Network Working Group | V. Fuller |
Internet-Draft | D. Farinacci |
Intended status: Standards Track | Cisco Systems |
Expires: September 5, 2018 | A. Cabellos (Ed.) |
UPC/BarcelonaTech | |
March 4, 2018 |
Locator/ID Separation Protocol (LISP) Control-Plane
draft-ietf-lisp-rfc6833bis-08
This document describes the Control-Plane and Mapping Service for the Locator/ID Separation Protocol (LISP), implemented by two new types of LISP-speaking devices -- the LISP Map-Resolver and LISP Map-Server -- that provides a simplified "front end" for one or more Endpoint ID to Routing Locator mapping databases.
By using this control-plane service interface and communicating with Map-Resolvers and Map-Servers, LISP Ingress Tunnel Routers (ITRs) and Egress Tunnel Routers (ETRs) are not dependent on the details of mapping database systems, which facilitates modularity with different database designs. Since these devices implement the "edge" of the LISP infrastructure, connect directly to LISP-capable Internet end sites, and comprise the bulk of LISP-speaking devices, reducing their implementation and operational complexity should also reduce the overall cost and effort of deploying LISP.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 5, 2018.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The Locator/ID Separation Protocol [I-D.ietf-lisp-introduction] and [I-D.ietf-lisp-rfc6830bis] specifies an architecture and mechanism for replacing the addresses currently used by IP with two separate name spaces: Endpoint IDs (EIDs), used within sites; and Routing Locators (RLOCs), used on the transit networks that make up the Internet infrastructure. To achieve this separation, LISP defines protocol mechanisms for mapping from EIDs to RLOCs. In addition, LISP assumes the existence of a database to store and propagate those mappings globally. Several such databases have been proposed; among them are the Content distribution Overlay Network Service for LISP (LISP-CONS) [LISP-CONS], LISP-NERD (a Not-so-novel EID-to-RLOC Database) [RFC6837], LISP Alternative Logical Topology (LISP+ALT) [RFC6836], and LISP Delegated Database Tree (LISP-DDT) [RFC8111].
The LISP Mapping Service defines two new types of LISP-speaking devices: the Map-Resolver, which accepts Map-Requests from an Ingress Tunnel Router (ITR) and "resolves" the EID-to-RLOC mapping using a mapping database; and the Map-Server, which learns authoritative EID-to-RLOC mappings from an Egress Tunnel Router (ETR) and publishes them in a database.
This LISP Control-Plane Mapping Service can be used by many different encapsulation-based or translation-based data-planes which include but are not limited to the ones defined in LISP RFC 6830bis [I-D.ietf-lisp-rfc6830bis], LISP-GPE [I-D.lewis-lisp-gpe], VXLAN [RFC7348], and VXLAN-GPE [I-D.quinn-vxlan-gpe].
Conceptually, LISP Map-Servers share some of the same basic configuration and maintenance properties as Domain Name System (DNS) [RFC1035] servers; likewise, Map-Resolvers are conceptually similar to DNS caching resolvers. With this in mind, this specification borrows familiar terminology (resolver and server) from the DNS specifications.
Note that while this document assumes a LISP+ALT database mapping infrastructure to illustrate certain aspects of Map-Server and Map-Resolver operation, the Mapping Service interface can (and likely will) be used by ITRs and ETRs to access other mapping database systems as the LISP infrastructure evolves.
The LISP Mapping Service is an important component of the LISP toolset. Issues and concerns about the deployment of LISP for Internet traffic are discussed in [I-D.ietf-lisp-rfc6830bis].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
For definitions of other terms, notably Ingress Tunnel Router (ITR), Egress Tunnel Router (ETR), and Re-encapsulating Tunnel Router (RTR), refer to the LISP Data-Plane specification [I-D.ietf-lisp-rfc6830bis].
A Map-Server is a device that publishes EID-Prefixes in a LISP mapping database on behalf of a set of ETRs. When it receives a Map Request (typically from an ITR), it consults the mapping database to find an ETR that can answer with the set of RLOCs for an EID-Prefix. To publish its EID-Prefixes, an ETR periodically sends Map-Register messages to the Map-Server. A Map-Register message contains a list of EID-Prefixes plus a set of RLOCs that can be used to reach the ETRs.
When LISP+ALT is used as the mapping database, a Map-Server connects to the ALT network and acts as a "last-hop" ALT-Router. Intermediate ALT-Routers forward Map-Requests to the Map-Server that advertises a particular EID-Prefix, and the Map-Server forwards them to the owning ETR, which responds with Map-Reply messages.
When LISP-DDT [RFC8111] is used as the mapping database, a Map-Server sends the final Map-Referral messages from the Delegated Database Tree.
A Map-Resolver receives Encapsulated Map-Requests from its client ITRs and uses a mapping database system to find the appropriate ETR to answer those requests. On a LISP+ALT network, a Map-Resolver acts as a "first-hop" ALT-Router. It has Generic Routing Encapsulation (GRE) tunnels configured to other ALT-Routers and uses BGP to learn paths to ETRs for different prefixes in the LISP+ALT database. The Map-Resolver uses this path information to forward Map-Requests over the ALT to the correct ETRs. On a LISP-DDT network [RFC8111], a Map-Resolver maintains a referral-cache and acts as a "first-hop" DDT-node. The Map-Resolver uses the referral information to forward Map-Requests.
Note that while it is conceivable that a Map-Resolver could cache responses to improve performance, issues surrounding cache management will need to be resolved so that doing so will be reliable and practical. As initially deployed, Map-Resolvers will operate only in a non-caching mode, decapsulating and forwarding Encapsulated Map Requests received from ITRs. Any specification of caching functionality is left for future work.
Note that a single device can implement the functions of both a Map-Server and a Map-Resolver, and in many cases the functions will be co-located in that way. Also, there can be ALT-only nodes and DDT-only nodes, when LISP+ALT and LISP-DDT are used, respectively, to connect Map-Resolvers and Map-Servers together to make up the Mapping System.
Detailed descriptions of the LISP packet types referenced by this document may be found in [I-D.ietf-lisp-rfc6830bis].
The following UDP packet formats are used by the LISP control plane.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| IHL |Type of Service| Total Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Identification |Flags| Fragment Offset | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Time to Live | Protocol = 17 | Header Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Routing Locator | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Destination Routing Locator | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | Source Port | Dest Port | UDP +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | UDP Length | UDP Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | LISP Message | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ 0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Version| Traffic Class | Flow Label | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Payload Length | Next Header=17| Hop Limit | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Source Routing Locator + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | + + | | + Destination Routing Locator + | | + + | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | Source Port | Dest Port | UDP +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | UDP Length | UDP Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | | LISP Message | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
When a UDP Map-Request, Map-Register, or Map-Notify (when used as a notification message) are sent, the UDP source port is chosen by the sender and the destination UDP port number is set to 4342. When a UDP Map-Reply Map-Notify (when used as an acknowledgement to a Map-Register), or Map-Notify-Ack are sent, the source UDP port number is set to 4342 and the destination UDP port number is copied from the source port of either the Map-Request or the invoking data packet. Implementations MUST be prepared to accept packets when either the source port or destination UDP port is set to 4342 due to NATs changing port number values.
The 'UDP Length' field will reflect the length of the UDP header and the LISP Message payload.
The UDP checksum is computed and set to non-zero for all messages sent to or from port 4342. It MUST be checked on receipt, and if the checksum fails, the control message MUST be dropped.
The format of control messages includes the UDP header so the checksum and length fields can be used to protect and delimit message boundaries.
This section defines the LISP control message formats and summarizes for IANA the LISP Type codes assigned by this document. For completeness, this document references the LISP Shared Extension Message assigned by [RFC8113]. Message type definitions are:
Reserved: 0 b'0000' LISP Map-Request: 1 b'0001' LISP Map-Reply: 2 b'0010' LISP Map-Register: 3 b'0011' LISP Map-Notify: 4 b'0100' LISP Map-Notify-Ack: 5 b'0101' LISP Map-Referral: 6 b'0110' LISP Encapsulated Control Message: 8 b'1000' Not Assigned 9-14 b'1001'- b'1110' LISP Shared Extension Message: 15 b'1111' [RFC8113]
Values in the "Not Assigned" range can be assigned according to procedures in [RFC8126]. Documents that request for a new LISP packet type MAY indicate a preferred value in Section 10.4.
Protocol designers experimenting with new message formats SHOULD use the LISP Shared Extension Message Type and request a [RFC8113] sub-type assignment.
All LISP control-plane messages use Address Family Identifiers (AFI) [AFI] or LISP Canonical Address Format (LCAF) [RFC8060] formats to encode either fixed or variable length addresses. This includes explicit fields in each control message or part of EID-records or RLOC-records in commonly formatted messages.
The LISP control-plane describes how other data-planes can encode messages to support the SMR and RLOC-probing procedures of the LISP data-plane defined in [I-D.ietf-lisp-rfc6830bis]. This control-plane specification itself does not offer such functionality and other data-planes can use their own mechanisms that do not rely on the LISP control-plane.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Type=1 |A|M|P|S|p|s|m|I| Rsvd |L|D| IRC | Record Count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Nonce . . . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . . . Nonce | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source-EID-AFI | Source EID Address ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ITR-RLOC-AFI 1 | ITR-RLOC Address 1 ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | ITR-RLOC-AFI n | ITR-RLOC Address n ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | Reserved | EID mask-len | EID-Prefix-AFI | Rec +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | EID-Prefix ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Map-Reply Record ... | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Packet field descriptions:
A Map-Request is sent from an ITR when it needs a mapping for an EID, wants to test an RLOC for reachability, or wants to refresh a mapping before TTL expiration. For the initial case, the destination IP address used for the Map-Request is the data packet's destination address (i.e., the destination EID) that had a mapping cache lookup failure. For the latter two cases, the destination IP address used for the Map-Request is one of the RLOC addresses from the Locator-Set of the Map-Cache entry. The source address is either an IPv4 or IPv6 RLOC address, depending on whether the Map-Request is using an IPv4 or IPv6 header, respectively. In all cases, the UDP source port number for the Map-Request message is a 16-bit value selected by the ITR/PITR, and the UDP destination port number is set to the well-known destination port number 4342. A successful Map-Reply, which is one that has a nonce that matches an outstanding Map-Request nonce, will update the cached set of RLOCs associated with the EID-Prefix range.
One or more Map-Request ('ITR-RLOC-AFI', 'ITR-RLOC-Address') fields MUST be filled in by the ITR. The number of fields (minus 1) encoded MUST be placed in the 'IRC' field. The ITR MAY include all locally configured Locators in this list or just provide one locator address from each address family it supports. If the ITR erroneously provides no ITR-RLOC addresses, the Map-Replier MUST drop the Map-Request.
Map-Requests can also be LISP encapsulated using UDP destination port 4342 with a LISP Type value set to "Encapsulated Control Message", when sent from an ITR to a Map-Resolver. Likewise, Map-Requests are LISP encapsulated the same way from a Map-Server to an ETR. Details on Encapsulated Map-Requests and Map-Resolvers can be found in Section 5.8.
Map-Requests MUST be rate-limited. It is RECOMMENDED that a Map-Request for the same EID-Prefix be sent no more than once per second.
An ITR that is configured with mapping database information (i.e., it is also an ETR) MAY optionally include those mappings in a Map-Request. When an ETR configured to accept and verify such "piggybacked" mapping data receives such a Map-Request and it does not have this mapping in the map-cache, it MAY originate a "verifying Map-Request", addressed to the map-requesting ITR and the ETR MAY add a Map-Cache entry. If the ETR has a Map-Cache entry that matches the "piggybacked" EID and the RLOC is in the Locator-Set for the entry, then it MAY send the "verifying Map-Request" directly to the originating Map-Request source. If the RLOC is not in the Locator-Set, then the ETR MUST send the "verifying Map-Request" to the "piggybacked" EID. Doing this forces the "verifying Map-Request" to go through the mapping database system to reach the authoritative source of information about that EID, guarding against RLOC-spoofing in the "piggybacked" mapping data.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Type=2 |P|E|S| Reserved | Record Count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Nonce . . . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . . . Nonce | +-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Record TTL | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ R | Locator Count | EID mask-len | ACT |A| Reserved | e +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ c | Rsvd | Map-Version Number | EID-Prefix-AFI | o +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ r | EID-Prefix | d +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | /| Priority | Weight | M Priority | M Weight | | L +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | o | Unused Flags |L|p|R| Loc-AFI | | c +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | \| Locator | +-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Packet field descriptions:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AD Type | Authentication Data Content . . . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
A Map-Reply returns an EID-Prefix with a prefix length that is less than or equal to the EID being requested. The EID being requested is either from the destination field of an IP header of a Data-Probe or the EID record of a Map-Request. The RLOCs in the Map-Reply are routable IP addresses of all ETRs for the LISP site. Each RLOC conveys status reachability but does not convey path reachability from a requester's perspective. Separate testing of path reachability is required. See RLOC-reachability [I-D.ietf-lisp-rfc6830bis] for details.
Note that a Map-Reply MAY contain different EID-Prefix granularity (prefix + length) than the Map-Request that triggers it. This might occur if a Map-Request were for a prefix that had been returned by an earlier Map-Reply. In such a case, the requester updates its cache with the new prefix information and granularity. For example, a requester with two cached EID-Prefixes that are covered by a Map-Reply containing one less-specific prefix replaces the entry with the less-specific EID-Prefix. Note that the reverse, replacement of one less-specific prefix with multiple more-specific prefixes, can also occur, not by removing the less-specific prefix but rather by adding the more-specific prefixes that, during a lookup, will override the less-specific prefix.
When an EID moves out of a LISP site [I-D.ietf-lisp-eid-mobility], the database mapping system may have overlapping EID-prefixes. Or when a LISP site is configured with multiple sets of ETRs that support different EID-prefix lengths, the database mapping system may have overlapping EID-prefixes. When overlapping EID-prefixes exist, a Map-Request with an EID that best matches any EID-Prefix MUST be returned in a single Map-Reply message. For instance, if an ETR had database mapping entries for EID-Prefixes:
10.0.0.0/8 10.1.0.0/16 10.1.1.0/24 10.1.2.0/24
A Map-Request for EID 10.1.1.1 would cause a Map-Reply with a record count of 1 to be returned with a mapping record EID-Prefix of 10.1.1.0/24.
A Map-Request for EID 10.1.5.5 would cause a Map-Reply with a record count of 3 to be returned with mapping records for EID-Prefixes 10.1.0.0/16, 10.1.1.0/24, and 10.1.2.0/24.
Note that not all overlapping EID-Prefixes need to be returned but only the more-specific entries (note that in the second example above 10.0.0.0/8 was not returned for requesting EID 10.1.5.5) for the matching EID-Prefix of the requesting EID. When more than one EID-Prefix is returned, all SHOULD use the same Time to Live value so they can all time out at the same time. When a more-specific EID-Prefix is received later, its Time to Live value in the Map-Reply record can be stored even when other less-specific entries exist. When a less-specific EID-Prefix is received later, its map-cache expiration time SHOULD be set to the minimum expiration time of any more-specific EID-Prefix in the map-cache. This is done so the integrity of the EID-Prefix set is wholly maintained and so no more-specific entries are removed from the map-cache while keeping less-specific entries.
Map-Replies SHOULD be sent for an EID-Prefix no more often than once per second to the same requesting router. For scalability, it is expected that aggregation of EID addresses into EID-Prefixes will allow one Map-Reply to satisfy a mapping for the EID addresses in the prefix range, thereby reducing the number of Map-Request messages.
Map-Reply records can have an empty Locator-Set. A Negative Map-Reply is a Map-Reply with an empty Locator-Set. Negative Map-Replies convey special actions by the sender to the ITR or PITR that have solicited the Map-Reply. There are two primary applications for Negative Map-Replies. The first is for a Map-Resolver to instruct an ITR or PITR when a destination is for a LISP site versus a non-LISP site, and the other is to source quench Map-Requests that are sent for non-allocated EIDs.
For each Map-Reply record, the list of Locators in a Locator-Set MUST appear in the same order for each ETR that originates a Map-Reply message. The Locator-Set MUST be sorted in order of ascending IP address where an IPv4 locator address is considered numerically 'less than' an IPv6 locator address.
When sending a Map-Reply message, the destination address is copied from one of the 'ITR-RLOC' fields from the Map-Request. The ETR can choose a locator address from one of the address families it supports. For Data-Probes, the destination address of the Map-Reply is copied from the source address of the Data-Probe message that is invoking the reply. The source address of the Map-Reply is one of the local IP addresses chosen to allow Unicast Reverse Path Forwarding (uRPF) checks to succeed in the upstream service provider. The destination port of a Map-Reply message is copied from the source port of the Map-Request or Data-Probe, and the source port of the Map-Reply message is set to the well-known UDP port 4342.
This section specifies the encoding format for the Map-Register message. The message is sent in UDP with a destination UDP port of 4342 and a randomly selected UDP source port number.
The Map-Register message format is:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Type=3 |P|S|I| Reserved |E|T|a|m|M| Record Count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Nonce . . . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . . . Nonce | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Key ID | Algorithm ID | Authentication Data Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Authentication Data ~ +-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Record TTL | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ R | Locator Count | EID mask-len | ACT |A| Reserved | e +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ c | Rsvd | Map-Version Number | EID-Prefix-AFI | o +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ r | EID-Prefix | d +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | /| Priority | Weight | M Priority | M Weight | | L +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | o | Unused Flags |L|p|R| Loc-AFI | | c +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | \| Locator | +-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Packet field descriptions:
The definition of the rest of the Map-Register can be found in Section 5.4.
This section specifies the encoding format for the Map-Notify and Map-Notify-Ack messages. The messages are sent inside a UDP packet with source and destination UDP ports equal to 4342.
The Map-Notify and Map-Notify-Ack message formats are:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Type=4/5| Reserved | Record Count | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Nonce . . . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | . . . Nonce | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Key ID | Algorithm ID | Authentication Data Length | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ Authentication Data ~ +-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Record TTL | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ R | Locator Count | EID mask-len | ACT |A| Reserved | e +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ c | Rsvd | Map-Version Number | EID-Prefix-AFI | o +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ r | EID-Prefix | d +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | /| Priority | Weight | M Priority | M Weight | | L +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | o | Unused Flags |L|p|R| Loc-AFI | | c +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | \| Locator | +-> +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Packet field descriptions:
The Map-Notify message has the same contents as a Map-Register message. See the Map-Register section for field descriptions.
The Map-Notify-Ack message has the same contents as a Map-Notify message. It is used to acknowledge the receipt of a Map-Notify and for the sender to stop retransmitting a Map-Notify with the same nonce.
An Encapsulated Control Message (ECM) is used to encapsulate control packets sent between xTRs and the mapping database system.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | IPv4 or IPv6 Header | OH | (uses RLOC addresses) | \ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | Source Port = xxxx | Dest Port = 4342 | UDP +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | UDP Length | UDP Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ LH |Type=8 |S|D|E|M| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | IPv4 or IPv6 Header | IH | (uses RLOC or EID addresses) | \ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ / | Source Port = xxxx | Dest Port = yyyy | UDP +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ \ | UDP Length | UDP Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ LCM | LISP Control Message | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Packet header descriptions:
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | AD Type | Authentication Data Content . . . | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
In the LISP architecture ITRs/PITRs use a local map-cache to store EID-to-RLOC mappings for forwarding. When an ETR updates a mapping a mechanism is required to inform ITRs/PITRs that are using such mappings.
The LISP data-plane defines several mechanism to update mappings [I-D.ietf-lisp-rfc6830bis]. This document specifies the Solicit-Map Request (SMR), a control-plane push-based mechanism. An additional control-plane mechanism based on the Publish/subscribe paradigm is specified in [I-D.rodrigueznatal-lisp-pubsub].
Soliciting a Map-Request is a selective way for ETRs, at the site where mappings change, to control the rate they receive requests for Map-Reply messages. SMRs are also used to tell remote ITRs to update the mappings they have cached.
Since the ETRs don't keep track of remote ITRs that have cached their mappings, they do not know which ITRs need to have their mappings updated. As a result, an ETR will solicit Map-Requests (called an SMR message) from those sites to which it has been sending encapsulated data for the last minute. In particular, an ETR will send an SMR to an ITR to which it has recently sent encapsulated data. This can only occur when both ITR and ETR functionality reside in the same router.
An SMR message is simply a bit set in a Map-Request message. An ITR or PITR will send a Map-Request when they receive an SMR message. Both the SMR sender and the Map-Request responder MUST rate-limit these messages. Rate-limiting can be implemented as a global rate-limiter or one rate-limiter per SMR destination.
The following procedure shows how an SMR exchange occurs when a site is doing Locator-Set compaction for an EID-to-RLOC mapping:
For security reasons, an ITR MUST NOT process unsolicited Map-Replies. To avoid Map-Cache entry corruption by a third party, a sender of an SMR-based Map-Request MUST be verified. If an ITR receives an SMR-based Map-Request and the source is not in the Locator-Set for the stored Map-Cache entry, then the responding Map-Request MUST be sent with an EID destination to the mapping database system. Since the mapping database system is a more secure way to reach an authoritative ETR, it will deliver the Map-Request to the authoritative source of the mapping data.
When an ITR receives an SMR-based Map-Request for which it does not have a cached mapping for the EID in the SMR message, it may not send an SMR-invoked Map-Request. This scenario can occur when an ETR sends SMR messages to all Locators in the Locator-Set it has stored in its map-cache but the remote ITRs that receive the SMR may not be sending packets to the site. There is no point in updating the ITRs until they need to send, in which case they will send Map-Requests to obtain a Map-Cache entry.
This document defines several control-plane mechanisms for determining RLOC reachability. Please note that additional data-plane reachability mechanisms are defined in [I-D.ietf-lisp-rfc6830bis].
When ITRs receive ICMP Network Unreachable or Host Unreachable messages as a method to determine unreachability, they will refrain from using Locators that are described in Locator lists of Map-Replies. However, using this approach is unreliable because many network operators turn off generation of ICMP Destination Unreachable messages.
If an ITR does receive an ICMP Network Unreachable or Host Unreachable message, it MAY originate its own ICMP Destination Unreachable message destined for the host that originated the data packet the ITR encapsulated.
Also, BGP-enabled ITRs can unilaterally examine the RIB to see if a locator address from a Locator-Set in a mapping entry matches a prefix. If it does not find one and BGP is running in the Default-Free Zone (DFZ), it can decide to not use the Locator even though the Locator-Status-Bits indicate that the Locator is up. In this case, the path from the ITR to the ETR that is assigned the Locator is not available. More details are in [I-D.meyer-loc-id-implications].
Optionally, an ITR can send a Map-Request to a Locator, and if a Map-Reply is returned, reachability of the Locator has been determined. Obviously, sending such probes increases the number of control messages originated by Tunnel Routers for active flows, so Locators are assumed to be reachable when they are advertised.
This assumption does create a dependency: Locator unreachability is detected by the receipt of ICMP Host Unreachable messages. When a Locator has been determined to be unreachable, it is not used for active traffic; this is the same as if it were listed in a Map-Reply with Priority 255.
The ITR can test the reachability of the unreachable Locator by sending periodic Requests. Both Requests and Replies MUST be rate-limited. Locator reachability testing is never done with data packets, since that increases the risk of packet loss for end-to-end sessions.
RLOC-Probing is a method that an ITR or PITR can use to determine the reachability status of one or more Locators that it has cached in a Map-Cache entry. The probe-bit of the Map-Request and Map-Reply messages is used for RLOC-Probing.
RLOC-Probing is done in the control plane on a timer basis, where an ITR or PITR will originate a Map-Request destined to a locator address from one of its own locator addresses. A Map-Request used as an RLOC-probe is NOT encapsulated and NOT sent to a Map-Server or to the mapping database system as one would when soliciting mapping data. The EID record encoded in the Map-Request is the EID-Prefix of the Map-Cache entry cached by the ITR or PITR. The ITR MAY include a mapping data record for its own database mapping information that contains the local EID-Prefixes and RLOCs for its site. RLOC-probes are sent periodically using a jittered timer interval.
When an ETR receives a Map-Request message with the probe-bit set, it returns a Map-Reply with the probe-bit set. The source address of the Map-Reply is set according to the procedure described in [I-D.ietf-lisp-rfc6830bis]. The Map-Reply SHOULD contain mapping data for the EID-Prefix contained in the Map-Request. This provides the opportunity for the ITR or PITR that sent the RLOC-probe to get mapping updates if there were changes to the ETR's database mapping entries.
There are advantages and disadvantages of RLOC-Probing. The greatest benefit of RLOC-Probing is that it can handle many failure scenarios allowing the ITR to determine when the path to a specific Locator is reachable or has become unreachable, thus providing a robust mechanism for switching to using another Locator from the cached Locator. RLOC-Probing can also provide rough Round-Trip Time (RTT) estimates between a pair of Locators, which can be useful for network management purposes as well as for selecting low delay paths. The major disadvantage of RLOC-Probing is in the number of control messages required and the amount of bandwidth used to obtain those benefits, especially if the requirement for failure detection times is very small.
An ITR is configured with one or more Map-Resolver addresses. These addresses are "Locators" (or RLOCs) and MUST be routable on the underlying core network; they MUST NOT need to be resolved through LISP EID-to-RLOC mapping, as that would introduce a circular dependency. When using a Map-Resolver, an ITR does not need to connect to any other database mapping system. In particular, the ITR need not connect to the LISP+ALT infrastructure or implement the BGP and GRE protocols that it uses.
An ITR sends an Encapsulated Map-Request to a configured Map-Resolver when it needs an EID-to-RLOC mapping that is not found in its local map-cache. Using the Map-Resolver greatly reduces both the complexity of the ITR implementation and the costs associated with its operation.
In response to an Encapsulated Map-Request, the ITR can expect one of the following:
Note that an ITR MAY be configured to both use a Map-Resolver and to participate in a LISP+ALT logical network. In such a situation, the ITR SHOULD send Map-Requests through the ALT network for any EID-Prefix learned via ALT BGP. Such a configuration is expected to be very rare, since there is little benefit to using a Map-Resolver if an ITR is already using LISP+ALT. There would be, for example, no need for such an ITR to send a Map-Request to a possibly non-existent EID (and rely on Negative Map-Replies) if it can consult the ALT database to verify that an EID-Prefix is present before sending that Map-Request.
An ETR publishes its EID-Prefixes on a Map-Server by sending LISP Map-Register messages. A Map-Register message includes authentication data, so prior to sending a Map-Register message, the ETR and Map-Server SHOULD be configured with a shared secret or other relevant authentication information. A Map-Server's configuration SHOULD also include a list of the EID-Prefixes for which each ETR is authoritative. Upon receipt of a Map-Register from an ETR, a Map-Server accepts only EID-Prefixes that are configured for that ETR. Failure to implement such a check would leave the mapping system vulnerable to trivial EID-Prefix hijacking attacks. As developers and operators gain experience with the mapping system, additional, stronger security measures MAY be added to the registration process.
In addition to the set of EID-Prefixes defined for each ETR that MAY register, a Map-Server is typically also configured with one or more aggregate prefixes that define the part of the EID numbering space assigned to it. When LISP+ALT is the database in use, aggregate EID-Prefixes are implemented as discard routes and advertised into ALT BGP. The existence of aggregate EID-Prefixes in a Map-Server's database means that it MAY receive Map Requests for EID-Prefixes that match an aggregate but do not match a registered prefix; Section 8.3 describes how this is handled.
Map-Register messages are sent periodically from an ETR to a Map-Server with a suggested interval between messages of one minute. A Map-Server SHOULD time out and remove an ETR's registration if it has not received a valid Map-Register message within the past three minutes. When first contacting a Map-Server after restart or changes to its EID-to-RLOC database mappings, an ETR MAY initially send Map-Register messages at an increased frequency, up to one every 20 seconds. This "quick registration" period is limited to five minutes in duration.
An ETR MAY request that a Map-Server explicitly acknowledge receipt and processing of a Map-Register message by setting the "want-map-notify" (M-bit) flag. A Map-Server that receives a Map-Register with this flag set will respond with a Map-Notify message. Typical use of this flag by an ETR would be to set it for Map-Register messages sent during the initial "quick registration" with a Map-Server but then set it only occasionally during steady-state maintenance of its association with that Map-Server. Note that the Map-Notify message is sent to UDP destination port 4342, not to the source port specified in the original Map-Register message.
Note that a one-minute minimum registration interval during maintenance of an ETR-Map-Server association places a lower bound on how quickly and how frequently a mapping database entry can be updated. This MAY have implications for what sorts of mobility can be supported directly by the mapping system; shorter registration intervals or other mechanisms might be needed to support faster mobility in some cases. For a discussion on one way that faster mobility MAY be implemented for individual devices, please see [I-D.ietf-lisp-mn].
An ETR MAY also request, by setting the "proxy Map-Reply" flag (P-bit) in the Map-Register message, that a Map-Server answer Map-Requests instead of forwarding them to the ETR. See [I-D.ietf-lisp-rfc6830bis] for details on how the Map-Server sets certain flags (such as those indicating whether the message is authoritative and how returned Locators SHOULD be treated) when sending a Map-Reply on behalf of an ETR. When an ETR requests proxy reply service, it SHOULD include all RLOCs for all ETRs for the EID-Prefix being registered, along with the routable flag ("R-bit") setting for each RLOC. The Map-Server includes all of this information in Map-Reply messages that it sends on behalf of the ETR. This differs from a non-proxy registration, since the latter need only provide one or more RLOCs for a Map-Server to use for forwarding Map-Requests; the registration information is not used in Map-Replies, so it being incomplete is not incorrect.
An ETR that uses a Map-Server to publish its EID-to-RLOC mappings does not need to participate further in the mapping database protocol(s). When using a LISP+ALT mapping database, for example, this means that the ETR does not need to implement GRE or BGP, which greatly simplifies its configuration and reduces its cost of operation.
Note that use of a Map-Server does not preclude an ETR from also connecting to the mapping database (i.e., it could also connect to the LISP+ALT network), but doing so doesn't seem particularly useful, as the whole purpose of using a Map-Server is to avoid the complexity of the mapping database protocols.
Once a Map-Server has EID-Prefixes registered by its client ETRs, it can accept and process Map-Requests for them.
In response to a Map-Request (received over the ALT if LISP+ALT is in use), the Map-Server first checks to see if the destination EID matches a configured EID-Prefix. If there is no match, the Map-Server returns a Negative Map-Reply with action code "Natively-Forward" and a 15-minute TTL. This MAY occur if a Map Request is received for a configured aggregate EID-Prefix for which no more-specific EID-Prefix exists; it indicates the presence of a non-LISP "hole" in the aggregate EID-Prefix.
Next, the Map-Server checks to see if any ETRs have registered the matching EID-Prefix. If none are found, then the Map-Server returns a Negative Map-Reply with action code "Natively-Forward" and a 1-minute TTL.
If any of the registered ETRs for the EID-Prefix have requested proxy reply service, then the Map-Server answers the request instead of forwarding it. It returns a Map-Reply with the EID-Prefix, RLOCs, and other information learned through the registration process.
If none of the ETRs have requested proxy reply service, then the Map-Server re-encapsulates and forwards the resulting Encapsulated Map-Request to one of the registered ETRs. It does not otherwise alter the Map-Request, so any Map-Reply sent by the ETR is returned to the RLOC in the Map-Request, not to the Map-Server. Unless also acting as a Map-Resolver, a Map-Server SHOULD never receive Map-Replies; any such messages SHOULD be discarded without response, perhaps accompanied by the logging of a diagnostic message if the rate of Map-Replies is suggestive of malicious traffic.
Upon receipt of an Encapsulated Map-Request, a Map-Resolver decapsulates the enclosed message and then searches for the requested EID in its local database of mapping entries (statically configured or learned from associated ETRs if the Map-Resolver is also a Map-Server offering proxy reply service). If it finds a matching entry, it returns a LISP Map-Reply with the known mapping.
If the Map-Resolver does not have the mapping entry and if it can determine that the EID is not in the mapping database (for example, if LISP+ALT is used, the Map-Resolver will have an ALT forwarding table that covers the full EID space), it immediately returns a negative LISP Map-Reply, with action code "Natively-Forward" and a 15‑minute TTL. To minimize the number of negative cache entries needed by an ITR, the Map-Resolver SHOULD return the least-specific prefix that both matches the original query and does not match any EID-Prefix known to exist in the LISP-capable infrastructure.
If the Map-Resolver does not have sufficient information to know whether the EID exists, it needs to forward the Map-Request to another device that has more information about the EID being requested. To do this, it forwards the unencapsulated Map-Request, with the original ITR RLOC as the source, to the mapping database system. Using LISP+ALT, the Map-Resolver is connected to the ALT network and sends the Map-Request to the next ALT hop learned from its ALT BGP neighbors. The Map-Resolver does not send any response to the ITR; since the source RLOC is that of the ITR, the ETR or Map-Server that receives the Map-Request over the ALT and responds will do so directly to the ITR.
A Map-Resolver can be set up to use "anycast", where the same address is assigned to multiple Map-Resolvers and is propagated through IGP routing, to facilitate the use of a topologically close Map-Resolver by each ITR.
Note that Map-Server associations with ETRs SHOULD NOT use anycast addresses, as registrations need to be established between an ETR and a specific set of Map-Servers, each identified by a specific registration association.
The 2-way LISP header nonce exchange documented in [I-D.ietf-lisp-rfc6830bis] can be used to avoid ITR spoofing attacks.
To publish an authoritative EID-to-RLOC mapping with a Map-Server, an ETR includes authentication data that is a hash of the message using a pair-wise shared key. An implementation MUST support use of HMAC-SHA-1-96 [RFC2104] and SHOULD support use of HMAC-SHA-256-128 [RFC6234] (SHA-256 truncated to 128 bits).
As noted in Section 8.2, a Map-Server SHOULD verify that all EID-Prefixes registered by an ETR match the configuration stored on the Map-Server.
The currently defined authentication mechanism for Map-Register messages does not provide protection against "replay" attacks by a "man-in-the-middle". Additional work is needed in this area.
[I-D.ietf-lisp-sec] defines a proposed mechanism for providing origin authentication, integrity, anti-replay protection, and prevention of man-in-the-middle and "overclaiming" attacks on the Map-Request/Map-Reply exchange. Work is ongoing on this and other proposals for resolving these open security issues.
While beyond the scope of securing an individual Map-Server or Map-Resolver, it SHOULD be noted that a BGP-based LISP+ALT network (if ALT is used as the mapping database infrastructure) can take advantage of standards work on adding security to BGP.
A complete LISP threat analysis has been published in [RFC7835]. Please refer to it for more security related details.
This section provides guidance to the Internet Assigned Numbers Authority (IANA) regarding registration of values related to this LISP control-plane specification, in accordance with BCP 26 [RFC8126].
There are three namespaces (listed in the sub-sections below) in LISP that have been registered.
The IANA registry has allocated UDP port number 4342 for the LISP control-plane. IANA has updated the description for UDP port 4342 as follows:
lisp-control 4342 udp LISP Control Packets
It is being requested that the IANA be authoritative for LISP Packet Type definitions and that it refers to this document as well as [RFC8113] as references.
Based on deployment experience of [RFC6830], the Map-Notify-Ack message, message type 5, was added to this document. This document requests IANA to add it to the LISP Packet Type Registry.
New ACT values can be allocated through IETF review or IESG approval. Four values have already been allocated by [RFC6830]. This specification changes the name of ACT type 3 value from "Drop" to "Drop/No-Reason" as well as adding two new ACT values, the "Drop/Policy-Denied" (type 4) and "Drop/Authentication-Failure" (type 5).
In addition, LISP has a number of flag fields and reserved fields, such as the LISP header flags field [I-D.ietf-lisp-rfc6830bis]. New bits for flags in these fields can be implemented after IETF review or IESG approval, but these need not be managed by IANA.
LISP Canonical Address Format (LCAF) [RFC8060] is an 8-bit field that defines LISP-specific encodings for AFI value 16387. LCAF encodings are used for specific use-cases where different address types for EID-records and RLOC-records are required.
The IANA registry "LISP Canonical Address Format (LCAF) Types" is used for LCAF types, the registry for LCAF types use the Specification Required policy [RFC8126]. Initial values for the registry as well as further information can be found in [RFC8060].
Therefore, there is no longer a need for the "LISP Address Type Codes" registry requested by [RFC6830]. This document requests to remove it.
In [RFC6830], a request for a "LISP Key ID Numbers" registry was submitted. This document renames the registry to "LISP Algorithm ID Numbers" and requests the IANA to make the name change.
The following Algorithm ID values are defined by this specification as used in any packet type that references a 'Algorithm ID' field:
Name Number Defined in ----------------------------------------------- None 0 n/a HMAC-SHA-1-96 1 [RFC2404] HMAC-SHA-256-128 2 [RFC4868]
Number values are in the range of 0 to 255. The allocation of values is on a first come first served basis.
The authors would like to thank Greg Schudel, Darrel Lewis, John Zwiebel, Andrew Partan, Dave Meyer, Isidor Kouvelas, Jesper Skriver, Fabio Maino, and members of the lisp@ietf.org mailing list for their feedback and helpful suggestions.
Special thanks are due to Noel Chiappa for his extensive work on caching with LISP-CONS, some of which may be used by Map-Resolvers.
[RFC Editor: Please delete this section on publication as RFC.]