Network Working Group G. Mirsky
Internet-Draft X. Min
Updates: 8762 (if approved) ZTE Corp.
Intended status: Standards Track H. Nydell
Expires: January 9, 2021 Accedian Networks
R. Foote
Nokia
A. Masputra
Apple Inc.
E. Ruffini
OutSys
July 8, 2020

Simple Two-way Active Measurement Protocol Optional Extensions
draft-ietf-ippm-stamp-option-tlv-07

Abstract

This document describes optional extensions to Simple Two-way Active Measurement Protocol (STAMP) that enable measurement of performance metrics, in addition to ones supported by the STAMP base specification. The document also defines a STAMP Test Session Identifier and thus updates RFC 8762.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on January 9, 2021.

Copyright Notice

Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.


Table of Contents

1. Introduction

Simple Two-way Active Measurement Protocol (STAMP) [RFC8762] supports the use of optional extensions that use Type-Length-Value (TLV) encoding. Such extensions enhance the STAMP base functions, such as measurement of one-way and round-trip delay, latency, packet loss, packet duplication, and out-of-order delivery of test packets. This specification defines optional STAMP extensions, their formats, and the theory of operation. Also, a STAMP Test Session Identifier is defined as an update of the base STAMP specification [RFC8762].

2. Conventions Used in This Document

2.1. Acronyms

BDS BeiDou Navigation Satellite System

BITS Building Integrated Timing Supply

CoS Class of Service

DSCP Differentiated Services Code Point

ECN Explicit Congestion Notification

GLONASS Global Orbiting Navigation Satellite System

GPS Global Positioning System [GPS]

HMAC Hashed Message Authentication Code

LORAN-C Long Range Navigation System Version C

MBZ Must Be Zero

NTP Network Time Protocol [RFC5905]

PMF Performance Measurement Function

PTP Precision Time Protocol [IEEE.1588.2008]

TLV Type-Length-Value

SSID STAMP Session Identifier

SSU Synchronization Supply Unit

STAMP Simple Two-way Active Measurement Protocol

2.2. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.

3. STAMP Test Session Identifier

The STAMP Session-Sender transmits test packets to the STAMP Session-Reflector. The STAMP Session-Reflector receives the Session-Sender's packet and acts according to the configuration and optional control information communicated in the Session-Sender's test packet. STAMP defines two different test packet formats, one for packets transmitted by the STAMP Session-Sender and one for packets transmitted by the STAMP Session-Reflector. STAMP supports two modes: unauthenticated and authenticated. Unauthenticated STAMP test packets are compatible on the wire with unauthenticated TWAMP-Test [RFC5357] packets.

By default, STAMP uses symmetrical packets, i.e., the size of the packet transmitted by the Session-Reflector equals the size of the packet received by the Session-Reflector.

    
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Sequence Number                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Timestamp                            |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Error Estimate        |             SSID              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                                                               |
   |                         MBZ (28 octets)                       |
   |                                                               |
   |                                                               |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                            TLVs                               ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 1: An example of an extended STAMP Session-Sender test packet format in unauthenticated mode

    
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                        Sequence Number                        |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                          Timestamp                            |
 |                                                               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |         Error Estimate        |           SSID                |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                          Receive Timestamp                    |
 |                                                               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                 Session-Sender Sequence Number                |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                  Session-Sender Timestamp                     |
 |                                                               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 | Session-Sender Error Estimate |           MBZ                 |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |Ses-Sender TTL |                   MBZ                         |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~                            TLVs                               ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 2: An example of an extended STAMP Session-Reflector test packet format in unauthenticated mode

A STAMP Session is identified by the 4-tuple (source and destination IP addresses, source and destination UDP port numbers). A STAMP Session-Sender MAY generate a locally unique STAMP Session Identifier (SSID). SSID is a two-octet-long non-zero unsigned integer. A Session-Sender MAY use SSID to identify a STAMP test session. If SSID is used, it MUST be present in each test packet of the given test session. In the unauthenticated mode, SSID is located as displayed in Figure 1. Figure 2.

A STAMP Session-Reflector that does not support this specification will return the zeroed SSID field in the reflected STAMP test packet. The Session-Sender MAY stop the session if it receives a zeroed SSID field. An implementation of a Session-Sender MUST support control of its behavior in such a scenario. If the test session is not stopped, the Session-Sender, can, for example, send a base STAMP packet [RFC8762].

    
  0                   1                   2                   3
  0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                      Sequence Number                          |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                                                               |
 |                      MBZ (12 octets)                          |
 |                                                               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                        Timestamp                              |
 |                                                               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |        Error Estimate         |            SSID               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 ~                                                               ~
 |                         MBZ (68 octets)                       |
 ~                                                               ~
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
 |                                                               |
 |                       HMAC (16 octets)                        |
 |                                                               |
 |                                                               |
 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
  

Figure 3: Base STAMP Session-Sender test packet format in authenticated mode

    
   0                   1                   2                   3
   0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Sequence Number                        |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        MBZ (12 octets)                        |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Timestamp                            |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |         Error Estimate        |            SSID               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        MBZ (4 octets)                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        Receive Timestamp                      |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        MBZ (8 octets)                         |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Session-Sender Sequence Number                |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        MBZ (12 octets)                        |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                 Session-Sender Timestamp                      |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   | Session-Sender Error Estimate |                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+                               +
   |                        MBZ (6 octets)                         |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |Ses-Sender TTL |                                               |
   +-+-+-+-+-+-+-+-+                                               +
   |                                                               |
   |                        MBZ (15 octets)                        |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                        HMAC (16 octets)                       |
   |                                                               |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

  

Figure 4: Base STAMP Session-Reflector test packet format in authenticated mode

Location of the SSID field in the authenticated mode is shown in Figure 3 and Figure 4.

4. TLV Extensions to STAMP

    
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |STAMP TLV Flags|     Type      |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                            Value                              ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 5: TLV Format in a STAMP Extended Packet

The Type-Length-Value (TLV) encoding scheme provides a flexible extension mechanism for optional informational elements. TLV is an optional field in the STAMP test packet. Multiple TLVs MAY be placed in a STAMP test packet. A TLV MAY be enclosed in a TLV. TLVs have a one-octet-long STAMP TLV Flags field, one-octet-long Type field, and two-octet-long Length field that is equal to the length of the Value field in octets. If a Type value for TLV or sub-TLV is in the range for Vendor Private Use, the Length MUST be at least 4, and the first four octets MUST be that vendor's the Structure of Management Information (SMI) Private Enterprise Code, as recorded in IANA's SMI Private Enterprise Codes sub-registry, in network octet order. The rest of the Value field is private to the vendor. The following sections describe the use of TLVs for STAMP that extend STAMP capability beyond its base specification.

    
    0 1 2 3 4 5 6 7
   +-+-+-+-+-+-+-+-+
   |U|L|A|R|R|R|R|R|
   +-+-+-+-+-+-+-+-+

Figure 6: STAMP TLV Flags Format

The format of the STAMP TLV Flags displayed in Figure 6 and the location of flags is according to Section 5.2.

A STAMP node, whether Session-Sender or Session-Reflector, receiving a test packet MUST determine whether the packet is a base STAMP packet or includes one or more TLVs. The node MUST compare the value in the Length field of the UDP header and the length of the base STAMP test packet in the mode, unauthenticated or authenticated based on the configuration of the particular STAMP test session. If the difference between the two values is larger than the length of the UDP header, then the test packet includes one or more STAMP TLVs that immediately follow the base STAMP test packet. A Session-Reflector that does not support STAMP extensions is not expected to compare the value in the Length field of the UDP header and the length of the STAMP base packet. Hence the Session-Reflector will transmit the base STAMP packet. It is the local policy on the Session-Sender (similar to the handling of SSID == 0 scenario described in Section 3) that will control the sender's behavior.

A system that has received a STAMP test packet with extension TLVs MUST validate each TLV:

Detected error events MUST be logged. Note that rate of logging MUST be controlled.

4.1. Extra Padding TLV

    
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |STAMP TLV Flags|Extra Pad Type |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   ~                         Extra Padding                         ~
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 7: Extra Padding TLV

The Extra Padding TLV is similar to the Packet Padding field in a TWAMP-Test packet [RFC5357]. The use of the Extra Padding TLV is RECOMMENDED to perform a STAMP test using test packets of larger size than the base STAMP packet [RFC8762]. The length of the base STAMP packet is 44 octets in the unauthenticated mode or 112 octets in the authenticated mode. The Extra Padding TLV MAY be present more than one time in an extended STAMP test packet.

4.2. Location TLV

    
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |STAMP TLV Flags| Location Type |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                          Source MAC                           |
   +                               +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                               |           Reserved            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                    Destination IP Address                     ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   ~                       Source IP Address                       ~
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |        Destination Port       |          Source Port          |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 8: Session-Reflector Location TLV

STAMP Session-Senders MAY include the Location TLV to request information from the Session-Reflector. The Session-Sender SHOULD NOT fill any information fields except for STAMP TLV Flags, Type, and Length. The Session-Reflector MUST validate the Length value against the address family of the transport encapsulating the STAMP test packet. If the Length field's value is invalid, the Session-Reflector MUST zero all fields and MUST NOT return any information to the Session-Sender. The Session-Reflector MUST ignore all other fields of the received Location TLV.

The Location TLV MAY be used to determine the last-hop IP addresses, ports, and last-hop MAC address for  STAMP packets. The MAC address can indicate a path switch on the last hop. The IP addresses and UDP ports will indicate if there is a NAT router on the path. It allows the Session-Sender to identify the IP address of the Session-Reflector behind the NAT, and detect changes in the NAT mapping that could cause sending the STAMP packets to the wrong Session-Reflector.

4.3. Timestamp Information TLV

    
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |STAMP TLV Flags|Times Info Type|           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |  Sync. Src In | Timestamp In  | Sync. Src Out | Timestamp Out |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 9: Timestamp Information TLV

The STAMP Session-Sender MAY include the Timestamp Information TLV to request information from the Session-Reflector. The Session-Sender SHOULD NOT fill any information fields except for STAMP TLV Flags, Type, and Length. The Session-Reflector MUST validate the Length value of the TLV. If the value of the Length field is invalid, the Session-Reflector MUST zero all fields and MUST NOT return any information to the Session-Sender.

4.4. Class of Service TLV

    
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |STAMP TLV Flags|    CoS Type   |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |   DSCP1   |   DSCP2   |ECN|            Reserved               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 10: Class of Service TLV

The STAMP Session-Sender MAY include a Class of Service (CoS) TLV in the STAMP test packet. The format of the CoS TLV is presented in Figure 10.

A STAMP Session-Reflector that receives a test packet with the CoS TLV MUST include the CoS TLV in the reflected test packet. Also, the Session-Reflector MUST copy the value of the DSCP and ECN fields of the IP header of the received STAMP test packet into the DSCP2 field in the reflected test packet. Finally, the Session-Reflector MUST set the DSCP field's value in the IP header of the reflected test packet equal to the value of the DSCP1 field of the received test packet. Upon receiving the reflected packet, the Session-Sender will save the DSCP and ECN values for analysis of the CoS in the reverse direction.

Re-mapping of CoS can be used to provide multiple services (e,g., 2G, 3G, LTE in mobile backhaul networks) over the same network.  But if it is misconfigured, then it is often difficult to diagnose the root cause of excessive packet drops of higher-level service while packet drops for lower service packets are at a normal level.  Using a CoS TLV in STAMP testing helps to troubleshoot the existing problem and also verify whether DiffServ policies are processing CoS as required by the configuration.

4.5. Direct Measurement TLV

    
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 
   |STAMP TLV Flags|  Direct Type  |           Length              |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |              Session-Sender Tx counter  (S_TxC)               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Session-Reflector Rx counter  (R_RxC)             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |             Session-Reflector Tx counter  (R_TxC)             |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 11: Direct Measurement TLV

The Direct Measurement TLV enables collection of the number of in-profile packets that had been transmitted and received by the Session-Sender and Session-Reflector, respectively. The definition of "in-profile packet" is outside the scope of this document and is left to the test operators to determine.

A Session-Sender MAY include the Direct Measurement TLV in a STAMP test packet. The Session-Sender MUST zero the R_RxC and R_TxC fields before the transmission of the STAMP test packet. If the received STAMP test packet includes the Direct Measurement TLV, the Session-Reflector MUST include it in the reflected test packet. The Session-Reflector MUST copy the value from the S_TxC field of the received test packet into the same field of the reflected packet before its transmission.

4.6. Access Report TLV

A STAMP Session-Sender MAY include an Access Report TLV (Figure 12) to indicate changes to the access network status to the Session-Reflector. The definition of an access network is outside the scope of this document.

    
       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags|Acc Report Type|           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |   ID  |  Resv |  Return Code  |          Reserved             |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 12: Access Report TLV

The STAMP Session-Sender that includes the Access Report TLV sets the value of the Access ID field according to the type of access network it reports on. Also, the Session-Sender sets the value of the Return Code field to reflect the operational state of the access network. The mechanism to determine the state of the access network is outside the scope of this specification. A STAMP Session-Reflector that received the test packet with the Access Report TLV MUST include the Access Report TLV in the reflected test packet. The Session- Reflector MUST set the value of the Access ID and Return Code fields equal to the values of the corresponding fields from the test packet it has received.

The Session-Sender MUST also arm a retransmission timer after sending a test packet that includes the Access Report TLV. This timer MUST be disarmed upon reception of the reflected STAMP test packet that includes the Access Report TLV. In the event the timer expires before such a packet is received, the Session-Sender MUST retransmit the STAMP test packet that contains the Access Report TLV. This retransmission SHOULD be repeated up to four times before the procedure is aborted. Setting the value for the retransmission timer is based on local policies and network environment. The default value of the retransmission timer for the Access Report TLV SHOULD be three seconds. An implementation MUST provide control of the retransmission timer value and the number of retransmissions.

The Access Report TLV is used by the Performance Measurement Function (PMF) components of the Access Steering, Switching and Splitting feature for 5G networks [TS23501]. The PMF component in the User Equipment acts as the STAMP Session-Sender, and the PMF component in the User Plane Function acts as the STAMP Session-Reflector.

4.7. Follow-up Telemetry TLV

A Session-Reflector might be able to put in the Timestamp field only an "SW Local" (see Table 7) timestamp. But the hosting system might provide a timestamp closer to the start of the actual packet transmission even though it is not possible to deliver the information to the Session-Sender in time for the packet itself. This timestamp might nevertheless be important for the Session-Sender, as it improves the accuracy of measuring network delay by minimizing the impact of egress queuing delays on the measurement.

A STAMP Session-Sender MAY include the Follow-up Telemetry TLV to request information from the Session-Reflector. The Session-Sender MUST set the Follow-up Telemetry Type and Length fields to their appropriate values. The Sequence Number and Timestamp fields MUST be zeroed on transmission by the Session-Sender and ignored by the Session-Reflector upon receipt of the STAMP test packet that includes the Follow-up Telemetry TLV. The Session-Reflector MUST validate the Length value of the STAMP test packet. If the value of the Length field is invalid, the Session-Reflector MUST zero the Sequence Number and Timestamp fields and set the L flag in the STAMP TLV Flags field in the reflected packet. If the Session-Reflector is in stateless mode (defined in Section 4.2 [RFC8762]), it MUST zero the Sequence Number and Timestamp fields.

    
       0                   1                   2                   3
       0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |STAMP TLV Flags| Follow-up Type|           Length              |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                        Sequence Number                        |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |                      Follow-up Timestamp                      |
      |                                                               |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
      |  Timestamp M  |                     Reserved                  |
      +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 13: Follow-up Telemetry TLV

4.8. HMAC TLV

The STAMP authenticated mode protects the integrity of data collected in the STAMP base packet. STAMP extensions are designed to provide valuable information about the condition of a network, and protecting the integrity of that data is also essential. The keyed Hashed Message Authentication Code (HMAC) TLV MUST be included in a STAMP test packet in the authenticated mode, excluding when the only TLV present is Extra Padding TLV. The HMAC TLV MUST follow all TLVs included in a STAMP test packet, except for the Extra Padding TLV. The HMAC TLV MAY be used to protect the integrity of STAMP extensions in STAMP unauthenticated mode.

    
    0                   1                   2                   3
    0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |STAMP TLV Flags|   HMAC Type   |             Length            |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
   |                                                               |
   |                              HMAC                             |
   |                                                               |
   |                                                               |
   +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+

Figure 14: HMAC TLV

As defined in [RFC8762], STAMP uses HMAC-SHA-256 truncated to 128 bits ([RFC4868]). All considerations regarding using the key and key distribution and management listed in Section 4.4 of [RFC8762] are fully applicable to the use of the HMAC TLV. HMAC is calculated as defined in [RFC2104] over text as the concatenation of all preceding TLVs. The digest then MUST be truncated to 128 bits and written into the HMAC field. In the authenticated mode, HMAC MUST be verified before using any data in the included STAMP TLVs. If HMAC verification by the Session-Reflector fails, then the Session-Reflector MUST stop processing the received extended STAMP test packet. The Session-Reflector MUST copy the remainder of the extended STAMP test packet into the reflected packet. The Session-Reflector MUST set the A flag in the copy of the HMAC TLV in the reflected packet to 1 before transmitting the reflected test packet. Also, both the Session-Sender and Session-Reflector SHOULD log the notification that HMAC verification of STAMP TLVs failed.

5. IANA Considerations

5.1. STAMP TLV Registry

IANA is requested to create the STAMP TLV Type registry. All code points in the range 1 through 175 in this registry shall be allocated according to the "IETF Review" procedure as specified in [RFC8126]. Code points in the range 176 through 239 in this registry shall be allocated according to the "First Come First Served" procedure as specified in [RFC8126]. The remaining code points are allocated according to Table 1:

STAMP TLV Type Registry
Value Description Reference
0 Reserved This document
1- 175 Unassigned IETF Review
176 - 239 Unassigned First Come First Served
240 - 251 Experimental This document
252 - 254 Private Use This document
255 Reserved This document

This document defines the following new values in the STAMP Extension TLV range of the STAMP TLV Type registry:

STAMP Types
Value Description Reference
TBA1 Extra Padding This document
TBA2 Location This document
TBA3 Timestamp Information This document
TBA4 Class of Service This document
TBA5 Direct Measurement This document
TBA6 Access Report This document
TBA7 Follow-up Telemetry This document
TBA8 HMAC This document

5.2. STAMP TLV Flags Sub-registry

IANA is requested to create the STAMP TLV Flags sub-registry as part of the STAMP TLV Type registry. The registration procedure is "IETF Review" [RFC8126]. Flags are 8 bits. This document defines the following bit positions in the STAMP TLV Flags sub-registry:

STAMP TLV Flags
Bit position Symbol Description Reference
0 U Unrecognized TLV This document
1 L Malformed TLV This document
2 A Authentication failed This document

5.3. Synchronization Source Sub-registry

IANA is requested to create the Synchronization Source sub-registry as part of the STAMP TLV Type registry. All code points in the range 1 through 127 in this registry shall be allocated according to the "IETF Review" procedure as specified in [RFC8126]. Code points in the range 128 through 239 in this registry shall be allocated according to the "First Come First Served" procedure as specified in [RFC8126]. Remaining code points are allocated according to Table 4:

Synchronization Source Sub-registry
Value Description Reference
0 Reserved This document
1- 127 Unassigned IETF Review
128 - 239 Unassigned First Come First Served
240 - 249 Experimental This document
250 - 254 Private Use This document
255 Reserved This document

This document defines the following new values in the Synchronization Source sub-registry:

Synchronization Sources
Value Description Reference
1 NTP This document
2 PTP This document
3 SSU/BITS This document
4 GPS/GLONASS/LORAN-C/BDS This document
5 Local free-running This document

5.4. Timestamping Method Sub-registry

IANA is requested to create the Timestamping Method sub-registry as part of the STAMP TLV Type registry. All code points in the range 1 through 127 in this registry shall be allocated according to the "IETF Review" procedure as specified in [RFC8126]. Code points in the range 128 through 239 in this registry shall be allocated according to the "First Come First Served" procedure as specified in [RFC8126]. Remaining code points are allocated according to Table 6:

Timestamping Method Sub-registry
Value Description Reference
0 Reserved This document
1- 127 Unassigned IETF Review
128 - 239 Unassigned First Come First Served
240 - 249 Experimental This document
250 - 254 Private Use This document
255 Reserved This document

This document defines the following new values in the Timestamping Methods sub-registry:

Timestamping Methods
Value Description Reference
1 HW Assist This document
2 SW local This document
3 Control plane This document

5.5. Return Code Sub-registry

IANA is requested to create the Return Code sub-registry as part of the STAMP TLV Type registry. All code points in the range 1 through 127 in this registry shall be allocated according to the "IETF Review" procedure as specified in [RFC8126]. Code points in the range 128 through 239 in this registry shall be allocated according to the "First Come First Served" procedure as specified in [RFC8126]. Remaining code points are allocated according to Table 8:

Return Code Sub-registry
Value Description Reference
0 Reserved This document
1- 127 Unassigned IETF Review
128 - 239 Unassigned First Come First Served
240 - 249 Experimental This document
250 - 254 Private Use This document
255 Reserved This document

This document defines the following new values in the Return Code sub-registry:

Return Codes
Value Description Reference
1 Network available This document
2 Network unavailable This document

6. Security Considerations

This document defines extensions to STAMP [RFC8762] and inherits all the security considerations applicable to the base protocol. Additionally, the HMAC TLV is defined in this document to protect the integrity of optional STAMP extensions. The use of HMAC TLV is discussed in detail in Section 4.8.

7. Acknowledgments

Authors much appreciate the thorough review and thoughtful comments received from Tianran Zhou, Rakesh Gandhi, Yuezhong Song and Yali Wang. The authors express their gratitude to Al Morton for his comments and the most valuable suggestions. The authors greatly appreciate comments and thoughtful suggestions received from Martin Duke.

8. Contributors

    
   Guo Jun
   ZTE Corporation
   68# Zijinghua Road
   Nanjing, Jiangsu  210012
   P.R.China

   Phone: +86 18105183663
   Email: guo.jun2@zte.com.cn

The following people contributed text to this document:

9. References

9.1. Normative References

[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997.
[RFC5357] Hedayat, K., Krzanowski, R., Morton, A., Yum, K. and J. Babiarz, "A Two-Way Active Measurement Protocol (TWAMP)", RFC 5357, DOI 10.17487/RFC5357, October 2008.
[RFC8126] Cotton, M., Leiba, B. and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017.
[RFC8762] Mirsky, G., Jun, G., Nydell, H. and R. Foote, "Simple Two-Way Active Measurement Protocol", RFC 8762, DOI 10.17487/RFC8762, March 2020.
[TS23501] 3GPP (3rd Generation Partnership Project), "Technical Specification Group Services and System Aspects; System Architecture for the 5G System; Stage 2 (Release 16)", 3GPP TS23501, 2019.

9.2. Informative References

[GPS] "Global Positioning System (GPS) Standard Positioning Service (SPS) Performance Standard", GPS SPS 5th Edition, April 2020.
[IEEE.1588.2008] "Standard for a Precision Clock Synchronization Protocol for Networked Measurement and Control Systems", IEEE Standard 1588, March 2008.
[RFC2104] Krawczyk, H., Bellare, M. and R. Canetti, "HMAC: Keyed-Hashing for Message Authentication", RFC 2104, DOI 10.17487/RFC2104, February 1997.
[RFC4868] Kelly, S. and S. Frankel, "Using HMAC-SHA-256, HMAC-SHA-384, and HMAC-SHA-512 with IPsec", RFC 4868, DOI 10.17487/RFC4868, May 2007.
[RFC5905] Mills, D., Martin, J., Burbank, J. and W. Kasch, "Network Time Protocol Version 4: Protocol and Algorithms Specification", RFC 5905, DOI 10.17487/RFC5905, June 2010.

Authors' Addresses

Greg Mirsky ZTE Corp. EMail: gregimirsky@gmail.com
Xiao Min ZTE Corp. EMail: xiao.min2@zte.com.cn
Henrik Nydell Accedian Networks EMail: hnydell@accedian.com
Richard Foote Nokia EMail: footer.foote@nokia.com
Adi Masputra Apple Inc. One Apple Park Way Cupertino, CA 95014 USA EMail: adi@apple.com
Ernesto Ruffini OutSys via Caracciolo, 65 Milano, 20155 Italy EMail: eruffini@outsys.org