I2RS | J. Clarke |
Internet-Draft | G. Salgueiro |
Intended status: Informational | C. Pignataro |
Expires: November 19, 2016 | Cisco |
May 18, 2016 |
Interface to the Routing System (I2RS) Traceability: Framework and Information Model
draft-ietf-i2rs-traceability-11
This document describes a framework for traceability in the Interface to the Routing System (I2RS) and information model for that framework. It specifies the motivation, requirements, use cases, and defines an information model for recording interactions between elements implementing the I2RS protocol. This framework provides a consistent tracing interface for components implementing the I2RS architecture to record what was done, by which component, and when. It aims to improve the management of I2RS implementations, and can be used for troubleshooting, auditing, forensics, and accounting purposes.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on November 19, 2016.
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The architecture for the Interface to the Routing System ([I-D.ietf-i2rs-architecture]) specifies that I2RS Clients wishing to retrieve or change routing state on a routing element MUST authenticate to an I2RS Agent. The I2RS Client will have a unique identity it provides for authentication, and should provide another, opaque identity for applications communicating through it. The programming of routing state will produce a return code containing the results of the specified operation and associated reason(s) for the result. All of this is critical information to be used for understanding the history of I2RS interactions.
This document defines the framework necessary to trace those interactions between the I2RS Client and I2RS Agent. It goes on to describe use cases for traceability within I2RS. Based on these use cases, the document proposes an information model and reporting requirements to provide for effective recording of I2RS interactions. In this context, effective troubleshooting means being able to identify what operation was performed by a specific I2RS Client via the I2RS Agent, what was the result of the operation, and when that operation was performed.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
The architecture specification for I2RS [I-D.ietf-i2rs-architecture] defines additional terms used in this document that are specific to the I2RS domain, such as "I2RS Agent", "I2RS Client", etc. The reader is expected to be familiar with the terminology and concepts defined in [I-D.ietf-i2rs-architecture].
As networks scale and policy becomes an increasingly important part of the control plane that creates and maintains the forwarding state, operational complexity increases as well. I2RS offers more granular and coherent control over policy and control plane state, but it also removes or reduces the locality of the policy that has been applied to the control plane at any individual forwarding device. The ability to automate and abstract even complex policy-based controls highlights the need for an equally scalable traceability function to provide recording at event-level granularity of the evolution of the routing system compliant with the requirements of I2RS (Section 5 of [I-D.ietf-i2rs-problem-statement]).
An obvious motivation for I2RS traceability is the need to troubleshoot and identify root-causes of problems in these increasingly complex routing systems. For example, since I2RS is a high-throughput multi-channel, full duplex and highly responsive interface, I2RS Clients may be performing a large number of operations on I2RS Agents concurrently or at nearly the same time and quite possibly in very rapid succession. As these many changes are made, the network reacts accordingly. These changes might lead to a race condition, performance issues, data loss, or disruption of services. In order to isolate the root cause of these issues it is critical that a network operator or administrator has visibility into what changes were made via I2RS at a specific time.
Some network environments have strong auditing requirements for configuration and runtime changes. Other environments have policies that require saving logging information for operational or regulatory compliance considerations. These requirements therefore demand that I2RS provides an account of changes made to network element routing systems.
As I2RS becomes increasingly pervasive in routing environments, a traceability model that supports controllable trace log retention using a standardized structured data format offers significant advtanges, such as the ability to create common tools supporting automated testing, and facilitates the following use cases:
These sections describe the I2RS traceability information model and the detail corresponding to each of the fields to be logged.
This section describes a framework for I2RS traceability based on the I2RS Architecture.
The interaction between the optional network application that drives Client activity, I2RS Client, I2RS Agent, the Routing System and the data captured in the I2RS trace log is shown in Figure 1.
+---------------+ +----------------+ | |Application | | |.............. | | 0 or more Applications | Application ID | + +----------------+ ^ | | v +-------------+ +-------------+ | |I2RS Client | | |.............| | 1 or more Clients | Client ID | + +-------------+ ^ | | v +-------------+ +-----------------------------+ |I2RS Agent |---------------->|Trace Log | | | |.............................| +-------------+ |Log Entry [1 .. N] | | ^ |.............................| | | |Event ID | | | |Starting Timestamp | | | |Request State | | | |Client ID | | | |Client Priority | | | |Secondary ID | Operation + | | Result Code |Client Address | Op Data | | |Requested Operation | | | |Applied Operation | | | |Operation Data Present | | | |Requested Operation Data | | | |Applied Operation Data | | | |Transaction ID | | | |Result Code | | | |Ending Timestamp | | | |Timeout Occurred | v | |End Of Message | +-------------+ +-----------------------------+ |Routing | |System | +-------------+
Figure 1: I2RS Interaction Trace Log Capture
The following fields comprise an I2RS Trace Log. These fields ensure that each I2RS interaction can be properly traced back to the Client that made the request at a specific point in time.
The list below describes the fields captured in the I2RS trace log. This list represents a common set of fields that MUST appear in all I2RS trace logs. In addition to these fields, I2RS Agent implementations MAY choose to log additional fields such as I2RS Client vendor or Agent statistics like free memory, performance metrics, etc.
Because of variability within I2RS trace log fields, implementors MUST use a format-appropriate end of message (EOM) indicator in order to signify the end of a particular record. That is, regardless of format, the I2RS trace log MUST provide a distinct way of distinguishing between the end of one record and the beginning of another. For example, in a linear formated log (similar to syslog) the EOM marker may be a newline character. In an XML formated log, the schema would provide for element tags that denote beginning and end of records. In a JSON formated log, the syntax would provide record separation (likely by comma-separated array elements).
This section shows a sample of what the fields and values could look like.
Event ID: 1 Starting Timestamp: 2013-09-03T12:00:01.21+00:00 Request State: COMPLETED Client ID: 5CEF1870-0326-11E2-A21F-0800200C9A66 Client Priority: 100 Secondary ID: com.example.RoutingApp Client Address: 2001:db8:c0c0::2 Requested Operation: ROUTE_ADD Applied Operation: ROUTE_ADD Operation Data Present: TRUE Requested Operation Data: PREFIX 2001:db8:feed:: PREFIX-LEN 64 NEXT-HOP 2001:db8:cafe::1 Applied Operation Data: PREFIX 2001:db8:feed:: PREFIX-LEN 64 NEXT-HOP 2001:db8:cafe::1 Transaction ID: 2763461 Result Code: SUCCESS(0) Timeout Occurred: FALSE Ending Timestamp: 2013-09-03T12:00:01.23+00:00
Specific operational procedures regarding temporary log storage, rollover, retrieval, and access of I2RS trace logs is out of scope for this document. Organizations employing I2RS trace logging are responsible for establishing proper operational procedures that are appropriately suited to their specific requirements and operating environment. In this section we only provide fundamental and generalized operational guidelines that are implementation-independent.
The I2RS Agent interacts with the Routing and Signaling functions of the Routing Element. Since the I2RS Agent is responsible for actually making the routing changes on the associated network device, it creates and maintains a log of operations that can be retrieved to troubleshoot I2RS-related impact to the network. Changes that occur to the network element's local configuration outside of the I2RS protocol that preempt I2RS state will only be logged if the network element notifies the I2RS Agent.
The trace information may be temporarily stored either in an in-memory buffer or as a file local to the Agent. Care should be given to the number of I2RS operations expected on a given Agent so that the appropriate storage medium is used and to maximize the effectiveness of the log while not impacting the performance and health of the Agent. Client requests may not always be processed synchronously or within a bounded time period. Consequently, to ensure that trace log fields, such as "Operation" and "Result Code", are part of the same trace log record it may require buffering of the trace log entries. This buffering may result in additional resource load on the Agent and the network element.
Section 7.3 discusses rotating the trace log in order to preserve the operation history without exhausting Agent or network device resources. It is perfectly acceptable, therefore, to use both an in-memory buffer for recent operations while rotating or archiving older operations to a local file.
It is outside the scope of this document to specify the implementation details (i.e., size, throughput, data protection, etc.) for the physical storage of the I2RS log file. In terms of data retention, attention should be paid the length of time I2RS trace log data is kept when that data contains security or privacy-sensitive attributes. The longer this data is retained, the higher the impact if it were to be leaked. It is also possible that legislation may impose some additional requirements on the minimum and/or maximum durations for which some kinds of data may be retained.
In order to prevent the exhaustion of resources on the I2RS Agent or its associated network device, it is RECOMMENDED that the I2RS Agent implements trace log rotation. The details on how this is achieved are left to the implementation and outside the scope of this document. However, it should be possible to do file rotation based on either time or size of the current trace log. If file rollover is supported, multiple archived log files should be supported in order to maximize the troubleshooting and accounting benefits of the trace log.
Implementors are free to provide their own, proprietary interfaces and develop custom tools to retrieve and display the I2RS trace log. These may include the display of the I2RS trace log as Command Line Interface (CLI) output. However, a key intention of defining this information model is to establish a vendor-agnostic and consistent interface to collect I2RS trace data. Correspondingly, retrieval of the data should also be made vendor-agnostic.
Despite the fact that export of I2RS trace log information could be an invaluable diagnostic tool for off-box analysis, exporting this information MUST NOT interfere with the ability of the Agent to process new incoming operations.
The following three sections describe potential ways the trace log can be accessed. The use of I2RS Pub-Sub for accessing trace log data is mandatory-to-implement, while others are optional.
The syslog protocol [RFC5424] is a standard way of sending event notification messages from a host to a collector. However, the protocol does not define any standard format for storing the messages, and thus implementors of I2RS tracing would be left to define their own format. So, while the data contained within the syslog message would adhere to this information model, and may be consumable by a human operator, it would not be easily parseable by a machine. Syslog MAY be employed as a means of retrieving or disseminating the I2RS trace log contents.
If syslog is used for trace log retrieval, then existing logging infrastructure and capabilities of syslog [RFC5424] should be leveraged without the need to define or extend existing formats. That is, the various fields described in Section 5.2 SHOULD be modeled and encoded as Structured Data Elements (referred to as "SD-ELEMENT"), as described in Section 6.3.1 of [RFC5424].
Section 6.7 of the I2RS architecture [I-D.ietf-i2rs-architecture] defines a mechanism for information collection. The information collected includes obtaining a snapshot of a large amount of data from the network element. It is the intent of I2RS to make this data available in an implementor-agnostic fashion. Therefore, the I2RS trace log SHOULD be made available via the I2RS information collection mechanism either as a single snapshot or via a subscription stream.
Section 7.6 of the I2RS architecture [I-D.ietf-i2rs-architecture] goes on to describe notification mechanisms for a feed of changes happening within the I2RS layer. Specifically, the requirements for a publish-subscribe system for I2RS are defined in [I-D.ietf-i2rs-pub-sub-requirements]. I2RS Agents MUST support publishing I2RS trace log information to that feed as described in that document. Subscribers would then receive a live stream of I2RS interactions in trace log format and could flexibly choose to do a number of things with the log messages. For example, the subscribers could log the messages to a datastore, aggregate and summarize interactions from a single Client, etc. The full range of potential activites is virtually limitless and the details of how they are performed are outside the scope of this document, however.
This document makes no request of IANA.
The I2RS trace log, like any log file, reveals the state of the entity producing it as well as the identifying information elements and detailed interactions of the system containing it. The information model described in this document does not itself introduce any security issues, but it does define the set of attributes that make up an I2RS log file. These attributes may contain sensitive information and thus should adhere to the security, privacy and permission policies of the organization making use of the I2RS log file.
It is outside the scope of this document to specify how to protect the stored log file, but it is expected that adequate precautions and security best practices such as disk encryption, appropriately restrictive file/directory permissions, suitable hardening and physical security of logging entities, mutual authentication, transport encryption, channel confidentiality, and channel integrity if transferring log files. Additionally, the potentially sensitive information contained in a log file SHOULD be adequately anonymized or obfuscated by operators to ensure its privacy.
The authors would like to thank Alia Atlas for her initial feedback and overall support for this work. Additionally, the authors acknowledge Alvaro Retana, Russ White, Matt Birkner, Jeff Haas, Joel Halpern, Dean Bogdanovich, Ignas Bagdonas, Nobo Akiya, Kwang-koog Lee, Sue Hares, Mach Chen, Alex Clemm, Stephen Farrell, Benoit Claise, Les Ginsberg, Suresh Krishnan, and Elwyn Davies for their reviews, contributed text, and suggested improvements to this document.
[I-D.ietf-i2rs-architecture] | Atlas, A., Halpern, J., Hares, S., Ward, D. and T. Nadeau, "An Architecture for the Interface to the Routing System", Internet-Draft draft-ietf-i2rs-architecture-15, April 2016. |
[I-D.ietf-i2rs-pub-sub-requirements] | Voit, E., Clemm, A. and A. Prieto, "Requirements for Subscription to YANG Datastores", Internet-Draft draft-ietf-i2rs-pub-sub-requirements-09, May 2016. |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC3339] | Klyne, G. and C. Newman, "Date and Time on the Internet: Timestamps", RFC 3339, DOI 10.17487/RFC3339, July 2002. |
[RFC5424] | Gerhards, R., "The Syslog Protocol", RFC 5424, DOI 10.17487/RFC5424, March 2009. |
[I-D.ietf-i2rs-problem-statement] | Atlas, A., Nadeau, T. and D. Ward, "Interface to the Routing System Problem Statement", Internet-Draft draft-ietf-i2rs-problem-statement-10, February 2016. |
[I-D.ietf-i2rs-rib-info-model] | Bahadur, N., Kini, S. and J. Medved, "Routing Information Base Info Model", Internet-Draft draft-ietf-i2rs-rib-info-model-08, October 2015. |
[RFC6536] | Bierman, A. and M. Bjorklund, "Network Configuration Protocol (NETCONF) Access Control Model", RFC 6536, DOI 10.17487/RFC6536, March 2012. |