ippm | F. Brockners |
Internet-Draft | S. Bhandari |
Intended status: Standards Track | C. Pignataro |
Expires: May 3, 2018 | Cisco |
H. Gredler | |
RtBrick Inc. | |
J. Leddy | |
Comcast | |
S. Youell | |
JPMC | |
T. Mizrahi | |
Marvell | |
D. Mozes | |
Mellanox Technologies Ltd. | |
P. Lapukhov | |
R. Chang | |
Barefoot Networks | |
D. Bernier | |
Bell Canada | |
October 30, 2017 |
Data Fields for In-situ OAM
draft-ietf-ippm-ioam-data-01
In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document discusses the data fields and associated data types for in-situ OAM. In-situ OAM data fields can be embedded into a variety of transports such as NSH, Segment Routing, Geneve, native IPv6 (via extension header), or IPv4. In-situ OAM can be used to complement OAM mechanisms based on e.g. ICMP or other types of probe packets.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on May 3, 2018.
Copyright (c) 2017 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document defines data fields for "in-situ" Operations, Administration, and Maintenance (IOAM). In-situ OAM records OAM information within the packet while the packet traverses a particular network domain. The term "in-situ" refers to the fact that the OAM data is added to the data packets rather than is being sent within packets specifically dedicated to OAM. A discussion of the motivation and requirements for in-situ OAM can be found in [I-D.brockners-inband-oam-requirements]. IOAM is to complement mechanisms such as Ping or Traceroute, or more recent active probing mechanisms as described in [I-D.lapukhov-dataplane-probe]. In terms of "active" or "passive" OAM, "in-situ" OAM can be considered a hybrid OAM type. While no extra packets are sent, IOAM adds information to the packets therefore cannot be considered passive. In terms of the classification given in [RFC7799] IOAM could be portrayed as Hybrid Type 1. "In-situ" mechanisms do not require extra packets to be sent and hence don't change the packet traffic mix within the network. IOAM mechanisms can be leveraged where mechanisms using e.g. ICMP do not apply or do not offer the desired results, such as proving that a certain traffic flow takes a pre-defined path, SLA verification for the live data traffic, detailed statistics on traffic distribution paths in networks that distribute traffic across multiple paths, or scenarios in which probe traffic is potentially handled differently from regular data traffic by the network devices.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
Abbreviations used in this document:
IOAM deployment assumes a set of constraints, requirements, and guiding principles which are described in this section.
Scope: This document defines the data fields and associated data types for in-situ OAM. The in-situ OAM data field can be transported by a variety of transport protocols, including NSH, Segment Routing, Geneve, IPv6, or IPv4. Specification details for these different transport protocols are outside the scope of this document.
Deployment domain (or scope) of in-situ OAM deployment: IOAM is a network domain focused feature, with "network domain" being a set of network devices or entities within a single administration. For example, a network domain can include an enterprise campus using physical connections between devices or an overlay network using virtual connections / tunnels for connectivity between said devices. A network domain is defined by its perimeter or edge. Designers of carrier protocols for IOAM must specify mechanisms to ensure that IOAM data stays within an IOAM domain. In addition, the operator of such a domain is expected to put provisions in place to ensure that IOAM data does not leak beyond the edge of an IOAM domain, e.g. using for example packet filtering methods. The operator should consider potential operational impact of IOAM to mechanisms such as ECMP processing (e.g. load-balancing schemes based on packet length could be impacted by the increased packet size due to IOAM), path MTU (i.e. ensure that the MTU of all links within a domain is sufficiently large to support the increased packet size due to IOAM) and ICMP message handling (i.e. in case of a native IPv6 transport, IOAM support for ICMPv6 Echo Request/Reply could desired which would translate into ICMPv6 extensions to enable IOAM data fields to be copied from an Echo Request message to an Echo Reply message).
IOAM control points: IOAM data fields are added to or removed from the live user traffic by the devices which form the edge of a domain. Devices within an IOAM domain can update and/or add IOAM data-fields. Domain edge devices can be hosts or network devices.
Traffic-sets that IOAM is applied to: IOAM can be deployed on all or only on subsets of the live user traffic. It SHOULD be possible to enable IOAM on a selected set of traffic (e.g., per interface, based on an access control list or flow specification defining a specific set of traffic, etc.) The selected set of traffic can also be all traffic.
Encapsulation independence: Data formats for IOAM SHOULD be defined in a transport-independent manner. IOAM applies to a variety of encapsulating protocols. A definition of how IOAM data fields are carried by different transport protocols is outside the scope of this document.
Layering: If several encapsulation protocols (e.g., in case of tunneling) are stacked on top of each other, IOAM data-records could be present at every layer. The behavior follows the ships-in-the-night model.
Combination with active OAM mechanisms: IOAM should be usable for active network probing, enabling for example a customized version of traceroute. Decapsulating IOAM nodes may have an ability to send the IOAM information retrieved from the packet back to the source address of the packet or to the encapsulating node.
IOAM implementation: The IOAM data-field definitions take the specifics of devices with hardware data-plane and software data-plane into account.
This section defines IOAM data types and data fields and associated data types required for IOAM. The different uses of IOAM require the definition of different types of data. The IOAM data fields for the data being carried corresponds to the three main categories of IOAM data defined in [I-D.brockners-inband-oam-requirements], which are: edge-to-edge, per node, and for selected nodes only.
Transport options for IOAM data are outside the scope of this memo, and are discussed in [I-D.brockners-inband-oam-transport]. IOAM data fields are fixed length data fields. A bit field determines the set of OAM data fields embedded in a packet. Depending on the type of the encapsulation, a counter field indicates how many data fields are included in a particular packet.
IOAM is expected to be deployed in a specific domain rather than on the overall Internet. The part of the network which employs IOAM is referred to as the "IOAM-domain". IOAM data is added to a packet upon entering the IOAM-domain and is removed from the packet when exiting the domain. Within the IOAM-domain, the IOAM data may be updated by network nodes that the packet traverses. The device which adds an IOAM data container to the packet to capture IOAM data is called the "IOAM encapsulating node", whereas the device which removes the IOAM data container is referred to as the "IOAM decapsulating node". Nodes within the domain which are aware of IOAM data and read and/or write or process the IOAM data are called "IOAM transit nodes". IOAM nodes which add or remove the IOAM data container can also update the IOAM data fields at the same time. Or in other words, IOAM encapsulation or decapsulating nodes can also serve as IOAM transit nodes at the same time. Note that not every node in an IOAM domain needs to be an IOAM transit node. For example, a Segment Routing deployment might require the segment routing path to be verified. In that case, only the SR nodes would also be IOAM transit nodes rather than all nodes.
"IOAM tracing data" is expected to be collected at every node that a packet traverses to ensure visibility into the entire path a packet takes within an IOAM domain, i.e., in a typical deployment all nodes in an in-situ OAM-domain would participate in IOAM and thus be IOAM transit nodes, IOAM encapsulating or IOAM decapsulating nodes. If not all nodes within a domain are IOAM capable, IOAM tracing information will only be collected on those nodes which are IOAM capable. Nodes which are not IOAM capable will forward the packet without any changes to the IOAM data fields. The maximum number of hops and the minimum path MTU of the IOAM domain is assumed to be known.
To optimize hardware and software implementations tracing is defined as two separate options. Any deployment MAY choose to configure and support one or both of the following options. An implementation of the transport protocol that carries these in-situ OAM data MAY choose to support only one of the options. In the event that both options are utilized at the same time, the Incremental Trace Option MUST be placed before the Pre-allocated Trace Option. Given that the operator knows which equipment is deployed in a particular IOAM, the operator will decide by means of configuration which type(s) of trace options will be enabled for a particular domain.
Every node data entry is to hold information for a particular IOAM transit node that is traversed by a packet. The in-situ OAM decapsulating node removes the IOAM data and processes and/or exports the metadata. IOAM data uses its own name-space for information such as node identifier or interface identifier. This allows for a domain-specific definition and interpretation. For example: In one case an interface-id could point to a physical interface (e.g., to understand which physical interface of an aggregated link is used when receiving or transmitting a packet) whereas in another case it could refer to a logical interface (e.g., in case of tunnels).
The following IOAM data is defined for IOAM tracing:
The "node data list" array in the packet is populated iteratively as the packet traverses the network, starting with the last entry of the array, i.e., "node data list [n]" is the first entry to be populated, "node data list [n-1]" is the second one, etc.
In-situ OAM pre-allocated trace option: Pre-allocated trace option header: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IOAM-Trace-Type |NodeLen| Flags | Octets-left | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Pre-allocated Trace Option Data MUST be 4-octet aligned: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | | | | node data list [0] | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ D | | a | node data list [1] | t | | a +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ ... ~ S +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ p | | a | node data list [n-1] | c | | e +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | | node data list [n] | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
In-situ OAM incremental trace option: In-situ OAM incremental trace option Header: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IOAM-Trace-Type |NodeLen| Flags | Max Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ IOAM Incremental Trace Option Data MUST be 4-octet aligned: +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | node data list [0] | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | node data list [1] | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ ... ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | node data list [n-1] | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | node data list [n] | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
All the data fields MUST be 4-octet aligned. The IOAM encapsulating node MUST initialize data fields that it adds to the packet to zero. If a node which is supposed to update an IOAM data field is not capable of populating the value of a field set in the IOAM-Trace-Type, the field value MUST be left unaltered except when explicitly specified in the field description below. In the description of data below if zero is valid value then a non-zero value to mean not populated is specified.
Data field and associated data type for each of the data field is shown below:
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ingress_if_id | egress_if_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp seconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp nanoseconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |O| transit delay | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | app_data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | queue depth | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Length | Schema ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | | Opaque data | ~ ~ . . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ node_id (contd) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ingress_if_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | egress_if_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | app data ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ app data (contd) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Checksum Complement | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
An entry in the "node data list" array can have different formats, following the needs of the deployment. Some deployments might only be interested in recording the node identifiers, whereas others might be interested in recording node identifier and timestamp. The section defines different types that an entry in "node data list" can take.
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ingress_if_id | egress_if_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp nanoseconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | app_data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ingress_if_id | egress_if_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp nanoseconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | app_data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp nanoseconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | app_data | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp seconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | timestamp nanoseconds | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Length | Schema Id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | | | Opaque data | ~ ~ . . . . +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Hop_Lim | node_id | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | node_id(contd) | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IOAM Proof of Transit data is to support the path or service function chain [RFC7665] verification use cases. Proof-of-transit uses methods like nested hashing or nested encryption of the IOAM data or mechanisms such as Shamir's Secret Sharing Schema (SSSS). While details on how the IOAM data for the proof of transit option is processed at IOAM encapsulating, decapsulating and transit nodes are outside the scope of the document, all of these approaches share the need to uniquely identify a packet as well as iteratively operate on a set of information that is handed from node to node. Correspondingly, two pieces of information are added as IOAM data to the packet:
IOAM proof of transit option: IOAM proof of transit option header: 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+ |IOAM POT Type|P| +-+-+-+-+-+-+-+-+ IOAM proof of transit option data MUST be 4-octet aligned: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | Random | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ P | Random(contd) | O +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ T | Cumulative | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Cumulative (contd) | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
Note: Larger or smaller sizes of "Random" and "Cumulative" data are feasible and could be required for certain deployments (e.g. in case of space constraints in the transport protocol used). Future versions of this document will address different sizes of data for "proof of transit".
The IOAM edge-to-edge option is to carry data that is added by the IOAM encapsulating node and interpreted by IOAM decapsulating node. The IOAM transit nodes MAY process the data without modifying it.
Currently only sequence numbers use the IOAM edge-to-edge option. In order to detect packet loss, packet reordering, or packet duplication in an in-situ OAM-domain, sequence numbers can be added to packets of a particular tube (see [I-D.hildebrand-spud-prototype]). Each tube leverages a dedicated namespace for its sequence numbers.
IOAM edge-to-edge option: IOAM edge-to-edge option header: 0 1 2 3 4 5 6 7 +-+-+-+-+-+-+-+-+ | IOAM-E2E-Type | +-+-+-+-+-+-+-+-+ IOAM edge-to-edge option data MUST be 4-octet aligned: 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | E2E Option data field determined by IOAM-E2E-Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IOAM nodes collect information for packets traversing a domain that supports IOAM. IOAM decapsulating nodes as well as IOAM transit nodes can choose to retrieve IOAM information from the packet, process the information further and export the information using e.g., IPFIX.
The discussion of IOAM data processing and export is left for a future version of this document.
This document requests the following IANA Actions.
IANA is requested to create a new protocol registry for "In-Situ OAM (IOAM) Protocol Parameters". This is the common registry that will include registrations for all IOAM namespaces. Each Registry, whose names are listed below:
will contain the current set of possibilities defined in this document. New registries in this name space are created via RFC Required process as per
The subsequent sub-sections detail the registries herein contained.
This registry defines code point for each bit in the 16-bit IOAM-Trace-Type field for Pre-allocated trace option and Incremental trace option defined in Section 4.1. The meaning of Bit 0 - 11 for trace type are defined in this document in Paragraph 1 of. The meaning for Bit 12 - 15 are available for assignment via RFC Required process as per [RFC8126].
This registry defines code point for each bit in the 5 bit flags for Pre-allocated trace option and Incremental trace option defined in Section 4.1. The meaning of Bit 0 - 1 for trace flags are defined in this document in Paragraph 5 of Section 4.1.1. The meaning for Bit 2 - 4 are available for assignment via RFC Required process as per [RFC8126].
This registry defines 128 code points to define IOAM POT Type for IOAM proof of transit option Section 4.2. The code point value 0 is defined in this document, 1 - 127 are available for assignment via RFC Required process as per [RFC8126].
This registry defines 256 code points to define IOAM-E2E-Type for IOAM E2E option Section 4.3. The code point value 0 is defined in this document, 1 - 255 are available for assignments via RFC Required process as per [RFC8126].
Manageability considerations will be addressed ín a later version of this document..
Security considerations will be addressed ín a later version of this document. For a discussion of security requirements of in-situ OAM, please refer to [I-D.brockners-inband-oam-requirements].
The authors would like to thank Eric Vyncke, Nalini Elkins, Srihari Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya Nadahalli, LJ Wobker, Erik Nordmark, Vengada Prasad Govindan, and Andrew Yourtchenko for the comments and advice.
This document leverages and builds on top of several concepts described in [I-D.kitamura-ipv6-record-route]. The authors would like to acknowledge the work done by the author Hiroshi Kitamura and people involved in writing it.
The authors would like to gracefully acknowledge useful review and insightful comments received from Joe Clarke, Al Morton, and Mickey Spiegel.
[IEEE1588v2] | Institute of Electrical and Electronics Engineers, "1588-2008 - IEEE Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems", IEEE Std 1588-2008, 2008. |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC8126] | Cotton, M., Leiba, B. and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017. |
[I-D.brockners-inband-oam-requirements] | Brockners, F., Bhandari, S., Dara, S., Pignataro, C., Gredler, H., Leddy, J., Youell, S., Mozes, D., Mizrahi, T., <>, P. and r. remy@barefootnetworks.com, "Requirements for In-situ OAM", Internet-Draft draft-brockners-inband-oam-requirements-03, March 2017. |
[I-D.brockners-inband-oam-transport] | Brockners, F., Bhandari, S., Govindan, V., Pignataro, C., Gredler, H., Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov, P. and R. Chang, "Encapsulations for In-situ OAM Data", Internet-Draft draft-brockners-inband-oam-transport-05, July 2017. |
[I-D.hildebrand-spud-prototype] | Hildebrand, J. and B. Trammell, "Substrate Protocol for User Datagrams (SPUD) Prototype", Internet-Draft draft-hildebrand-spud-prototype-03, March 2015. |
[I-D.ietf-nvo3-geneve] | Gross, J., Ganga, I. and T. Sridhar, "Geneve: Generic Network Virtualization Encapsulation", Internet-Draft draft-ietf-nvo3-geneve-05, September 2017. |
[I-D.ietf-nvo3-vxlan-gpe] | Maino, F., Kreeger, L. and U. Elzur, "Generic Protocol Extension for VXLAN", Internet-Draft draft-ietf-nvo3-vxlan-gpe-04, April 2017. |
[I-D.ietf-sfc-nsh] | Quinn, P., Elzur, U. and C. Pignataro, "Network Service Header (NSH)", Internet-Draft draft-ietf-sfc-nsh-27, October 2017. |
[I-D.kitamura-ipv6-record-route] | Kitamura, H., "Record Route for IPv6 (PR6) Hop-by-Hop Option Extension", Internet-Draft draft-kitamura-ipv6-record-route-00, November 2000. |
[I-D.lapukhov-dataplane-probe] | Lapukhov, P. and r. remy@barefootnetworks.com, "Data-plane probe for in-band telemetry collection", Internet-Draft draft-lapukhov-dataplane-probe-01, June 2016. |
[RFC7665] | Halpern, J. and C. Pignataro, "Service Function Chaining (SFC) Architecture", RFC 7665, DOI 10.17487/RFC7665, October 2015. |
[RFC7799] | Morton, A., "Active and Passive Metrics and Methods (with Hybrid Types In-Between)", RFC 7799, DOI 10.17487/RFC7799, May 2016. |
[RFC7820] | Mizrahi, T., "UDP Checksum Complement in the One-Way Active Measurement Protocol (OWAMP) and Two-Way Active Measurement Protocol (TWAMP)", RFC 7820, DOI 10.17487/RFC7820, March 2016. |
[RFC7821] | Mizrahi, T., "UDP Checksum Complement in the Network Time Protocol (NTP)", RFC 7821, DOI 10.17487/RFC7821, March 2016. |