LAMPS Working Group | H. Brockhaus |
Internet-Draft | Siemens |
Updates: 4210, 6712 (if approved) | August 7, 2020 |
Intended status: Standards Track | |
Expires: February 8, 2021 |
CMP Updates
draft-ietf-lamps-cmp-updates-03
This document contains a set of updates to the base syntax and transport of Certificate Management Protocol (CMP) version 2. This document updates RFC 4210 and RFC 6712.
Specifically, the CMP services updated in this document comprise the enabling of using EnvelopedData instead of EncryptedValue, the definition of extended key usages to identify certificates of CMP endpoints on certification and registration authorities, and adds an HTTP URI discovery mechanism and extend the URI structure.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on February 8, 2021.
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
While using CMP in industrial and IoT environments and developing the Lightweight CMP Profile some limitations were identified in the original CMP specification. This document updates RFC 4210 and RFC 6712 to overcome these limitations.
In general, this document aims to improve the crypto agility of CMP to be flexible to react on future advances in cryptography.
This document also introduces new extended key usages to identify CMP endpoints on registration and certification authorities.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
In this document, these words will appear with that interpretation only when in ALL CAPS. Lower case uses of these words are not to be interpreted as carrying significance described in RFC 2119.
Technical terminology is used in conformance with RFC 4210, RFC 4211, and RFC 5280. The following key words are used:
The following subsection describes feature updates to RFC 4210. They are always related to the base specification. Hence references to the original sections in RFC 4210 are used whenever possible.
Insert this section at the end of the current Section 1.
1.1 Changes since RFC 4210
The following updates are made in [thisRFC]:
< TBD: The specification of algorithm profiles seed to be moved to a separate document. >
The following subsection describes new extended key usages for different CMP server types specified in RFC 4210.
Insert this section at the end of the current Section 4.
4.5 Extended Key Usage
The Extended Key Usage (EKU) extension indicates the purposes for which the certified public key may be used. It therefore restricts the use of a certificate to specific applications.
A CA may want to delegate parts of their duties to other PKI management entities. The mechanism to prove this delegation explained in this section offers zero-touch means to check the authorization of such delegation. Such delegation could also be expressed by other means, e.g., explicit configuration.
To offer automatic validation means for the delegation of a role by a CA, the certificates used by PKI management entities for CMP message protection or signed data for central key generation MUST be issued by the delegating CA and MUST contain the respective EKUs. This proves the authorization of this entity by the delegating CA to act as the PKI management entity as described below.
The ASN.1 to define these EKUs is:
id-kp OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) kp(3) } id-kp-cmcCA OBJECT IDENTIFIER ::= { id-kp 27 } id-kp-cmcRA OBJECT IDENTIFIER ::= { id-kp 28 } id-kp-cmKGA OBJECT IDENTIFIER ::= { id-kp 32 }
Note: RFC 6402 section 2.10 specifies OIDs for a CMC CA and a CMC RA. As the functionality of a CA and RA is not specific to whether use CMC or CMP as certificate management protocol, the same OIDs SHALL be used for a CMP CA and a CMP RA.
< TBD: The Description of the OIDs for id-kp-cmcCA and id-kp-cmcRA needs to be extended to avoid confusion as they currently only refer to CMC. >
The description of the PKI management entity for each of the EKUs is as follows:
Note: In device PKIs, especially those issuing IDevID certificates, CA may have very long validity (including the GeneralizedTime value 99991231235959Z to indicate a not well-defined expiration date as specified in IEEE 802.1AR Section 8.5 and RFC 5280 Section 4.1.2.5). Such validity periods SHOULD NOT be used for protection of CMP messages. Certificates for delegated CMP message protection (CMP CA, CMP RA, CMP KGA) MUST NOT use indefinite expiration date.
Section 5.1.3.4 of RFC 4210 describes the nested message. This document opens the usage of nested messages also for batch transport of PKI messages between different PKI management entities.
Replace the text of the section with the following text.
In cases where an end entity sends a protected PKI message to an RA, the RA MAY forward that message to a CA, adding its own protection (which MAY be a MAC or a signature, depending on the information and certificates shared between the RA and the CA). There are different use cases for such multi protected messages.
These use cases are accomplished by nesting the messages sent by the PKI entity within a new PKI message. The structure used is as follows.
NestedMessageContent ::= PKIMessages
(The use of PKIMessages, a SEQUENCE OF PKIMessage, lets the RA batch the requests of several EEs in a single new message.)
Section 5.2.2 of RFC 4210 describes the usage of EncryptedValue to transport encrypted data. This document extends the encryption of data to preferably use EnvelopedData.
Replace the text of the section with the following text.
Where encrypted data (restricted, in this specification, to be either private keys, certificates, or passwords) are sent in PKI messages, the EncryptedKey data structure is used.
EncryptedKey ::= CHOICE { encryptedValue EncryptedValue, -- deprecated envelopedData [0] EnvelopedData }
See CRMF for EncryptedKey and EncryptedValue syntax and for EnvelopedData syntax see CMS. Using the EncryptedKey data structure, the choice to either use EncryptedValue (for backward compatibility only) or EnvelopedData is offered. The use of the EncryptedValue structure has been deprecated in favor of the EnvelopedData structure. Therefore, it is recommended to use EnvelopedData.
Note: As we reuse the EncryptedKey structure defined in CRMF, the update is backward compatible. Using the new syntax with the untagged default choice EncryptedValue is bitwise compatible with the old syntax.
The EncryptedKey data structure is used in CMP to either transport a private key, certificate or revocation passphrase in encrypted form.
EnvelopedData is used as follows:
Note: To ensure explicit control of the encoding of the private key according to the specific algorithm the new key pair in an asymmetric key package structure as specified in [RFC5958].
The content of the EnvelopedData structure, as specified in CMS section 6, MUST be encrypted using a newly generated symmetric content-encryption key. This content-encryption key MUST be securely provided to the recipient using one of three key management techniques.
The choice of the key management technique to be used by the sender depends on the credential available for the recipient:
Section 5.3.4 of RFC 4210 describes the Certification Response. This document updates the syntax by using the parent structure EncryptedKey instead of EncryptedValue as described in Section 2.1 above.
Replace the ASN.1 syntax of CertifiedKeyPair and CertOrEncCert with the following text.
CertifiedKeyPair ::= SEQUENCE { certOrEncCert CertOrEncCert, privateKey [0] EncryptedKey OPTIONAL, -- see [CRMF] for comment on encoding publicationInfo [1] PKIPublicationInfo OPTIONAL } CertOrEncCert ::= CHOICE { certificate [0] Certificate, encryptedCert [1] EncryptedKey }
Add the following paragraphs to the end of the section.
The use of EncryptedKey is described in section 5.2.2.
Section 5.3.19.9 of RFC 4210 describes the provisioning of a revocation passphrase for authenticating a later revocation request. This document updates the handling by using the parent structure EncryptedKey instead of EncryptedValue to transport this information as described in Section 2.1 above.
Replace the text of the section with the following text.
This MAY be used by the EE to send a passphrase to a CA/RA for the purpose of authenticating a later revocation request (in the case that the appropriate signing private key is no longer available to authenticate the request). See Appendix B for further details on the use of this mechanism.
GenMsg: {id-it 12}, EncryptedKey GenRep: {id-it 12}, < absent >
The use of EncryptedKey is described in section 5.2.2.
Section 5.3.22 of RFC 4210 describes when and how polling messages are used. This document adds the polling mechanism also to outstanding p10cr transactions.
Replace all paragraphs in front of the state machine diagram with the following text.
This pair of messages is intended to handle scenarios in which the client needs to poll the server in order to determine the status of an outstanding ir, cr, p10cr, or kur transaction (i.e., when the "waiting" PKIStatus has been received).
PollReqContent ::= SEQUENCE OF SEQUENCE { certReqId INTEGER } PollRepContent ::= SEQUENCE OF SEQUENCE { certReqId INTEGER, checkAfter INTEGER, -- time in seconds reason PKIFreeText OPTIONAL }
The following clauses describe when polling messages are used, and how they are used. It is assumed that multiple certConf messages can be sent during transactions. There will be one sent in response to each ip, cp, or kup that contains a CertStatus for an issued certificate.
Note: A p10cr message contains exactly one CertificationRequestInfo data structure as specified in PKCS#10 but no certificate request number. Therefore, the certReqId MUST be set to 0 in all following messages of this transaction.
Section 9 of RFC 4210 contains the IANA Considerations of that document. As this document defines a new and updates two existing Extended Key Usages, the IANA Considerations need to be updated accordingly.
Add the following paragraphs between the first and second paragraph of the section.
Within the SMI-numbers registry "SMI Security for PKIX Extended Key Purpose Identifiers (1.3.6.1.5.5.7.3)" (see https://www.iana.org/assignments/smi-numbers/smi-numbers.xhtml#smi-numbers-1.3.6.1.5.5.7.3) as defined in RFC 7299 three changes have been performed.
Two existing entries have been updated to also point to this document:
Decimal | Description | References |
---|---|---|
27 | id-kp-cmcCA | [RFC6402][thisRFC] |
28 | id-kp-cmcRA | [RFC6402][thisRFC] |
One new entry has been added:
Decimal | Description | References |
---|---|---|
32 | id-kp-cmKGA | [thisRFC] |
Appendix B of RFC 4210 describes the usage of the revocation passphrase. As this document updates RFC 4210 to utilize the parent structure EncryptedKey instead of EncryptedValue as described in Section 2.1 above, the description is updated accordingly.
Replace the first bullet point of this section with the following text.
Replace the third bullet point of this section with the following text.
Appendix C of RFC 4210 provides clarifications to the request message behavior. As this document updates RFC 4210 to utilize the parent structure EncryptedKey instead of EncryptedValue as described in Section 2.1 above, the description is updated accordingly.
Replace the note coming after the ASN.1 syntax of POPOPrivKey of this section with the following text.
-- ********** -- * the type of "thisMessage" is given as BIT STRING in RFC 4211 -- * [RFC4211]; it should be "EncryptedKey" (in accordance with -- * Section 5.2.2 of this specification). Therefore, this document -- * makes the behavioral clarification of specifying that the -- * contents of "thisMessage" MUST be encoded either as -- * "EnvelopedData" or "EncryptedValue" (only for backward -- * compatibility) and then wrapped in a BIT STRING. This allows -- * the necessary conveyance and protection of the private key -- * while maintaining bits-on-the-wire compatibility with RFC 4211 -- * [RFC4211]. -- **********
Appendix D.4 of RFC 4210 provides the initial registration/certification scheme. This scheme shall continue to use EncryptedValue for backward compatibility reasons.
Replace the comment after the privateKey field of crc[1].certifiedKeyPair in the syntax of the Initialization Response message with the following text.
-- see Appendix C, Request Message Behavioral Clarifications -- for backward compatibility reasons, use EncryptedValue
The following subsection describes feature updates to RFC 6712. They are always related to the base specification. Hence references to the original sections in RFC 6712 are used whenever possible.
Insert this section at the end of the current Section 1.
1.1 Changes since RFC 6712
The following updates are made in draft-ietf-lamps-cmp-updates:
Section 3.6 of RFC 6712 specifies the used HTTP URIs. This document adds a discovery mechanism and extends the URIs.
Replace the text of the section with the following text.
Each PKI management entity supporting HTTP or HTTPS transport MUST support the use of the path-prefix of '/.well-known/' as defined in RFC 5785 and the registered name of 'cmp' to ease interworking in a multi-vendor environment.
The CMP client MUST be configured with sufficient information to form the CMP server URI. This MUST be at least the authority portion of the URI, e.g., 'www.example.com:80', or the full operational path of the PKI management entity. Additional arbitrary label, e.g., 'profileLabel' and 'operationLabel', MAY be configured as a separate component or as part of the full operational path to provide further information. The 'profileLabel' MAY support addressing multiple CAs or certificate profiles and the 'operationLabel' may support addressing PKI management operation specific endpoints. A valid full operational path can look like this:
The discovery of supported endpoints as defined above will provide the information to the EE, how to contact the PKI management entity and, if available, how to request enrolment for a specific certificate profile or revoke a certificate at a specific CA.
Querying the PKI management entity, the EE will get a list of potential endpoints supported by the PKI management entity.
Performing a GET on "/.well-known/cmp" to the default port MUST return a set of links to endpoints available from the server. In addition to the link also the expected format of the data object is provided as content type (ct).
< TBD: It needs to be discussed if the discovery should be performed using GET on "/.well-known/cmp" or GET on "/.well-known" only. >
The following provides an illustrative example for a PKI management entity supporting different PKI management operations for different certificate profiles and CAs.
Detailed message description:
REQ: GET /.well-known/cmp RES: Content </cmp/certprofile1/operation1>;ct=pkixcmp </cmp/certprofile2/operation1>;ct=pkixcmp </cmp/certprofile3/operation1>;ct=pkixcmp </cmp/certprofile1/operation2>;ct=pkixcmp </cmp/certprofile2/operation2>;ct=pkixcmp </cmp/certprofile3/operation2>;ct=pkixcmp </cmp/ca1/operation3>;ct=pkixcmp </cmp/ca2/operation3>;ct=pkixcmp
This document contains an update to the IANA Considerations section to be added to [RFC4210].
< TBD: The existing description and information of id-kp-cmcRA and id-kp-cmcCA need to be updated to reflect their extended usage. >
No changes are made to the existing security considerations of RFC 4210 and RFC 6712.
Special thank goes to Jim Schaad for his guidance and the inspiration on structuring and writing this document I got from [RFC6402] that updates CMC. Special thank also goes also to Russ Housley and Tomas Gustavsson for reviewing and providing valuable suggestions on the approvement of this document.
I also like to thank all reviewers of this document for their valuable feedback.
[I-D.ietf-lamps-lightweight-cmp-profile] | Brockhaus, H., Fries, S. and D. Oheimb, "Lightweight CMP Profile", Internet-Draft draft-ietf-lamps-lightweight-cmp-profile-02, July 2020. |
[IEEE802.1AR] | IEEE, "802.1AR Secure Device Identifier", June 2018. |
This section contains the updated ASN.1 module for [RFC4210]. This module replaces the module in Appendix F of that document. Although a 2002 ASN.1 module is provided, this remains the normative module as per the policy of the PKIX working group.
PKIXCMP {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-cmp2000(16)} DEFINITIONS EXPLICIT TAGS ::= BEGIN -- EXPORTS ALL -- IMPORTS Certificate, CertificateList, Extensions, AlgorithmIdentifier, UTF8String, id-kp -- if required; otherwise, comment out FROM PKIX1Explicit88 {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-explicit-88(1)} GeneralName, KeyIdentifier FROM PKIX1Implicit88 {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-pkix1-implicit-88(2)} CertTemplate, PKIPublicationInfo, EncryptedKey, EncryptedValue, CertId, CertReqMessages FROM PKIXCRMF-2005 {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-crmf2005(36)} -- The import of EncryptedKey is added due to the updates made -- in this document -- see also the behavioral clarifications to CRMF codified in -- Appendix C of this specification CertificationRequest FROM PKCS-10 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-10(10) modules(1) pkcs-10(1)} -- (specified in RFC 2986 with 1993 ASN.1 syntax and IMPLICIT -- tags). Alternatively, implementers may directly include -- the [PKCS10] syntax in this module localKeyId FROM PKCS-9 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) modules(0) pkcs-9(1)} -- The import of localKeyId is added due to the updates made in -- this document EnvelopedData, SignedData FROM CryptographicMessageSyntax2004 { iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) cms-2004(24) } -- The import of EnvelopedData and SignedData is added due to -- the updates made in this document ; -- the rest of the module contains locally-defined OIDs and -- constructs CMPCertificate ::= CHOICE { x509v3PKCert Certificate } -- This syntax, while bits-on-the-wire compatible with the -- standard X.509 definition of "Certificate", allows the -- possibility of future certificate types (such as X.509 -- attribute certificates, WAP WTLS certificates, or other kinds -- of certificates) within this certificate management protocol, -- should a need ever arise to support such generality. Those -- implementations that do not foresee a need to ever support -- other certificate types MAY, if they wish, comment out the -- above structure and "un-comment" the following one prior to -- compiling this ASN.1 module. (Note that interoperability -- with implementations that don't do this will be unaffected by -- this change.) -- CMPCertificate ::= Certificate PKIMessage ::= SEQUENCE { header PKIHeader, body PKIBody, protection [0] PKIProtection OPTIONAL, extraCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate OPTIONAL } PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage PKIHeader ::= SEQUENCE { pvno INTEGER { cmp1999(1), cmp2000(2) }, sender GeneralName, -- identifies the sender recipient GeneralName, -- identifies the intended recipient messageTime [0] GeneralizedTime OPTIONAL, -- time of production of this message (used when sender -- believes that the transport will be "suitable"; i.e., -- that the time will still be meaningful upon receipt) protectionAlg [1] AlgorithmIdentifier OPTIONAL, -- algorithm used for calculation of protection bits senderKID [2] KeyIdentifier OPTIONAL, recipKID [3] KeyIdentifier OPTIONAL, -- to identify specific keys used for protection transactionID [4] OCTET STRING OPTIONAL, -- identifies the transaction; i.e., this will be the same in -- corresponding request, response, certConf, and PKIConf -- messages senderNonce [5] OCTET STRING OPTIONAL, recipNonce [6] OCTET STRING OPTIONAL, -- nonces used to provide replay protection, senderNonce -- is inserted by the creator of this message; recipNonce -- is a nonce previously inserted in a related message by -- the intended recipient of this message freeText [7] PKIFreeText OPTIONAL, -- this may be used to indicate context-specific instructions -- (this field is intended for human consumption) generalInfo [8] SEQUENCE SIZE (1..MAX) OF InfoTypeAndValue OPTIONAL -- this may be used to convey context-specific information -- (this field not primarily intended for human consumption) } PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String -- text encoded as UTF-8 String [RFC3629] (note: each -- UTF8String MAY include an [RFC3066] language tag -- to indicate the language of the contained text -- see [RFC2482] for details) PKIBody ::= CHOICE { -- message-specific body elements ir [0] CertReqMessages, --Initialization Request ip [1] CertRepMessage, --Initialization Response cr [2] CertReqMessages, --Certification Request cp [3] CertRepMessage, --Certification Response p10cr [4] CertificationRequest, --imported from [PKCS10] popdecc [5] POPODecKeyChallContent, --pop Challenge popdecr [6] POPODecKeyRespContent, --pop Response kur [7] CertReqMessages, --Key Update Request kup [8] CertRepMessage, --Key Update Response krr [9] CertReqMessages, --Key Recovery Request krp [10] KeyRecRepContent, --Key Recovery Response rr [11] RevReqContent, --Revocation Request rp [12] RevRepContent, --Revocation Response ccr [13] CertReqMessages, --Cross-Cert. Request ccp [14] CertRepMessage, --Cross-Cert. Response ckuann [15] CAKeyUpdAnnContent, --CA Key Update Ann. cann [16] CertAnnContent, --Certificate Ann. rann [17] RevAnnContent, --Revocation Ann. crlann [18] CRLAnnContent, --CRL Announcement pkiconf [19] PKIConfirmContent, --Confirmation nested [20] NestedMessageContent, --Nested Message genm [21] GenMsgContent, --General Message genp [22] GenRepContent, --General Response error [23] ErrorMsgContent, --Error Message certConf [24] CertConfirmContent, --Certificate confirm pollReq [25] PollReqContent, --Polling request pollRep [26] PollRepContent --Polling response } PKIProtection ::= BIT STRING ProtectedPart ::= SEQUENCE { header PKIHeader, body PKIBody } id-PasswordBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 13} PBMParameter ::= SEQUENCE { salt OCTET STRING, -- note: implementations MAY wish to limit acceptable sizes -- of this string to values appropriate for their environment -- in order to reduce the risk of denial-of-service attacks owf AlgorithmIdentifier, -- AlgId for a One-Way Function (SHA-1 recommended) iterationCount INTEGER, -- number of times the OWF is applied -- note: implementations MAY wish to limit acceptable sizes -- of this integer to values appropriate for their environment -- in order to reduce the risk of denial-of-service attacks mac AlgorithmIdentifier -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11], } -- or HMAC [RFC2104, RFC2202]) id-DHBasedMac OBJECT IDENTIFIER ::= {1 2 840 113533 7 66 30} DHBMParameter ::= SEQUENCE { owf AlgorithmIdentifier, -- AlgId for a One-Way Function (SHA-1 recommended) mac AlgorithmIdentifier -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11], } -- or HMAC [RFC2104, RFC2202]) NestedMessageContent ::= PKIMessages PKIStatus ::= INTEGER { accepted (0), -- you got exactly what you asked for grantedWithMods (1), -- you got something like what you asked for; the -- requester is responsible for ascertaining the differences rejection (2), -- you don't get it, more information elsewhere in the message waiting (3), -- the request body part has not yet been processed; expect to -- hear more later (note: proper handling of this status -- response MAY use the polling req/rep PKIMessages specified -- in Section 5.3.22; alternatively, polling in the underlying -- transport layer MAY have some utility in this regard) revocationWarning (4), -- this message contains a warning that a revocation is -- imminent revocationNotification (5), -- notification that a revocation has occurred keyUpdateWarning (6) -- update already done for the oldCertId specified in -- CertReqMsg } PKIFailureInfo ::= BIT STRING { -- since we can fail in more than one way! -- More codes may be added in the future if/when required. badAlg (0), -- unrecognized or unsupported Algorithm Identifier badMessageCheck (1), -- integrity check failed (e.g., signature did not verify) badRequest (2), -- transaction not permitted or supported badTime (3), -- messageTime was not sufficiently close to the system time, -- as defined by local policy badCertId (4), -- no certificate could be found matching the provided criteria badDataFormat (5), -- the data submitted has the wrong format wrongAuthority (6), -- the authority indicated in the request is different from the -- one creating the response token incorrectData (7), -- the requester's data is incorrect (for notary services) missingTimeStamp (8), -- when the timestamp is missing but should be there -- (by policy) badPOP (9), -- the proof-of-possession failed certRevoked (10), -- the certificate has already been revoked certConfirmed (11), -- the certificate has already been confirmed wrongIntegrity (12), -- invalid integrity, password based instead of signature or -- vice versa badRecipientNonce (13), -- invalid recipient nonce, either missing or wrong value timeNotAvailable (14), -- the TSA's time source is not available unacceptedPolicy (15), -- the requested TSA policy is not supported by the TSA. unacceptedExtension (16), -- the requested extension is not supported by the TSA. addInfoNotAvailable (17), -- the additional information requested could not be -- understood or is not available badSenderNonce (18), -- invalid sender nonce, either missing or wrong size badCertTemplate (19), -- invalid cert. template or missing mandatory information signerNotTrusted (20), -- signer of the message unknown or not trusted transactionIdInUse (21), -- the transaction identifier is already in use unsupportedVersion (22), -- the version of the message is not supported notAuthorized (23), -- the sender was not authorized to make the preceding -- request or perform the preceding action systemUnavail (24), -- the request cannot be handled due to system unavailability systemFailure (25), -- the request cannot be handled due to system failure duplicateCertReq (26) -- certificate cannot be issued because a duplicate -- certificate already exists } PKIStatusInfo ::= SEQUENCE { status PKIStatus, statusString PKIFreeText OPTIONAL, failInfo PKIFailureInfo OPTIONAL } OOBCert ::= CMPCertificate OOBCertHash ::= SEQUENCE { hashAlg [0] AlgorithmIdentifier OPTIONAL, certId [1] CertId OPTIONAL, hashVal BIT STRING -- hashVal is calculated over the DER encoding of the -- self-signed certificate with the identifier certID. } POPODecKeyChallContent ::= SEQUENCE OF Challenge -- One Challenge per encryption key certification request (in the -- same order as these requests appear in CertReqMessages). Challenge ::= SEQUENCE { owf AlgorithmIdentifier OPTIONAL, -- MUST be present in the first Challenge; MAY be omitted in -- any subsequent Challenge in POPODecKeyChallContent (if -- omitted, then the owf used in the immediately preceding -- Challenge is to be used). witness OCTET STRING, -- the result of applying the one-way function (owf) to a -- randomly-generated INTEGER, A. [Note that a different -- INTEGER MUST be used for each Challenge.] challenge OCTET STRING -- the encryption (under the public key for which the cert. -- request is being made) of Rand, where Rand is specified as -- Rand ::= SEQUENCE { -- int INTEGER, -- - the randomly-generated INTEGER A (above) -- sender GeneralName -- - the sender's name (as included in PKIHeader) -- } } POPODecKeyRespContent ::= SEQUENCE OF INTEGER -- One INTEGER per encryption key certification request (in the -- same order as these requests appear in CertReqMessages). The -- retrieved INTEGER A (above) is returned to the sender of the -- corresponding Challenge. CertRepMessage ::= SEQUENCE { caPubs [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate OPTIONAL, response SEQUENCE OF CertResponse } CertResponse ::= SEQUENCE { certReqId INTEGER, -- to match this response with corresponding request (a value -- of -1 is to be used if certReqId is not specified in the -- corresponding request) status PKIStatusInfo, certifiedKeyPair CertifiedKeyPair OPTIONAL, rspInfo OCTET STRING OPTIONAL -- analogous to the id-regInfo-utf8Pairs string defined -- for regInfo in CertReqMsg [CRMF] } CertifiedKeyPair ::= SEQUENCE { certOrEncCert CertOrEncCert, privateKey [0] EncryptedKey OPTIONAL, -- see [CRMF] for comment on encoding -- Changed from Encrypted Value to EncryptedKey as a CHOICE of -- EncryptedValue and EnvelopedData due to the changes made in -- this document -- Using the choice EncryptedValue is bit-compatible to the -- syntax without this change publicationInfo [1] PKIPublicationInfo OPTIONAL } CertOrEncCert ::= CHOICE { certificate [0] CMPCertificate, encryptedCert [1] EncryptedKey -- Changed from Encrypted Value to EncryptedKey as a CHOICE of -- EncryptedValue and EnvelopedData due to the changes made in -- this document -- Using the choice EncryptedValue is bit-compatible to the -- syntax without this change } KeyRecRepContent ::= SEQUENCE { status PKIStatusInfo, newSigCert [0] CMPCertificate OPTIONAL, caCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate OPTIONAL, keyPairHist [2] SEQUENCE SIZE (1..MAX) OF CertifiedKeyPair OPTIONAL } RevReqContent ::= SEQUENCE OF RevDetails RevDetails ::= SEQUENCE { certDetails CertTemplate, -- allows requester to specify as much as they can about -- the cert. for which revocation is requested -- (e.g., for cases in which serialNumber is not available) crlEntryDetails Extensions OPTIONAL -- requested crlEntryExtensions } RevRepContent ::= SEQUENCE { status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo, -- in same order as was sent in RevReqContent revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL, -- IDs for which revocation was requested -- (same order as status) crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL -- the resulting CRLs (there may be more than one) } CAKeyUpdAnnContent ::= SEQUENCE { oldWithNew CMPCertificate, -- old pub signed with new priv newWithOld CMPCertificate, -- new pub signed with old priv newWithNew CMPCertificate -- new pub signed with new priv } CertAnnContent ::= CMPCertificate RevAnnContent ::= SEQUENCE { status PKIStatus, certId CertId, willBeRevokedAt GeneralizedTime, badSinceDate GeneralizedTime, crlDetails Extensions OPTIONAL -- extra CRL details (e.g., crl number, reason, location, etc.) } CRLAnnContent ::= SEQUENCE OF CertificateList CertConfirmContent ::= SEQUENCE OF CertStatus CertStatus ::= SEQUENCE { certHash OCTET STRING, -- the hash of the certificate, using the same hash algorithm -- as is used to create and verify the certificate signature certReqId INTEGER, -- to match this confirmation with the corresponding req/rep statusInfo PKIStatusInfo OPTIONAL } PKIConfirmContent ::= NULL InfoTypeAndValue ::= SEQUENCE { infoType OBJECT IDENTIFIER, infoValue ANY DEFINED BY infoType OPTIONAL } -- Example InfoTypeAndValue contents include, but are not limited -- to, the following (un-comment in this ASN.1 module and use as -- appropriate for a given environment): -- -- id-it-caProtEncCert OBJECT IDENTIFIER ::= {id-it 1} -- CAProtEncCertValue ::= CMPCertificate -- id-it-signKeyPairTypes OBJECT IDENTIFIER ::= {id-it 2} -- SignKeyPairTypesValue ::= SEQUENCE OF AlgorithmIdentifier -- id-it-encKeyPairTypes OBJECT IDENTIFIER ::= {id-it 3} -- EncKeyPairTypesValue ::= SEQUENCE OF AlgorithmIdentifier -- id-it-preferredSymmAlg OBJECT IDENTIFIER ::= {id-it 4} -- PreferredSymmAlgValue ::= AlgorithmIdentifier -- id-it-caKeyUpdateInfo OBJECT IDENTIFIER ::= {id-it 5} -- CAKeyUpdateInfoValue ::= CAKeyUpdAnnContent -- id-it-currentCRL OBJECT IDENTIFIER ::= {id-it 6} -- CurrentCRLValue ::= CertificateList -- id-it-unsupportedOIDs OBJECT IDENTIFIER ::= {id-it 7} -- UnsupportedOIDsValue ::= SEQUENCE OF OBJECT IDENTIFIER -- id-it-keyPairParamReq OBJECT IDENTIFIER ::= {id-it 10} -- KeyPairParamReqValue ::= OBJECT IDENTIFIER -- id-it-keyPairParamRep OBJECT IDENTIFIER ::= {id-it 11} -- KeyPairParamRepValue ::= AlgorithmIdentifer -- id-it-revPassphrase OBJECT IDENTIFIER ::= {id-it 12} -- RevPassphraseValue ::= EncryptedKey -- -- Changed from Encrypted Value to EncryptedKey as a CHOICE -- -- of EncryptedValue and EnvelopedData due to the changes -- -- made in this document -- -- Using the choice EncryptedValue is bit-compatible to the -- -- syntax without this change -- id-it-implicitConfirm OBJECT IDENTIFIER ::= {id-it 13} -- ImplicitConfirmValue ::= NULL -- id-it-confirmWaitTime OBJECT IDENTIFIER ::= {id-it 14} -- ConfirmWaitTimeValue ::= GeneralizedTime -- id-it-origPKIMessage OBJECT IDENTIFIER ::= {id-it 15} -- OrigPKIMessageValue ::= PKIMessages -- id-it-suppLangTags OBJECT IDENTIFIER ::= {id-it 16} -- SuppLangTagsValue ::= SEQUENCE OF UTF8String -- -- where -- -- id-pkix OBJECT IDENTIFIER ::= { -- iso(1) identified-organization(3) -- dod(6) internet(1) security(5) mechanisms(5) pkix(7)} -- and -- id-it OBJECT IDENTIFIER ::= {id-pkix 4} -- -- -- This construct MAY also be used to define new PKIX Certificate -- Management Protocol request and response messages, or general- -- purpose (e.g., announcement) messages for future needs or for -- specific environments. GenMsgContent ::= SEQUENCE OF InfoTypeAndValue -- May be sent by EE, RA, or CA (depending on message content). -- The OPTIONAL infoValue parameter of InfoTypeAndValue will -- typically be omitted for some of the examples given above. -- The receiver is free to ignore any contained OBJ. IDs that it -- does not recognize. If sent from EE to CA, the empty set -- indicates that the CA may send -- any/all information that it wishes. GenRepContent ::= SEQUENCE OF InfoTypeAndValue -- Receiver MAY ignore any contained OIDs that it does not -- recognize. ErrorMsgContent ::= SEQUENCE { pKIStatusInfo PKIStatusInfo, errorCode INTEGER OPTIONAL, -- implementation-specific error codes errorDetails PKIFreeText OPTIONAL -- implementation-specific error details } PollReqContent ::= SEQUENCE OF SEQUENCE { certReqId INTEGER } PollRepContent ::= SEQUENCE OF SEQUENCE { certReqId INTEGER, checkAfter INTEGER, -- time in seconds reason PKIFreeText OPTIONAL } -- -- Extended Key Usage extension for PKI entities used in CMP -- operations, added due to the changes made in this document -- The EKUs for the CA and RA are reused from CMC as defined in -- [RFC6402] -- -- id-kp-cmcCA OBJECT IDENTIFIER ::= { id-kp 27 } -- id-kp-cmcRA OBJECT IDENTIFIER ::= { id-kp 28 } id-kp-cmKGA OBJECT IDENTIFIER ::= { id-kp 32 } END -- of CMP module
This section contains the updated 2002 ASN.1 module for [RFC5912]. This module replaces the module in Section 9 of that document. The module contains those changes that were done to update to 2002 ASN.1 standard done in [RFC5912] as well as changes made for this document.
< TBD: Dose this document then also updates [RFC5912]? >
< In case the working group sees a need to provide this ASN.1 module in 2015 syntax, please let me know. >
PKIXCMP-2009 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-cmp2000-02(50) } DEFINITIONS EXPLICIT TAGS ::= BEGIN IMPORTS AttributeSet{}, Extensions{}, EXTENSION, ATTRIBUTE FROM PKIX-CommonTypes-2009 {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkixCommon-02(57)} AlgorithmIdentifier{}, SIGNATURE-ALGORITHM, ALGORITHM, DIGEST-ALGORITHM, MAC-ALGORITHM FROM AlgorithmInformation-2009 {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-algorithmInformation-02(58)} Certificate, CertificateList, id-kp FROM PKIX1Explicit-2009 {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-explicit-02(51)} GeneralName, KeyIdentifier FROM PKIX1Implicit-2009 {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkix1-implicit-02(59)} CertTemplate, PKIPublicationInfo, EncryptedKey, EncryptedValue, CertId,CertReqMessages FROM PKIXCRMF-2009 { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-crmf2005-02(55) } -- see also the behavioral clarifications to CRMF codified in -- Appendix C of this specification CertificationRequest FROM PKCS-10 {iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) id-mod(0) id-mod-pkcs10-2009(69)} -- (specified in RFC 2986 with 1993 ASN.1 syntax and IMPLICIT -- tags). Alternatively, implementers may directly include -- the [PKCS10] syntax in this module localKeyId FROM PKCS-9 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) modules(0) pkcs-9(1)} -- The import of localKeyId is added due to the updates made in -- this document EnvelopedData, SignedData FROM CryptographicMessageSyntax-2009 {iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-9(9) smime(16) modules(0) id-mod-cms-2004-02(41)} -- The import of EnvelopedData and SignedData is added due to -- the updates made in this document ; -- the rest of the module contains locally defined OIDs and -- constructs CMPCertificate ::= CHOICE { x509v3PKCert Certificate, ... } -- This syntax, while bits-on-the-wire compatible with the -- standard X.509 definition of "Certificate", allows the -- possibility of future certificate types (such as X.509 -- attribute certificates, WAP WTLS certificates, or other kinds -- of certificates) within this certificate management protocol, -- should a need ever arise to support such generality. Those -- implementations that do not foresee a need to ever support -- other certificate types MAY, if they wish, comment out the -- above structure and "uncomment" the following one prior to -- compiling this ASN.1 module. (Note that interoperability -- with implementations that don't do this will be unaffected by -- this change.) -- CMPCertificate ::= Certificate PKIMessage ::= SEQUENCE { header PKIHeader, body PKIBody, protection [0] PKIProtection OPTIONAL, extraCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate OPTIONAL } PKIMessages ::= SEQUENCE SIZE (1..MAX) OF PKIMessage PKIHeader ::= SEQUENCE { pvno INTEGER { cmp1999(1), cmp2000(2) }, sender GeneralName, -- identifies the sender recipient GeneralName, -- identifies the intended recipient messageTime [0] GeneralizedTime OPTIONAL, -- time of production of this message (used when sender -- believes that the transport will be "suitable"; i.e., -- that the time will still be meaningful upon receipt) protectionAlg [1] AlgorithmIdentifier{ALGORITHM, {...}} OPTIONAL, -- algorithm used for calculation of protection bits senderKID [2] KeyIdentifier OPTIONAL, recipKID [3] KeyIdentifier OPTIONAL, -- to identify specific keys used for protection transactionID [4] OCTET STRING OPTIONAL, -- identifies the transaction; i.e., this will be the same in -- corresponding request, response, certConf, and PKIConf -- messages senderNonce [5] OCTET STRING OPTIONAL, recipNonce [6] OCTET STRING OPTIONAL, -- nonces used to provide replay protection, senderNonce -- is inserted by the creator of this message; recipNonce -- is a nonce previously inserted in a related message by -- the intended recipient of this message freeText [7] PKIFreeText OPTIONAL, -- this may be used to indicate context-specific instructions -- (this field is intended for human consumption) generalInfo [8] SEQUENCE SIZE (1..MAX) OF InfoTypeAndValue OPTIONAL -- this may be used to convey context-specific information -- (this field not primarily intended for human consumption) } PKIFreeText ::= SEQUENCE SIZE (1..MAX) OF UTF8String -- text encoded as UTF-8 String [RFC3629] (note: each -- UTF8String MAY include an [RFC3066] language tag -- to indicate the language of the contained text; -- see [RFC2482] for details) PKIBody ::= CHOICE { -- message-specific body elements ir [0] CertReqMessages, --Initialization Request ip [1] CertRepMessage, --Initialization Response cr [2] CertReqMessages, --Certification Request cp [3] CertRepMessage, --Certification Response p10cr [4] CertificationRequest, --imported from [PKCS10] popdecc [5] POPODecKeyChallContent, --pop Challenge popdecr [6] POPODecKeyRespContent, --pop Response kur [7] CertReqMessages, --Key Update Request kup [8] CertRepMessage, --Key Update Response krr [9] CertReqMessages, --Key Recovery Request krp [10] KeyRecRepContent, --Key Recovery Response rr [11] RevReqContent, --Revocation Request rp [12] RevRepContent, --Revocation Response ccr [13] CertReqMessages, --Cross-Cert. Request ccp [14] CertRepMessage, --Cross-Cert. Response ckuann [15] CAKeyUpdAnnContent, --CA Key Update Ann. cann [16] CertAnnContent, --Certificate Ann. rann [17] RevAnnContent, --Revocation Ann. crlann [18] CRLAnnContent, --CRL Announcement pkiconf [19] PKIConfirmContent, --Confirmation nested [20] NestedMessageContent, --Nested Message genm [21] GenMsgContent, --General Message genp [22] GenRepContent, --General Response error [23] ErrorMsgContent, --Error Message certConf [24] CertConfirmContent, --Certificate confirm pollReq [25] PollReqContent, --Polling request pollRep [26] PollRepContent --Polling response } PKIProtection ::= BIT STRING ProtectedPart ::= SEQUENCE { header PKIHeader, body PKIBody } id-PasswordBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2) usa(840) nt(113533) nsn(7) algorithms(66) 13 } PBMParameter ::= SEQUENCE { salt OCTET STRING, -- note: implementations MAY wish to limit acceptable sizes -- of this string to values appropriate for their environment -- in order to reduce the risk of denial-of-service attacks owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}}, -- AlgId for a One-Way Function (SHA-1 recommended) iterationCount INTEGER, -- number of times the OWF is applied -- note: implementations MAY wish to limit acceptable sizes -- of this integer to values appropriate for their environment -- in order to reduce the risk of denial-of-service attacks mac AlgorithmIdentifier{MAC-ALGORITHM, {...}} -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11], -- or HMAC [RFC2104, RFC2202]) } id-DHBasedMac OBJECT IDENTIFIER ::= { iso(1) member-body(2) usa(840) nt(113533) nsn(7) algorithms(66) 30 } DHBMParameter ::= SEQUENCE { owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}}, -- AlgId for a One-Way Function (SHA-1 recommended) mac AlgorithmIdentifier{MAC-ALGORITHM, {...}} -- the MAC AlgId (e.g., DES-MAC, Triple-DES-MAC [PKCS11], -- or HMAC [RFC2104, RFC2202]) } PKIStatus ::= INTEGER { accepted (0), -- you got exactly what you asked for grantedWithMods (1), -- you got something like what you asked for; the -- requester is responsible for ascertaining the differences rejection (2), -- you don't get it, more information elsewhere in the message waiting (3), -- the request body part has not yet been processed; expect to -- hear more later (note: proper handling of this status -- response MAY use the polling req/rep PKIMessages specified -- in Section 5.3.22; alternatively, polling in the underlying -- transport layer MAY have some utility in this regard) revocationWarning (4), -- this message contains a warning that a revocation is -- imminent revocationNotification (5), -- notification that a revocation has occurred keyUpdateWarning (6) -- update already done for the oldCertId specified in -- CertReqMsg } PKIFailureInfo ::= BIT STRING { -- since we can fail in more than one way! -- More codes may be added in the future if/when required. badAlg (0), -- unrecognized or unsupported Algorithm Identifier badMessageCheck (1), -- integrity check failed (e.g., signature did not verify) badRequest (2), -- transaction not permitted or supported badTime (3), -- messageTime was not sufficiently close to the system time, -- as defined by local policy badCertId (4), -- no certificate could be found matching the provided criteria badDataFormat (5), -- the data submitted has the wrong format wrongAuthority (6), -- the authority indicated in the request is different from the -- one creating the response token incorrectData (7), -- the requester's data is incorrect (for notary services) missingTimeStamp (8), -- when the timestamp is missing but should be there -- (by policy) badPOP (9), -- the proof-of-possession failed certRevoked (10), -- the certificate has already been revoked certConfirmed (11), -- the certificate has already been confirmed wrongIntegrity (12), -- invalid integrity, password based instead of signature or -- vice versa badRecipientNonce (13), -- invalid recipient nonce, either missing or wrong value timeNotAvailable (14), -- the TSA's time source is not available unacceptedPolicy (15), -- the requested TSA policy is not supported by the TSA unacceptedExtension (16), -- the requested extension is not supported by the TSA addInfoNotAvailable (17), -- the additional information requested could not be -- understood or is not available badSenderNonce (18), -- invalid sender nonce, either missing or wrong size badCertTemplate (19), -- invalid cert. template or missing mandatory information signerNotTrusted (20), -- signer of the message unknown or not trusted transactionIdInUse (21), -- the transaction identifier is already in use unsupportedVersion (22), -- the version of the message is not supported notAuthorized (23), -- the sender was not authorized to make the preceding -- request or perform the preceding action systemUnavail (24), -- the request cannot be handled due to system unavailability systemFailure (25), -- the request cannot be handled due to system failure duplicateCertReq (26) -- certificate cannot be issued because a duplicate -- certificate already exists } PKIStatusInfo ::= SEQUENCE { status PKIStatus, statusString PKIFreeText OPTIONAL, failInfo PKIFailureInfo OPTIONAL } OOBCert ::= CMPCertificate OOBCertHash ::= SEQUENCE { hashAlg [0] AlgorithmIdentifier{DIGEST-ALGORITHM, {...}} OPTIONAL, certId [1] CertId OPTIONAL, hashVal BIT STRING -- hashVal is calculated over the DER encoding of the -- self-signed certificate with the identifier certID. } POPODecKeyChallContent ::= SEQUENCE OF Challenge -- One Challenge per encryption key certification request (in the -- same order as these requests appear in CertReqMessages). Challenge ::= SEQUENCE { owf AlgorithmIdentifier{DIGEST-ALGORITHM, {...}} OPTIONAL, -- MUST be present in the first Challenge; MAY be omitted in -- any subsequent Challenge in POPODecKeyChallContent (if -- omitted, then the owf used in the immediately preceding -- Challenge is to be used). witness OCTET STRING, -- the result of applying the one-way function (owf) to a -- randomly-generated INTEGER, A. [Note that a different -- INTEGER MUST be used for each Challenge.] challenge OCTET STRING -- the encryption (under the public key for which the cert. -- request is being made) of Rand, where Rand is specified as -- Rand ::= SEQUENCE { -- int INTEGER, -- - the randomly-generated INTEGER A (above) -- sender GeneralName -- - the sender's name (as included in PKIHeader) -- } } POPODecKeyRespContent ::= SEQUENCE OF INTEGER -- One INTEGER per encryption key certification request (in the -- same order as these requests appear in CertReqMessages). The -- retrieved INTEGER A (above) is returned to the sender of the -- corresponding Challenge. CertRepMessage ::= SEQUENCE { caPubs [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate OPTIONAL, response SEQUENCE OF CertResponse } CertResponse ::= SEQUENCE { certReqId INTEGER, -- to match this response with the corresponding request (a value -- of -1 is to be used if certReqId is not specified in the -- corresponding request) status PKIStatusInfo, certifiedKeyPair CertifiedKeyPair OPTIONAL, rspInfo OCTET STRING OPTIONAL -- analogous to the id-regInfo-utf8Pairs string defined -- for regInfo in CertReqMsg [RFC4211] } CertifiedKeyPair ::= SEQUENCE { certOrEncCert CertOrEncCert, privateKey [0] EncryptedKey OPTIONAL, -- see [RFC4211] for comment on encoding -- Changed from Encrypted Value to EncryptedKey as a CHOICE of -- EncryptedValue and EnvelopedData due to the changes made in -- this document -- Using the choice EncryptedValue is bit-compatible to the -- syntax without this change publicationInfo [1] PKIPublicationInfo OPTIONAL } CertOrEncCert ::= CHOICE { certificate [0] CMPCertificate, encryptedCert [1] EncryptedKey -- Changed from Encrypted Value to EncryptedKey as a CHOICE of -- EncryptedValue and EnvelopedData due to the changes made in -- this document -- Using the choice EncryptedValue is bit-compatible to the -- syntax without this change } KeyRecRepContent ::= SEQUENCE { status PKIStatusInfo, newSigCert [0] CMPCertificate OPTIONAL, caCerts [1] SEQUENCE SIZE (1..MAX) OF CMPCertificate OPTIONAL, keyPairHist [2] SEQUENCE SIZE (1..MAX) OF CertifiedKeyPair OPTIONAL } RevReqContent ::= SEQUENCE OF RevDetails RevDetails ::= SEQUENCE { certDetails CertTemplate, -- allows requester to specify as much as they can about -- the cert. for which revocation is requested -- (e.g., for cases in which serialNumber is not available) crlEntryDetails Extensions{{...}} OPTIONAL -- requested crlEntryExtensions } RevRepContent ::= SEQUENCE { status SEQUENCE SIZE (1..MAX) OF PKIStatusInfo, -- in same order as was sent in RevReqContent revCerts [0] SEQUENCE SIZE (1..MAX) OF CertId OPTIONAL, -- IDs for which revocation was requested -- (same order as status) crls [1] SEQUENCE SIZE (1..MAX) OF CertificateList OPTIONAL -- the resulting CRLs (there may be more than one) } CAKeyUpdAnnContent ::= SEQUENCE { oldWithNew CMPCertificate, -- old pub signed with new priv newWithOld CMPCertificate, -- new pub signed with old priv newWithNew CMPCertificate -- new pub signed with new priv } CertAnnContent ::= CMPCertificate RevAnnContent ::= SEQUENCE { status PKIStatus, certId CertId, willBeRevokedAt GeneralizedTime, badSinceDate GeneralizedTime, crlDetails Extensions{{...}} OPTIONAL -- extra CRL details (e.g., crl number, reason, location, etc.) } CRLAnnContent ::= SEQUENCE OF CertificateList PKIConfirmContent ::= NULL NestedMessageContent ::= PKIMessages INFO-TYPE-AND-VALUE ::= TYPE-IDENTIFIER InfoTypeAndValue ::= SEQUENCE { infoType INFO-TYPE-AND-VALUE. &id({SupportedInfoSet}), infoValue INFO-TYPE-AND-VALUE. &Type({SupportedInfoSet}{@infoType}) } SupportedInfoSet INFO-TYPE-AND-VALUE ::= { ... } -- Example InfoTypeAndValue contents include, but are not limited -- to, the following (uncomment in this ASN.1 module and use as -- appropriate for a given environment): -- -- id-it-caProtEncCert OBJECT IDENTIFIER ::= {id-it 1} -- CAProtEncCertValue ::= CMPCertificate -- id-it-signKeyPairTypes OBJECT IDENTIFIER ::= {id-it 2} -- SignKeyPairTypesValue ::= SEQUENCE OF -- AlgorithmIdentifier{{...}} -- id-it-encKeyPairTypes OBJECT IDENTIFIER ::= {id-it 3} -- EncKeyPairTypesValue ::= SEQUENCE OF -- AlgorithmIdentifier{{...}} -- id-it-preferredSymmAlg OBJECT IDENTIFIER ::= {id-it 4} -- PreferredSymmAlgValue ::= AlgorithmIdentifier{{...}} -- id-it-caKeyUpdateInfo OBJECT IDENTIFIER ::= {id-it 5} -- CAKeyUpdateInfoValue ::= CAKeyUpdAnnContent -- id-it-currentCRL OBJECT IDENTIFIER ::= {id-it 6} -- CurrentCRLValue ::= CertificateList -- id-it-unsupportedOIDs OBJECT IDENTIFIER ::= {id-it 7} -- UnsupportedOIDsValue ::= SEQUENCE OF OBJECT IDENTIFIER -- id-it-keyPairParamReq OBJECT IDENTIFIER ::= {id-it 10} -- KeyPairParamReqValue ::= OBJECT IDENTIFIER -- id-it-keyPairParamRep OBJECT IDENTIFIER ::= {id-it 11} -- KeyPairParamRepValue ::= AlgorithmIdentifer -- id-it-revPassphrase OBJECT IDENTIFIER ::= {id-it 12} -- RevPassphraseValue ::= EncryptedKey -- -- Changed from Encrypted Value to EncryptedKey as a CHOICE -- -- of EncryptedValue and EnvelopedData due to the changes -- -- made in this document -- -- Using the choice EncryptedValue is bit-compatible to -- -- the syntax without this change -- id-it-implicitConfirm OBJECT IDENTIFIER ::= {id-it 13} -- ImplicitConfirmValue ::= NULL -- id-it-confirmWaitTime OBJECT IDENTIFIER ::= {id-it 14} -- ConfirmWaitTimeValue ::= GeneralizedTime -- id-it-origPKIMessage OBJECT IDENTIFIER ::= {id-it 15} -- OrigPKIMessageValue ::= PKIMessages -- id-it-suppLangTags OBJECT IDENTIFIER ::= {id-it 16} -- SuppLangTagsValue ::= SEQUENCE OF UTF8String -- -- where -- -- id-pkix OBJECT IDENTIFIER ::= { -- iso(1) identified-organization(3) -- dod(6) internet(1) security(5) mechanisms(5) pkix(7)} -- and -- id-it OBJECT IDENTIFIER ::= {id-pkix 4} -- -- -- This construct MAY also be used to define new PKIX Certificate -- Management Protocol request and response messages, or general- -- purpose (e.g., announcement) messages for future needs or for -- specific environments. GenMsgContent ::= SEQUENCE OF InfoTypeAndValue -- May be sent by EE, RA, or CA (depending on message content). -- The OPTIONAL infoValue parameter of InfoTypeAndValue will -- typically be omitted for some of the examples given above. -- The receiver is free to ignore any contained OBJECT IDs that it -- does not recognize. If sent from EE to CA, the empty set -- indicates that the CA may send -- any/all information that it wishes. GenRepContent ::= SEQUENCE OF InfoTypeAndValue -- Receiver MAY ignore any contained OIDs that it does not -- recognize. ErrorMsgContent ::= SEQUENCE { pKIStatusInfo PKIStatusInfo, errorCode INTEGER OPTIONAL, -- implementation-specific error codes errorDetails PKIFreeText OPTIONAL -- implementation-specific error details } CertConfirmContent ::= SEQUENCE OF CertStatus CertStatus ::= SEQUENCE { certHash OCTET STRING, -- the hash of the certificate, using the same hash algorithm -- as is used to create and verify the certificate signature certReqId INTEGER, -- to match this confirmation with the corresponding req/rep statusInfo PKIStatusInfo OPTIONAL } PollReqContent ::= SEQUENCE OF SEQUENCE { certReqId INTEGER } PollRepContent ::= SEQUENCE OF SEQUENCE { certReqId INTEGER, checkAfter INTEGER, -- time in seconds reason PKIFreeText OPTIONAL } -- -- Extended Key Usage extension for PKI entities used in CMP -- operations, added due to the changes made in this document -- The EKUs for the CA and RA are reused from CMC as defined in -- [RFC6402] -- -- id-kp-cmcCA OBJECT IDENTIFIER ::= { id-kp 27 } -- id-kp-cmcRA OBJECT IDENTIFIER ::= { id-kp 28 } id-kp-cmKGA OBJECT IDENTIFIER ::= { id-kp 32 } END
Note: This appendix will be deleted in the final version of the document.
From version 02 -> 03:
From version 01 -> 02:
From version 00 -> 01:
From draft-brockhaus-lamps-cmp-updates-03 -> draft-ietf-lamps-cmp-updates-00:
From version 02 -> 03:
From version 01 -> 02:
From version 00 -> 01: