Networking Working Group | L. Ginsberg, Ed. |
Internet-Draft | Cisco Systems, Inc. |
Intended status: Standards Track | S. Previdi |
Expires: April 24, 2019 | Q. Wu |
Huawei | |
J. Tantsura | |
Apstra, Inc. | |
C. Filsfils | |
Cisco Systems, Inc. | |
October 21, 2018 |
BGP-LS Advertisement of IGP Traffic Engineering Performance Metric Extensions
draft-ietf-idr-te-pm-bgp-14
This document defines new BGP-LS TLVs in order to carry the IGP Traffic Engineering Extensions defined in IS-IS and OSPF protocols.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 24, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
BGP-LS ([RFC7752]) defines NLRI and attributes in order to carry link-state information. New BGP-LS Link-Attribute TLVs are required in order to carry the Traffic Engineering Metric Extensions defined in [RFC7810] and [RFC7471].
The following new Link Attribute TLVs are defined:
TLV Name ------------------------------------------ Unidirectional Link Delay Min/Max Unidirectional Link Delay Unidirectional Delay Variation Unidirectional Link Loss Unidirectional Residual Bandwidth Unidirectional Available Bandwidth Unidirectional Bandwidth Utilization
This TLV advertises the average link delay between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where:
Figure 1
Type: 1114
Length: 4.
This sub-TLV advertises the minimum and maximum delay values between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Min Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RESERVED | Max Delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where:
Figure 2
Type: 1115
Length: 8.
This sub-TLV advertises the average link delay variation between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | RESERVED | Delay Variation | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where:
Figure 3
Type: 1116
Length: 4.
This sub-TLV advertises the loss (as a packet percentage) between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |A| RESERVED | Link Loss | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where:
Type:1117
Length: 4.
This sub-TLV advertises the residual bandwidth between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Residual Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where:
Type: 1118
Length: 4.
This sub-TLV advertises the available bandwidth between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Available Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where:
Figure 4
Type: 1119
Length: 4.
This sub-TLV advertises the bandwidth utilization between two directly connected IGP link-state neighbors. The semantic of the TLV is described in [RFC7810] and [RFC7471].
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Type | Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Utilized Bandwidth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ where:
Figure 5
Type: 1120
Length: 4.
Procedures and protocol extensions defined in this document do not affect the BGP security model. See the 'Security Considerations' section of [RFC4271] for a discussion of BGP security. Also refer to [RFC4272] and [RFC6952] for analysis of security issues for BGP. Security considerations for acquiring and distributing BGP-LS information are discussed in [RFC7752].
The TLVs introduced in this document are used to propagate IGP defined information ([RFC7810] and [RFC7471].) These TLVs represent the state and resources availability of the IGP link. The IGP instances originating these TLVs are assumed to have all the required security and authentication mechanism (as described in [RFC7810] and [RFC7471]) in order to prevent any security issue when propagating the TLVs into BGP-LS. The advertisement of the link attribute information defined in this document presents no additional risk beyond that associated with the existing set of link attribute information already supported in [RFC7752].
TLV code-point Value -------------------------------------------------------- 1114 Unidirectional Link Delay 1115 Min/Max Unidirectional Link Delay 1116 Unidirectional Delay Variation 1117 Unidirectional Link Loss 1118 Unidirectional Residual Bandwidth 1119 Unidirectional Available Bandwidth 1120 Unidirectional Bandwidth Utilization
This document requests assigning code-points from the registry "BGP-LS Node Descriptor, Link Descriptor, Prefix Descriptor, and Attribute TLVs" for the new Link Attribute TLVs defined in the table below:
The following people have substantially contributed to this document and should be considered co-authors:
Saikat Ray Individual Email: raysaikat@gmail.com Hannes Gredler RtBrick Inc. Email: hannes@rtbrick.com
The authors wish to acknowledge comments from Ketan Talaulikar.
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC4271] | Rekhter, Y., Li, T. and S. Hares, "A Border Gateway Protocol 4 (BGP-4)", RFC 4271, DOI 10.17487/RFC4271, January 2006. |
[RFC7471] | Giacalone, S., Ward, D., Drake, J., Atlas, A. and S. Previdi, "OSPF Traffic Engineering (TE) Metric Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015. |
[RFC7752] | Gredler, H., Medved, J., Previdi, S., Farrel, A. and S. Ray, "North-Bound Distribution of Link-State and Traffic Engineering (TE) Information Using BGP", RFC 7752, DOI 10.17487/RFC7752, March 2016. |
[RFC7810] | Previdi, S., Giacalone, S., Ward, D., Drake, J. and Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions", RFC 7810, DOI 10.17487/RFC7810, May 2016. |
[RFC8174] | Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017. |
[RFC4272] | Murphy, S., "BGP Security Vulnerabilities Analysis", RFC 4272, DOI 10.17487/RFC4272, January 2006. |
[RFC6952] | Jethanandani, M., Patel, K. and L. Zheng, "Analysis of BGP, LDP, PCEP, and MSDP Issues According to the Keying and Authentication for Routing Protocols (KARP) Design Guide", RFC 6952, DOI 10.17487/RFC6952, May 2013. |