Networking Working Group L. Ginsberg, Ed.
Internet-Draft S. Previdi
Intended status: Standards Track Cisco Systems, Inc.
Expires: February 3, 2018 Q. Wu
Huawei
H. Gredler
S. Ray
J. Tantsura
Individual
C. Filsfils
Cisco Systems, Inc.
August 2, 2017

BGP-LS Advertisement of IGP Traffic Engineering Performance Metric Extensions
draft-ietf-idr-te-pm-bgp-07

Abstract

This document defines new BGP-LS TLVs in order to carry the IGP Traffic Engineering Extensions defined in IS-IS and OSPF protocols.

Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.

In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying RFC-2119 significance.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on February 3, 2018.

Copyright Notice

Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.


Table of Contents

1. Introduction

BGP-LS ([RFC7752]) defines NLRI and attributes in order to carry link-state information. New BGP-LS Link-Attribute TLVs are required in order to carry the Traffic Engineering Metric Extensions defined in [RFC7810] and [RFC7471].

2. Link Attribute TLVs for TE Metric Extensions

The following new Link Attribute TLVs are defined:

   TLV Name
------------------------------------------
 Unidirectional Link Delay

 Min/Max Unidirectional Link Delay

 Unidirectional Delay Variation

 Unidirectional Packet Loss
 
 Unidirectional Residual Bandwidth

 Unidirectional Available Bandwidth

 Unidirectional Bandwidth Utilization

3. TLV Details

3.1. Unidirectional Link Delay TLV

This TLV advertises the average link delay between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|  RESERVED   |                   Delay                       |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:

Figure 1

Type: TBA

Length: 4.

3.2. Min/Max Unidirectional Link Delay TLV

This sub-TLV advertises the minimum and maximum delay values between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A| RESERVED    |                   Min Delay                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   RESERVED    |                   Max Delay                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:

Figure 2

Type: TBA

Length: 8.

3.3. Unidirectional Delay Variation TLV

This sub-TLV advertises the average link delay variation between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  RESERVED     |               Delay Variation                 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:

Figure 3

Type: TBA

Length: 4.

3.4. Unidirectional Link Loss TLV

This sub-TLV advertises the loss (as a packet percentage) between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|A|  RESERVED   |                  Link Loss                    |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:

Type: TBA

Length: 4.

3.5. Unidirectional Residual Bandwidth TLV

This sub-TLV advertises the residual bandwidth between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                          Residual Bandwidth                   |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:

Type: TBA

Length: 4.

3.6. Unidirectional Available Bandwidth TLV

This sub-TLV advertises the available bandwidth between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                      Available Bandwidth                      |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:

Figure 4

Type: TBA

Length: 4.

3.7. Unidirectional Utilized Bandwidth TLV

This sub-TLV advertises the bandwidth utilization between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].

 0                   1                   2                   3
 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|   Type                      |           Length                |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|                     Utilized Bandwidth                        |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

where:

Figure 5

Type: TBA

Length: 4.

4. Security Considerations

Procedures and protocol extensions defined in this document do not affect the BGP security model. See the 'Security Considerations' section of [RFC4271] for a discussion of BGP security. Also refer to [RFC4272] and [RFC6952] for analysis of security issues for BGP.

The TLVs introduced in this document are used to propagate IGP defined information ([RFC7810] and [RFC7471].) These TLVs represent the state and resources availability of the IGP link. The IGP instances originating these TLVs are assumed to have all the required security and authentication mechanism (as described in [RFC7810] and [RFC7471]) in order to prevent any security issue when propagating the TLVs into BGP-LS.

5. IANA Considerations

 TLV code-point                 Value
--------------------------------------------------------
 1104 (Suggested)  Unidirectional Link Delay

 1105 (Suggested)  Min/Max Unidirectional Link Delay

 1106 (Suggested)  Unidirectional Delay Variation

 1107 (Suggested)  Unidirectional Packet Loss
 
 1108 (Suggested)  Unidirectional Residual Bandwidth

 1109 (Suggested)  Unidirectional Available Bandwidth

 1110 (Suggested)  Unidirectional Bandwidth Utilization

This document requests assigning code-points from the registry "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" for the new Link Attribute TLVs deefined in the table here below:

6. Acknowledgements

TBD

7. References

7.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997.
[RFC4271] Rekhter, Y., Li, T. and S. Hares, "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006.
[RFC7471] Giacalone, S., Ward, D., Drake, J., Atlas, A. and S. Previdi, "OSPF Traffic Engineering (TE) Metric Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015.
[RFC7752] Gredler, H., Medved, J., Previdi, S., Farrel, A. and S. Ray, "North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP", RFC 7752, DOI 10.17487/RFC7752, March 2016.
[RFC7810] Previdi, S., Giacalone, S., Ward, D., Drake, J. and Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions", RFC 7810, DOI 10.17487/RFC7810, May 2016.

7.2. Informative References

[RFC4272] Murphy, S., "BGP Security Vulnerabilities Analysis", RFC 4272, DOI 10.17487/RFC4272, January 2006.
[RFC6952] Jethanandani, M., Patel, K. and L. Zheng, "Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013.

Authors' Addresses

Les Ginsberg (editor) Cisco Systems, Inc. US EMail: ginsberg@cisco.com
Stefano Previdi Cisco Systems, Inc. IT EMail: stefano@previdi.net
Qin Wu Huawei 101 Software Avenue, Yuhua District Nanjing, Jiangsu, 210012 China EMail: bill.wu@huawei.com
Hannes Gredler Individual AT EMail: hannes@gredler.at
Saikat Ray Individual US EMail: raysaikat@gmail.com
Jeff Tantsura Individual US EMail: jefftant.ietf@gmail.com
Clarence Filsfils Cisco Systems, Inc. Brussels, BE EMail: cfilsfil@cisco.com