+-+-+-+ | Role-id 1 | ... | Role-id N | +-+-+-+-+-+-+ +-+-+-+-+-+-+
Figure 6: Role-based Access Control List
+-+-+-+-+-+-+-+-+ | Role-id i | +-+-+-+-+-+-+-+-+ | +---------------------------------+ | | +-+-+-+-+-+-+ +-+-+-+-+-+-+ | Permit | | Deny | +-+-+-+-+-+-+ +-+-+-+-+-+-+ | | +------------------+ +------------------+ | | | | +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ |access-type| ... |access-type| |access-type| ... |access-type| | p1 | | pn | | d1 | | dn | +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+ +-+-+-+-+-+-+
Figure 7: Role-id Subtree
This section provides an overview of the high level YANG.
A simplified graphical representation of the data model is used in this section. The meaning of the symbols used in the following diagrams [i2rs-rib-data-model] is as follows:
module : ietf-i2nsf-regs-interface-model +--rw regs-req | uses i2nsf-regs-req +--rw instance-mgnt-req | uses i2nsf-instance-mgnt-req
Figure 8: High-Level YANG of I2NSF Registration Interface
Each of these sections mirror sections of Section 5.
This section expands the i2nsf-regs-req in Figure 8.
Registration Request +--rw i2nsf-regs-req +--rw nsf-capability-information | uses i2nsf-nsf-capability-information +--rw nsf-access-info | uses i2nsf-nsf-access-info
Figure 9: High-Level YANG of I2NSF Registration Request
Registration Request contains the capability information of newly created NSF to notify its capability to Security Controller. The request also contains Network Access Information so that the Security Controller can access the NSF.
This section expands the i2nsf-instance-mgnt-req in Figure 8.
Instance Management Request +--rw i2nsf-instance-mgnt-req +--rw req-level uint16 +--rw req-id uint64 +--rw (req-type)? +--rw (instanciation-request) +--rw in-nsf-capability-information | uses i2nsf-nsf-capability-information +--rw (deinstanciation-request) +--rw de-nsf-access-info | uses i2nsf-nsf-access-info +--rw (updating-request) +--rw update-nsf-capability-information | uses i2nsf-nsf-capability-information
Figure 10: High-Level YANG of I2NSF Instance Mgnt Request
Instance management request consists of two types: instanciation-request, deinstanciation-request, and updating-request. The instanciation-request is used to request generation of a new NSF instance with NSF Capability Information which specifies required NSF capability information. The deinstanciation-request is used to remove an existing NSF with NSF Access Information. The updating nsf request is used to updating a existing NSf information with NSF capabilities.
This section expands the i2nsf-nsf-capability-information in Figure 9 and Figure 10.
NSF Capability Information +--rw i2nsf-nsf-capability-information +--rw i2nsf-capability | uses ietf-i2nsf-capability +--rw performance-capability | uses i2nsf-nsf-performance-caps
Figure 11: High-Level YANG of I2NSF NSF Capability Information
In Figure 11, ietf-i2nsf-capability refers module ietf-i2nsf-capability in [i2nsf-capability-dm]. We add the performance capability because it is absent in [i2nsf-capability-dm] and [netmod-acl-model]
This section expands the i2nsf-nsf-access-info in Figure 9 and Figure 10.
NSF Access Information +--rw i2nsf-nsf-access-info +--rw nsf-address inet:ipv4-address +--rw nsf-port-address inet:port-number
Figure 12: High-Level YANG of I2NSF NSF Access Informantion
This information is used by other components to access an NSF.
This section expands the i2nsf-nsf-performance-caps in Figure 11.
NSF Performance Capability +--rw i2nsf-nsf-performance-caps +--rw processing | +--rw processing-average uint16 | +--rw processing-peak uint16 +--rw bandwidth | +--rw outbound | | +--rw outbound-average uint16 | | +--rw outbound-peak uint16 | +--rw inbound | | +--rw inbound-average uint16 | | +--rw inbound-peak uint16
Figure 13: High-Level YANG of I2NSF NSF Performance Capability
When the Security Controller requests the Developer Management System to create a new NSF instance, the performance capability is used to specify the performance requirements of the new instance.
This section expands the ietf-netmod-acl-model in [netmod-acl-model].
Role-Based ACL +--rw role-based-acl uses ietf-netmod-acl-model
Figure 14: Role-Based ACL
In [netmod-acl-model], ietf-netmod-acl-model refers module ietf-netmod-acl-model in [netmod-acl-model]. We add the role-based ACL because it is absent in [i2nsf-capability-dm].
This section introduces a YANG module for the information model of the required data for the registration interface between Security Controller and Developer's Management System, as defined in Section 5.
<CODE BEGINS> file "ietf-i2nsf-regs-interface@2018-07-26.yang" module ietf-i2nsf-regs-interface { namespace "urn:ietf:params:xml:ns:yang:ietf-i2nsf-regs-interface"; prefix regs-interface; import ietf-inet-types{ prefix inet; } organization "IETF I2NSF (Interface to Network Security Functions) Working Group"; contact "WG Web: <http://tools.ietf.org/wg/i2nsf> WG List: <mailto:i2nsf@ietf.org> WG Chair: Adrian Farrel <mailto:Adrain@olddog.co.uk> WG Chair: Linda Dunbar <mailto:Linda.duhbar@huawei.com> Editor: Sangwon Hyun <mailto:swhyun77@skku.edu> Editor: Jaehoon Paul Jeong <mailto:pauljeong@skku.edu> Editor: Taekyun Roh <mailto:tkroh0198@skku.edu> Editor: Sarang Wi <mailto:dnl9795@skku.edu> Editor: Jung-Soo Park <mailto:pjs@etri.re.kr>"; description "It defines a YANG data module for Registration Interface."; revision "2018-07-26"{ description "The second revision"; reference "draft-ietf-i2nsf-capability-data-model-01"; } list interface-container{ key "interface-name"; description "i2nsf-reg-interface-container"; leaf interface-name{ type string; description "interface name"; } container i2nsf-regs-req { description "The capability information of newly created NSF to notify its capability to Security Controller"; container nsf-capability-information { description "nsf-capability-information"; uses i2nsf-nsf-capability-information; } container nsf-access-info { description "nsf-access-info"; uses i2nsf-nsf-access-info; } container ietf-netmod-acl-model{ description "netmod-acl-model"; uses ietf-netmod-acl-model; } } container i2nsf-instance-mgnt-req { description "Required information for instanciation-request, deinstanciation-request and updating-request"; leaf req-level { type uint16; description "req-level"; } leaf req-id { type uint64; mandatory true; description "req-id"; } choice req-type { description "req-type"; case instanciation-request { description "instanciation-request"; container in-nsf-capability-information { description "nsf-capability-information"; uses i2nsf-nsf-capability-information; } } case deinstanciation-request { description "deinstanciation-request"; container de-nsf-access-info { description "nsf-access-info"; uses i2nsf-nsf-access-info; } } case updating-request { description "updating nsf's information"; container update-nsf-capability-information { description "nsf-capability-information"; uses i2nsf-nsf-capability-information; } } } } } grouping i2nsf-nsf-performance-caps { description "NSF performance capailities"; container processing{ description "processing info"; leaf processing-average{ type uint16; description "processing-average"; } leaf processing-peak{ type uint16; description "processing peak"; } } container bandwidth{ description "bandwidth info"; container inbound{ description "inbound"; leaf inbound-average{ type uint16; description "inbound-average"; } leaf inbound-peak{ type uint16; description "inbound-peak"; } } container outbound{ description "outbound"; leaf outbound-average{ type uint16; description "outbound-average"; } leaf outbound-peak{ type uint16; description "outbound-peak"; } } } } grouping i2nsf-nsf-capability-information { description "Detail information of an NSF"; container performance-capability { uses i2nsf-nsf-performance-caps; description "performance-capability"; } container i2nsf-capability { description "It refers draft-ietf-i2nsf-capability-data-model-01.txt later"; } } grouping ietf-netmod-acl-model { description "Detail information"; container role-based-acl { description "It refers draft-ietf-netmod-acl-model-19.txt later"; } } grouping i2nsf-nsf-access-info { description "NSF access information"; leaf nsf-address { type inet:ipv4-address; mandatory true; description "nsf-address"; } leaf nsf-port-address { type inet:port-number; description "nsf-port-address"; } } } <CODE ENDS>
Figure 15: Data Model of I2NSF Registration Interface
Requirement: Registering the IDS NSF with VoIP/VoLTE security capability using Registration interface.
Here is the configuration xml for this Registration Interface:
<?xml version="1.0" encoding="UTF-8"?> <rpc xmlns="urn:ietf:params:netconf:base:1.0" message-id="1"> <edit-config> <target> <running/> </target> <config> <i2nsf-regs-req> <i2nsf-nsf-capability-information> <ietf-i2nsf-capability> <nsf-capabilities> <nsf-capabilities-id>1</nsf-capabilities-id> <con-sec-control-capabilities> <content-security-control> <ids> <ids-support>true</ids-support> <ids-fcn nc:operation="create"> <ids-fcn-name>ids-service</ids-fcn-name> </ids-fcn> </ids> <voip-volte> <voip-volte-support>true</voip-volte-support> <voip-volte-fcn nc:operation="create"> <voip-volte-fcn-name> ips-service </voip-volte-fcn-name> </voip-volte-fcn> </voip-volte> </content-security-control> </con-sec-control-capabilities> </nsf-capabilities> </ietf-i2nsf-capability> <i2nsf-nsf-performance-caps> <processing> <processing-average>1000</processing-average> <processing-peak>5000</processing-peak> </processing> <bandwidth> <outbound> <outbound-average>1000</outbound-average> <outbound-peak>5000</outbound-peak> </outbound> <inbound> <inbound-average>1000</inbound-average> <inbound-peak>5000</inbound-peak> </inbound> </bandwidth> </i2nsf-nsf-performance-caps> </i2nsf-nsf-capability-information> <nsf-access-info> <nsf-address>10.0.0.1</nsf-address> <nsf-port-address>145</nsf-port-address> </nsf-access-info> </i2nsf-regs-req> </config> </edit-config> </rpc>
Figure 16: Registration Interface example
This document introduces no additional security threats and SHOULD follow the security requirements as stated in [RFC8329].
This work was supported by Institute for Information & communications Technology Promotion(IITP) grant funded by the Korea government(MSIP) (No.R-20160222-002755, Cloud based Security Intelligence Technology Development for the Customized Security Service Provisioning).
[RFC2119] | Bradner, S., "Key words for use in RFCs toIndicate Requirement Levels", RFC 2119, March 1997. |
[RFC6020] | Bjorklund, M., "YANG - A Data Modeling Language for the Network Configuration Protocol (NETCONF)", RFC 6020, October 2010. |