Internet Engineering Task Force | R.G. Cole |
Internet-Draft | US Army CERDEC |
Intended status: Experimental | J.M. Macker |
Expires: July 24, 2014 | B.A. Adamson |
Naval Research Laboratory | |
January 20, 2014 |
Definition of Managed Objects for the Manet Simplified Multicast Framework Relay Set Process
draft-ietf-manet-smf-mib-09
This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects for configuring aspects of the Simplified Multicast Forwarding (SMF) process for Mobile Ad-Hoc Networks (MANETs). The SMF-MIB module also reports state information, performance information, and notifications. In addition to configuration, the additional state and performance information is useful to operators troubleshooting multicast forwarding problems.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on July 24, 2014.
Copyright (c) 2014 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This memo defines a portion of the Management Information Base (MIB) for use with network management protocols in the Internet community. In particular, it describes objects for configuring aspects of a process implementing Simplified Multicast Forwarding (SMF) [RFC6621] for Mobile Ad-Hoc Networks (MANETs). SMF provides multicast Duplicate Packet Detection (DPD) and supports algorithms for constructing an estimate of a MANET Minimum Connected Dominating Set (MCDS) for efficient multicast forwarding. The SMF-MIB module also reports state information, performance information, and notifications. In addition to configuration, this additional state and performance information is useful to operators troubleshooting multicast forwarding problems.
For a detailed overview of the documents that describe the current Internet-Standard Management Framework, please refer to section 7 of RFC 3410 [RFC3410].
Managed objects are accessed via a virtual information store, termed the Management Information Base or MIB. MIB objects are generally accessed through the Simple Network Management Protocol (SNMP). Objects in the MIB are defined using the mechanisms defined in the Structure of Management Information (SMI). This memo specifies a MIB module that is compliant to the SMIv2, which is described in STD 58, RFC 2578 [RFC2578], STD 58, RFC 2579 [RFC2579] and STD 58, RFC 2580 [RFC2580].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 [RFC2119].
SMF provides methods for implementing Duplicate Packet Detection (DPD)-based multicast forwarding with the optional use of Connected Dominating Set (CDS)-based relay sets. The CDS provides a complete connected coverage of the nodes comprising the MANET. The Minimum CDS (MCDS) is the smallest set of MANET nodes (comprising a connected cluster) which cover all the nodes in the cluster with their transmissions. As the density of the MANET nodes increase, the fraction of nodes required in an MCDS decreases. Using the MCDS as a multicast forwarding set then becomes an efficient multicast mechanism for MANETs.
Various algorithms for the construction of estimates of the MCDS exist. The Simplified Multicast Framework [RFC6621] describes some of these. It further defines various operational modes for a node which is participating in the collective creation of the MCDS estimates. These modes depend upon the set of related MANET routing and discovery protocols and mechanisms in operation in the specific MANET node.
A SMF router's MIB module contains SMF process configuration parameters (e.g. specific CDS algorithm), state information (e.g., current membership in the CDS), performance counters (e.g., packet counters), and notifications.
This section describes the management model for the SMF node process.
Figure 1 (reproduced from Figure 1 of [RFC6621]) shows the relationship between the SMF Relay Set selection algorithm and the related algorithms, processes and protocols running in the MANET nodes. The Relay Set Selection Algorithm (RSSA) can rely upon topology information gotten from the MANET Neighborhood Discovery Protocol (NHDP), from the specific MANET routing protocol running on the node, or from Layer 2 information passed up to the higher layer protocol processes.
______________ ____________ | | | | | Neighborhood | | Relay Set | | Discovery |------------->| Selection | | | neighbor | | |______________| info |____________| \ / \ / neighbor\ / forwarding info \ _____________ / status \ | | / `-->| Forwarding |<--' | Process | ----------------->|_____________|-----------------> incoming packet, forwarded packets interface id , and previous hop Figure 1: SMF Router Architecture
The following definitions apply throughout this document:
This section presents the structure of the SMF-MIB module. The objects are arranged into the following groups:
The textual conventions defined within the SMF-MIB module are:
The textual conventions defined for the SMF-MIB module and maintained by IANA are:
The SMF device supports a set of capabilities. The list of capabilities which the device can advertise are:
The SMF device is configured with a set of controls. Some of the prominent configuration controls for the SMF device are:
The State sub-tree reports current state information, e.g.,
The Performance sub-tree reports primarily counters that relate to SMF RSSA performance. The SMF performance counters consists of per node and per interface objects:
The Notifications Sub-tree contains the list of notifications supported within the SMF-MIB module and their intended purpose and utility.
The SMF-MIB module contains a number of tables which record data related to:
The SMF-MIB module's tables are indexed via the following constructs:
These tables and their associated indexing are:
The 'system' group in the SNMPv2-MIB module [RFC3418] is defined as being mandatory for all systems, and the objects apply to the entity as a whole. The 'system' group provides identification of the management entity and certain other system-wide data. The SMF-MIB module does not duplicate those objects.
The textual conventions imported for use in the SMF-MIB module are as follows. The MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Counter32, Unsigned32, Integer32 and mib-2 textual conventions are imported from RFC 2578 [RFC2578]. The TEXTUAL-CONVENTION, RowStatus and TruthValue textual conventions are imported from RFC 2579 [RFC2579]. The MODULE-COMPLIANCE, OBJECT-GROUP and NOTIFICATION-GROUP textual conventions are imported from RFC 2580 [RFC2580]. The InterfaceIndexOrZero textual convention is imported from RFC 2863 [RFC2863]. The SnmpAdminString textual convention is imported from RFC 3411 [RFC3411]. The InetAddress, InetAddressType and InetAddressPrefixLength textual conventions are imported from RFC 4001 [RFC4001].
In a sense, the SMF-MIB module is a general front-end to a set of, yet to be developed, RSSA-specific MIB modules. These RSSA-specific MIB modules will define the objects for the configuration, state, performance and notification required for the operation of these specific RSSAs. The SMF-MIB module Capabilities Group allows the remote management station the ability to query the router to discover the set of supported RSSAs.
SMF-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, OBJECT-TYPE, NOTIFICATION-TYPE, Counter32, Integer32, TimeTicks, experimental FROM SNMPv2-SMI -- [RFC2578] TEXTUAL-CONVENTION, RowStatus, TruthValue FROM SNMPv2-TC -- [RFC2579] MODULE-COMPLIANCE, OBJECT-GROUP, NOTIFICATION-GROUP FROM SNMPv2-CONF -- [RFC2580] InterfaceIndexOrZero FROM IF-MIB -- [RFC2863] SnmpAdminString FROM SNMP-FRAMEWORK-MIB -- [RFC3411] InetAddress, InetAddressType, InetAddressPrefixLength FROM INET-ADDRESS-MIB -- [RFC4001] IANAsmfOpModeIdTC FROM IANAsmfOpModeID-MIB IANAsmfRssaIdTC FROM IANAsmfRssaID-MIB ; smfMIB MODULE-IDENTITY LAST-UPDATED "201309011300Z" -- September 01, 2013 ORGANIZATION "IETF MANET Working Group" CONTACT-INFO "WG E-Mail: manet@ietf.org WG Chairs: sratliff@cisco.com jmacker@nrl.navy.mil Editors: Robert G. Cole US Army CERDEC Space and Terrestrial Communications 6010 Frankford Road Aberdeen Proving Ground, MD 21005 USA +1 443 395-8744 robert.g.cole@us.army.mil Joseph Macker Naval Research Laboratory Washington, D.C. 20375 USA macker@itd.nrl.navy.mil Brian Adamson Naval Research Laboratory Washington, D.C. 20375 USA adamson@itd.nrl.navy.mil" DESCRIPTION "This MIB module contains managed object definitions for the Manet SMF RSSA process defined in: [SMF] Macker, J.(ed.), Simplified Multicast Forwarding, RFC 6621, May 2012. Copyright (C) The IETF Trust (2012). This version of this MIB module is part of RFC xxxx; see the RFC itself for full legal notices." -- Revision History REVISION "201309011300Z" -- September 01, 2013 DESCRIPTION "The first version of this MIB module, published as RFC xxxx. " -- RFC-Editor assigns xxxx ::= { experimental xxxx } -- to be assigned by IANA -- -- TEXTUAL CONVENTIONs -- SmfStatus ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An indication of the operability of a SMF function or feature. For example, the status of an interface: 'enabled' indicates that this interface is performing SMF functions, and 'disabled' indicates that it is not. Similarly for the status of the device: 'enabled' indicates that the device has enabled the SMF functions on the device and 'disabled' means that the device and all interfaces have disabled all SMF functions." SYNTAX INTEGER { enabled (1), disabled (2) } -- -- Top-Level Object Identifier Assignments -- smfMIBNotifications OBJECT IDENTIFIER ::= { smfMIB 0 } smfMIBObjects OBJECT IDENTIFIER ::= { smfMIB 1 } smfMIBConformance OBJECT IDENTIFIER ::= { smfMIB 2 } -- -- smfMIBObjects Assignments: -- smfCapabilitiesGroup - 1 -- smfConfigurationGroup - 2 -- smfStateGroup - 3 -- smfPerformanceGroup - 4 -- -- -- smfCapabilitiesGroup -- -- This group contains the SMF objects that identify specific -- capabilities within this device related to SMF functions. -- smfCapabilitiesGroup OBJECT IDENTIFIER ::= { smfMIBObjects 1 } -- -- SMF Capabilities Table -- smfCapabilitiesTable OBJECT-TYPE SYNTAX SEQUENCE OF SmfCapabilitiesEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The smfCapabilitiesTable identifies the resident set of SMF Operational Modes and RSSA combinations that can run on this forwarder." REFERENCE "See Section 7.2. 'Reduced Relay Set Forwarding', Section 8.1.1. 'SMF Message TLV Type', and the Appendices A, B and C in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfCapabilitiesGroup 1 } smfCapabilitiesEntry OBJECT-TYPE SYNTAX SmfCapabilitiesEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "Information about a particular operational mode and RSSA combination. " INDEX { smfCapabilitiesIndex } ::= { smfCapabilitiesTable 1 } SmfCapabilitiesEntry ::= SEQUENCE { smfCapabilitiesIndex Integer32, smfCapabilitiesOpModeID IANAsmfOpModeIdTC, smfCapabilitiesRssaID IANAsmfRssaIdTC } smfCapabilitiesIndex OBJECT-TYPE SYNTAX Integer32 (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The index for this entry; a unique value, greater than zero, for each combination of a particular operational mode and RSSA algorithm available on this device. It is recommended that values are assigned contiguously starting from 1. Rows in this table are automatically populated by the entity's management system on initialization. By default, the agent should support at least the Classical Flooding 'cF' algorithm. All compliant SMF forwarders must support Classical Flooding. Hence, the first entry in this table MUST exist and MUST be defined as: smfCapabilitiesIndex i '1' smfCapabilitiesOpModeID i 'cfOnly(1)' smfCapabilitiesRssaID i 'cF(1)' The value for each combination MUST remain constant at least from one re-initialization of the entity's management system to the next re-initialization." ::= { smfCapabilitiesEntry 1 } smfCapabilitiesOpModeID OBJECT-TYPE SYNTAX IANAsmfOpModeIdTC MAX-ACCESS read-only STATUS current DESCRIPTION "This object identifies the particular operational mode for this device." ::= { smfCapabilitiesEntry 2 } smfCapabilitiesRssaID OBJECT-TYPE SYNTAX IANAsmfRssaIdTC MAX-ACCESS read-only STATUS current DESCRIPTION "This object identifies the particular RSSA algorithm in this MIB module. Example RSSAs are found in the appendix of RFC 6621." REFERENCE "See, e.g., Section 8.1.1. 'SMF Message TLV Type', and the Appendices A, B and C in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfCapabilitiesEntry 3 } -- -- smfConfigurationGroup -- -- This group contains the SMF objects that configure specific -- options that determine the overall performance and operation -- of the multicast forwarding process for the router device -- and its interfaces. -- smfConfigurationGroup OBJECT IDENTIFIER ::= { smfMIBObjects 2 } smfCfgAdminStatus OBJECT-TYPE SYNTAX SmfStatus MAX-ACCESS read-write STATUS current DESCRIPTION "The configured status of the SMF process on this device. 'enabled(1)' means that SMF is configured to run on this device. 'disabled(2)' mean that the SMF process is configured off. Prior to SNM functions being performed over specific interfaces, this object must first be 'enabled'. If this object is 'disabled', then no SMF functions are being performed on the device and all smfIfAdminStatus objects MUST also be set to 'disabled'. When this object is changed from 'enabled' to 'disabled' by the manager, then all smfIfAdminStatus objects MUST also be automatically set to 'disabled' by the agent. The default value for this object SHOULD be 'enabled'. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." DEFVAL { enabled } ::= { smfConfigurationGroup 1 } smfCfgSmfSysUpTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The time (in hundredths of a second) since the system SMF process was last re-initialized. The SMF process is re-initialized when the value of the 'smfCfgAdminStatus' object transitions to 'enabled' from either a prior value of 'disabled' or upon initialization of this device." ::= { smfConfigurationGroup 2 } smfCfgRouterIDAddrType OBJECT-TYPE SYNTAX InetAddressType { ipv4(1), ipv6(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "The address type of the address used for SMF ID of this router as specified in the 'smfCfgRouterID' next. Only the values ipv4(1) and ipv6(2) are supported. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." DEFVAL { ipv4 } ::= { smfConfigurationGroup 3 } smfCfgRouterID OBJECT-TYPE SYNTAX InetAddress (SIZE(4|16)) MAX-ACCESS read-write STATUS current DESCRIPTION "The IP address used as the SMF router ID. This can be set by the management station. If not explicitly set, then the device SHOULD select a routable IP address assigned to this router for use as the 'smfCfgRouterID'. The smfCfgRouterID is a logical identification that MUST be consistent across interoperable SMF neighborhoods and it is RECOMMENDED to be chosen as the numerically largest address contained in a node's 'Neighbor Address List' as defined in NHDP. A smfCfgRouterID MUST be unique within the scope of the operating MANET network regardless of the method used for selecting it. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See, e.g., Appendix Section A.1. 'E-CDS Relay Set Selection Overview' and Appendix Secdtion C.1. 'MPR-CDS Relay Set Selection Overview' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfConfigurationGroup 4 } smfCfgOperationalMode OBJECT-TYPE SYNTAX Integer32 (1..2147483647) MAX-ACCESS read-write STATUS current DESCRIPTION "The SMF RSS node operational mode and RSSA algorithm combination active on this local forwarder. This object is defined to be equal to the smfCapabilitiesIndex which identifies the specific active operational mode and RSSA. The default value for this object is '1' which corresponds to: smfCapabilitiesOpModeID i 'cfOnly(1)' smfCapabilitiesRssaID i 'cF(1)' This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 7.2. 'Reduced Relay Set Forwarding', and the Appendices A, B and C in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." DEFVAL { 1 } ::= { smfConfigurationGroup 5 } smfCfgRssaMember OBJECT-TYPE SYNTAX INTEGER { potential(1), always(2), never(3) } MAX-ACCESS read-write STATUS current DESCRIPTION "The RSSA downselects a set of forwarders for multicast forwarding. Sometimes it is useful to force an agent to be included or excluded from the resulting RSS. This object is a switch to allow for this behavior. The value 'potential(1)' allows the selected RSSA to determine if this agent is included or excluded from the RSS. The value 'always(2)' forces the selected RSSA include this agent in the RSS. The value 'never(3)' forces the selected RSSA to exclude this agent from the RSS. The default setting for this object is 'potential(1)'. Other settings could pose operational risks under certain conditions. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 7. 'Relay Set Selection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." DEFVAL { potential } ::= { smfConfigurationGroup 6 } smfCfgIpv4Dpd OBJECT-TYPE SYNTAX INTEGER { hashBased(1), identificationBased(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "The current method for IPv4 duplicate packet detection. The value 'hashBased(1)' indicates that the routers duplicate packet detection is based upon comparing a hash over the packet fields. This is the default setting for this object. The value 'identificationBased(2)' indicates that the duplicate packet detection relies upon header information in the multicast packets to identify previously received packets. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 6.2. 'IPv4 Duplicate Packet Detection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." DEFVAL { hashBased } ::= { smfConfigurationGroup 7 } smfCfgIpv6Dpd OBJECT-TYPE SYNTAX INTEGER { hashBased(1), identificationBased(2) } MAX-ACCESS read-write STATUS current DESCRIPTION "The current method for IPv6 duplicate packet detection. The values indicate the type of method used for duplicate packet detection as described the previous description for the object `smfCfgIpv4Dpd'. The default value for this object is 'hashBased(1)'. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 6.1. 'IPv6 Duplicate Packet Detection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." DEFVAL { hashBased } ::= { smfConfigurationGroup 8 } smfCfgMaxPktLifetime OBJECT-TYPE SYNTAX Integer32 (0..65535) UNITS "Seconds" MAX-ACCESS read-write STATUS current DESCRIPTION "The estimate of the network packet traversal time. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 6. 'SMF Duplicate Packet Detection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." DEFVAL { 60 } ::= { smfConfigurationGroup 9 } smfCfgDpdEntryMaxLifetime OBJECT-TYPE SYNTAX Integer32 (0..65525) UNITS "Seconds" MAX-ACCESS read-write STATUS current DESCRIPTION "The maximum lifetime of a cached DPD record in the local device storage. If the memory is running low prior to the MaxLifetimes being exceeded, the local SMF devices should purge the oldest records first. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 6. 'SMF Duplicate Packet Detection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." DEFVAL { 600 } ::= { smfConfigurationGroup 10 } -- -- Configuration of messages to be included in -- NHDP message exchanges in support of SMF -- operations. -- smfCfgNhdpRssaMesgTLVIncluded OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-write STATUS current DESCRIPTION "Indicates whether the associated NHDP messages include the RSSA Message TLV, or not. This is an optional SMF operational setting. The value 'true(1)' indicates that this TLV is included; the value 'false(2)' indicates that it is not included. It is RECOMMENDED that the RSSA Message TLV be included in the NHDP messages. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 8.1.1. 'SMF Message TLV Type' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." DEFVAL { true } ::= { smfConfigurationGroup 11 } smfCfgNhdpRssaAddrBlockTLVIncluded OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-write STATUS current DESCRIPTION "Indicates whether the associated NHDP messages include the RSSA Address Block TLV, or not. This is an optional SMF operational setting. The value 'true(1)' indicates that this TLV is included; the value 'false(2)' indicates that it is not included. The smfCfgNhdpRssaAddrBlockTLVIncluded is optional in all cases as it depends on the existence of an address block which may not be present. If this SMF device is configured with NHDP, then this object SHOULD be set to 'true(1)'. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 8.1.2. 'SMF Address Block TLV Type' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." DEFVAL { true } ::= { smfConfigurationGroup 12 } -- -- Table identifying configured multicast addresses to be forwarded. -- smfCfgAddrForwardingTable OBJECT-TYPE SYNTAX SEQUENCE OF SmfCfgAddrForwardingEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The (conceptual) table containing information on multicast multicast addresses which are to be forwarded by the SMF process. This table represents an IP filters table for forwarding (or not) packets based upon their IP multicast address. The SMF process can be configured to forward only those multicast addresses found within the smfCfgAddrForwardingTable. As such, addresses which are to be forwarded by the SMF process MUST be found within the address ranges configured within this table, unless this table is empty. Each row is associated with a range of multicast addresses, and ranges for different rows must be disjoint. Different rows MAY share a common smfCfgAddrForwardingGroupName to administratively associate different rows. The objects in this table are persistent and when written the entity SHOULD save the change to non-volatile storage." REFERENCE "See Section 9.1. 'Forwarded Multicast Groups' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfConfigurationGroup 13 } smfCfgAddrForwardingEntry OBJECT-TYPE SYNTAX SmfCfgAddrForwardingEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "An entry (conceptual row) containing the information on a particular multicast scope." INDEX { smfCfgAddrForwardingIndex } ::= { smfCfgAddrForwardingTable 1 } SmfCfgAddrForwardingEntry ::= SEQUENCE { smfCfgAddrForwardingIndex Integer32, smfCfgAddrForwardingGroupName SnmpAdminString, smfCfgAddrForwardingAddrType InetAddressType, smfCfgAddrForwardingAddress InetAddress, smfCfgAddrForwardingAddrPrefixLength InetAddressPrefixLength, smfCfgAddrForwardingStatus RowStatus } smfCfgAddrForwardingIndex OBJECT-TYPE SYNTAX Integer32 (1..2147483647) MAX-ACCESS not-accessible STATUS current DESCRIPTION "This object identifies an unique entry for a forwarding group. The index for this entry is a unique value, greater than zero, for each row. It is recommended that values are assigned contiguously starting from 1. The value for each row index MUST remain constant from one re-initialization of the entity's management system to the next re-initialization." ::= { smfCfgAddrForwardingEntry 1 } smfCfgAddrForwardingGroupName OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-create STATUS current DESCRIPTION "This object identifies a group name for a set of row entries in order to administratively associate a set of address ranges. If there is no group name or this object is otherwise not applicable, then this object contains a zero-length string. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." ::= { smfCfgAddrForwardingEntry 2 } smfCfgAddrForwardingAddrType OBJECT-TYPE SYNTAX InetAddressType { ipv4(1), ipv6(2) } MAX-ACCESS read-create STATUS current DESCRIPTION "The type of the addresses in the multicast forwarding ranges identified by this table. Only the values ipv4(1) and ipv6(2) are supported. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." ::= { smfCfgAddrForwardingEntry 3 } smfCfgAddrForwardingAddress OBJECT-TYPE SYNTAX InetAddress (SIZE(4|16)) MAX-ACCESS read-create STATUS current DESCRIPTION "The multicast group address which, when combined with smfCfgAddrForwardingAddrPrefixLength, gives the group prefix for this forwarding range. The InetAddressType is given by smfCfgAddrForwardingAddrType. This address object is only significant up to smfCfgAddrForwardingAddrPrefixLength bits. The remaining address bits are set to zero. This is especially important for this index field, Any non-zero bits would signify an entirely different entry. Legal values correspond to the subset of address families for which multicast address allocation is supported. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." ::= { smfCfgAddrForwardingEntry 4 } smfCfgAddrForwardingAddrPrefixLength OBJECT-TYPE SYNTAX InetAddressPrefixLength MAX-ACCESS read-create STATUS current DESCRIPTION "The length in bits of the mask which, when combined with smfCfgAddrForwardingAddress, gives the group prefix for this forwarding range. This object is persistent and when written the entity SHOULD save the change to non-volatile storage." ::= { smfCfgAddrForwardingEntry 5 } smfCfgAddrForwardingStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The status of this row, by which new entries may be created, or old entries deleted from this table." ::= { smfCfgAddrForwardingEntry 6 } -- -- SMF Interfaces Configuration Table -- smfCfgInterfaceTable OBJECT-TYPE SYNTAX SEQUENCE OF SmfCfgInterfaceEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The SMF Interface Table describes the SMF interfaces that are participating in the SMF packet forwarding process. The ifIndex is from the interfaces group defined in the Interfaces Group MIB module (RFC 2863). As such, this table 'sparse augments' the ifTable specifically when SMF is to be configured to operate over this interface. A conceptual row in this table exists if and only if either a manager has explicitly created the row or there is an interface on the managed device that supports and runs SMF. The manager can create a row by setting rowStatus to 'createAndGo' or 'createAndWait'. Row objects having associated DEFVAL clauses are automatically defined by the agent with these values during row creation, unless the manager explicitly defines these object values during the row creation. If the corresponding entry with ifIndex value is deleted from the Interface Table, then the entry in this table is automatically deleted and SMF is disabled on this interface, and all configuration and state information related to this interface is to be removed from memory. If the value of the smfCfgAdminStatus object is changed from 'enabled' to 'disabled', then all rows in this table are to be deleted and all configuration and state information related to this interface is to be removed from memory." REFERENCE "RFC 2863 - The Interfaces Group MIB, McCloghrie, K., and F. Kastenholtz, June 2000." ::= { smfConfigurationGroup 14 } smfCfgInterfaceEntry OBJECT-TYPE SYNTAX SmfCfgInterfaceEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The SMF interface entry describes one SMF interface as indexed by its ifIndex. The objects in this table are persistent and when written the device SHOULD save the change to non-volatile storage. For further information on the storage behavior for these objects, refer to the description for the smfCfgIfRowStatus object." INDEX { smfCfgIfIndex } ::= { smfCfgInterfaceTable 1 } SmfCfgInterfaceEntry ::= SEQUENCE { smfCfgIfIndex InterfaceIndexOrZero, smfCfgIfName SnmpAdminString, smfCfgIfAdminStatus SmfStatus, smfCfgIfSmfUpTime TimeTicks, smfCfgIfRowStatus RowStatus } smfCfgIfIndex OBJECT-TYPE SYNTAX InterfaceIndexOrZero MAX-ACCESS not-accessible STATUS current DESCRIPTION "The ifIndex for this SMF interface. This value MUST correspond to an ifIndex referring to a valid entry in The Interfaces Table. If the manager attempts to create a row for which the ifIndex does not exist on the local device, then the agent SHOULD issue a return value of 'inconsistentValue' and the operation SHOULD fail." REFERENCE "RFC 2863 - The Interfaces Group MIB, McCloghrie, K., and F. Kastenholtz, June 2000." ::= { smfCfgInterfaceEntry 1 } smfCfgIfName OBJECT-TYPE SYNTAX SnmpAdminString MAX-ACCESS read-only STATUS current DESCRIPTION "The textual name of the interface. The value of this object SHOULD be the name of the interface as assigned by the local device. This can be a text-name, such as 'le0' or a simple port number, such as '1', depending on the interface-naming syntax of the device. If there is no local name or this object is otherwise not applicable, then this object contains a zero-length string." ::= { smfCfgInterfaceEntry 2 } smfCfgIfAdminStatus OBJECT-TYPE SYNTAX SmfStatus MAX-ACCESS read-create STATUS current DESCRIPTION "The SMF interface's administrative status. The value 'enabled' denotes that the interface is running the SMF forwarding process. The value 'disabled' denotes that the interface is currently external to the SMF forwarding process. The default value for this object is 'enabled(1)'. This object SHOULD be persistent and when written the device SHOULD save the change to non-volatile storage." DEFVAL { enabled } ::= { smfCfgInterfaceEntry 3 } smfCfgIfSmfUpTime OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-only STATUS current DESCRIPTION "The time (in hundredths of a second) since this interface SMF process was last re-initialized. The interface SMF process is re-initialized when the corresponding 'smfCfgIfRowStatus' object transits to the active(1) state." ::= { smfCfgInterfaceEntry 4 } smfCfgIfRowStatus OBJECT-TYPE SYNTAX RowStatus MAX-ACCESS read-create STATUS current DESCRIPTION "This object permits management of the table by facilitating actions such as row creation, construction, and destruction. The value of this object has no effect on whether other objects in this conceptual row can be modified. An entry may not exist in the active(1) state unless all objects in the entry have a defined appropriate value. For objects with DEFVAL clauses, the management station does not need to specify the value of this object in order for the row to transit to the active(1) state; the default value for this object is used. For objects that do not have DEFVAL clauses, then the network manager MUST specify the value of this object prior to this row transitioning to the active(1) state. When this object transitions to active(1), all objects in this row SHOULD be written to non-volatile (stable) storage. Read-create objects in this row MAY be modified. When an object in a row with smfCfgIfRowStatus of active(1) is changed, then the updated value MUST be reflected in SMF and this new object value MUST be written to non-volatile storage. If this object is not equal to active(1), all associated entries in the smfPerfIpv4InterfacePerfTable and the smfPerfIpv6InterfacePerfTable MUST be deleted." ::= { smfCfgInterfaceEntry 5 } -- -- smfStateGroup -- -- Contains information describing the current state of the SMF -- process such as the current inclusion in the RS or not. -- smfStateGroup OBJECT IDENTIFIER ::= { smfMIBObjects 3 } smfStateNodeRsStatusIncluded OBJECT-TYPE SYNTAX TruthValue MAX-ACCESS read-only STATUS current DESCRIPTION "The current status of the SMF node in the context of the MANETs relay set. A value of 'true(1)' indicates that the node is currently part of the MANET Relay Set. A value of 'false(2)' indicates that the node is currently not part of the MANET Relay Set." REFERENCE "See Section 7. 'Relay Set Selection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfStateGroup 1 } smfStateDpdMemoryOverflow OBJECT-TYPE SYNTAX Counter32 UNITS "DPD Records" MAX-ACCESS read-only STATUS current DESCRIPTION "The number of DPD records that had to be flushed to prevent memory overruns for caching of these records. The number of records to be flushed upon a buffer overflow is an implementation specific decision. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 6. 'SMF Duplicate Packet Detection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfStateGroup 2 } -- -- SMF Neighbor Table -- smfStateNeighborTable OBJECT-TYPE SYNTAX SEQUENCE OF SmfStateNeighborEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The SMF StateNeighborTable describes the current one-hop neighbor nodes, their address and SMF RSSA and the interface on which they can be reached." REFERENCE "See Section 7. 'SMF Neighborhood Discovery' and Section 8.1. 'SMF Relay Algorithm TLV Types' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfStateGroup 3 } smfStateNeighborEntry OBJECT-TYPE SYNTAX SmfStateNeighborEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The SMF Neighbor Table contains the set of one-hop neighbors, the interface they are reachable on and the SMF RSSA they are currently running." INDEX { smfStateNeighborIpAddrType, smfStateNeighborIpAddr, smfStateNeighborPrefixLen } ::= { smfStateNeighborTable 1 } SmfStateNeighborEntry ::= SEQUENCE { smfStateNeighborIpAddrType InetAddressType, smfStateNeighborIpAddr InetAddress, smfStateNeighborPrefixLen InetAddressPrefixLength, smfStateNeighborRSSA IANAsmfRssaIdTC, smfStateNeighborNextHopInterface InterfaceIndexOrZero } smfStateNeighborIpAddrType OBJECT-TYPE SYNTAX InetAddressType { ipv4(1), ipv6(2) } MAX-ACCESS not-accessible STATUS current DESCRIPTION "The one-hop neighbor IP address type. Only the values 'ipv4(1)' and 'ipv6(2)' are supported." ::= { smfStateNeighborEntry 1 } smfStateNeighborIpAddr OBJECT-TYPE SYNTAX InetAddress (SIZE(4|16)) MAX-ACCESS not-accessible STATUS current DESCRIPTION "The one-hop neighbor Inet IPv4 or IPv6 address. Only IPv4 and IPv6 addresses are supported." ::= { smfStateNeighborEntry 2 } smfStateNeighborPrefixLen OBJECT-TYPE SYNTAX InetAddressPrefixLength UNITS "bits" MAX-ACCESS not-accessible STATUS current DESCRIPTION "The prefix length. This is a decimal value that indicates the number of contiguous, higher-order bits of the address that make up the network portion of the address." ::= { smfStateNeighborEntry 3 } smfStateNeighborRSSA OBJECT-TYPE SYNTAX IANAsmfRssaIdTC MAX-ACCESS read-only STATUS current DESCRIPTION "The current RSSA running on the neighbor." ::= { smfStateNeighborEntry 4 } smfStateNeighborNextHopInterface OBJECT-TYPE SYNTAX InterfaceIndexOrZero MAX-ACCESS read-only STATUS current DESCRIPTION "The interface ifIndex over which the neighbor is reachable in one-hop." ::= { smfStateNeighborEntry 6 } -- -- SMF Performance Group -- -- Contains objects which help to characterize the -- performance of the SMF RSSA process, such as statistics -- counters. There are two types of SMF RSSA statistics: -- global counters and per interface counters. -- smfPerformanceGroup OBJECT IDENTIFIER ::= { smfMIBObjects 4 } smfPerfGobalGroup OBJECT IDENTIFIER ::= { smfPerformanceGroup 1 } -- -- IPv4 packet counters -- smfPerfIpv4MultiPktsRecvTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of multicast IPv4 packets received by the device and delivered to the SMF process. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." ::= { smfPerfGobalGroup 1 } smfPerfIpv4MultiPktsForwardedTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of multicast IPv4 packets forwarded by the device. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." ::= { smfPerfGobalGroup 2 } smfPerfIpv4DuplMultiPktsDetectedTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of duplicate multicast IPv4 packets detected by the device. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 6.2. 'IPv4 Duplicate Packet Detection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfPerfGobalGroup 3 } smfPerfIpv4DroppedMultiPktsTTLExceededTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of dropped multicast IPv4 packets by the device due to TTL exceeded. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 5. 'SMF Packet Processing and Forwarding' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfPerfGobalGroup 4 } smfPerfIpv4TTLLargerThanPreviousTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of IPv4 packets recieved which have a TTL larger than that of a previously received identical packet. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 5. 'SMF Packet Processing and Forwarding' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfPerfGobalGroup 5 } -- -- IPv6 packet counters -- smfPerfIpv6MultiPktsRecvTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of multicast IPv6 packets received by the device and delivered to the SMF process. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." ::= { smfPerfGobalGroup 6 } smfPerfIpv6MultiPktsForwardedTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of multicast IPv6 packets forwarded by the device. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." ::= { smfPerfGobalGroup 7 } smfPerfIpv6DuplMultiPktsDetectedTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of duplicate multicast IPv6 packets detected by the device. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 6.1. 'IPv6 Duplicate Packet Detection' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfPerfGobalGroup 8 } smfPerfIpv6DroppedMultiPktsTTLExceededTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of dropped multicast IPv6 packets by the device due to TTL exceeded. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 5. 'SMF Packet Processing and Forwarding' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfPerfGobalGroup 9 } smfPerfIpv6TTLLargerThanPreviousTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of IPv6 packets recieved which have a TTL larger than that of a previously recived identical packet. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 5. 'SMF Packet Processing and Forwarding' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfPerfGobalGroup 10 } smfPerfIpv6HAVAssistsReqdTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of IPv6 packets received which required the HAV assist for DPD. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 6.1.1. 'IPv6 SMF_DPD Option Header' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfPerfGobalGroup 11 } smfPerfIpv6DpdHeaderInsertionsTotal OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of IPv6 packets recieved which the device inserted the DPD header option. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgSmfSysUpTime object also be monitored." REFERENCE "See Section 6.1.2. 'IPv6 Identification-Based DPD' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." ::= { smfPerfGobalGroup 12 } -- -- Per SMF Interface Performance Table -- smfPerfInterfaceGroup OBJECT IDENTIFIER ::= { smfPerformanceGroup 2 } smfPerfIpv4InterfacePerfTable OBJECT-TYPE SYNTAX SEQUENCE OF SmfPerfIpv4InterfacePerfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The SMF Interface Performance Table describes the SMF counters per interface." ::= { smfPerfInterfaceGroup 1 } smfPerfIpv4InterfacePerfEntry OBJECT-TYPE SYNTAX SmfPerfIpv4InterfacePerfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The SMF Interface Performance entry describes the statistics for a particular node interface." INDEX { smfCfgIfIndex } ::= { smfPerfIpv4InterfacePerfTable 1 } SmfPerfIpv4InterfacePerfEntry ::= SEQUENCE { smfPerfIpv4MultiPktsRecvPerIf Counter32, smfPerfIpv4MultiPktsForwardedPerIf Counter32, smfPerfIpv4DuplMultiPktsDetectedPerIf Counter32, smfPerfIpv4DroppedMultiPktsTTLExceededPerIf Counter32, smfPerfIpv4TTLLargerThanPreviousPerIf Counter32 } smfPerfIpv4MultiPktsRecvPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the number of multicast IP packets received by the SMF process on this device on this interface. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv4InterfacePerfEntry 1 } smfPerfIpv4MultiPktsForwardedPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the number of multicast IP packets forwarded by the SMF process on this device on this interface. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv4InterfacePerfEntry 2 } smfPerfIpv4DuplMultiPktsDetectedPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the number of duplicate multicast IP packets detected by the SMF process on this device on this interface. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv4InterfacePerfEntry 3 } smfPerfIpv4DroppedMultiPktsTTLExceededPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of dropped multicast IPv4 packets by the SMF process on this device on this interface due to TTL exceeded. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv4InterfacePerfEntry 4 } smfPerfIpv4TTLLargerThanPreviousPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of IPv4 packets received by the SMF process on this device on this interface which have a TTL larger than that of a previously received identical packet. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv4InterfacePerfEntry 5 } smfPerfIpv6InterfacePerfTable OBJECT-TYPE SYNTAX SEQUENCE OF SmfPerfIpv6InterfacePerfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The SMF Interface Performance Table describes the SMF counters per interface." ::= { smfPerfInterfaceGroup 2 } smfPerfIpv6InterfacePerfEntry OBJECT-TYPE SYNTAX SmfPerfIpv6InterfacePerfEntry MAX-ACCESS not-accessible STATUS current DESCRIPTION "The SMF Interface Performance entry describes the counters for a particular node interface." INDEX { smfCfgIfIndex } ::= { smfPerfIpv6InterfacePerfTable 1 } SmfPerfIpv6InterfacePerfEntry ::= SEQUENCE { smfPerfIpv6MultiPktsRecvPerIf Counter32, smfPerfIpv6MultiPktsForwardedPerIf Counter32, smfPerfIpv6DuplMultiPktsDetectedPerIf Counter32, smfPerfIpv6DroppedMultiPktsTTLExceededPerIf Counter32, smfPerfIpv6TTLLargerThanPreviousPerIf Counter32, smfPerfIpv6HAVAssistsReqdPerIf Counter32, smfPerfIpv6DpdHeaderInsertionsPerIf Counter32 } smfPerfIpv6MultiPktsRecvPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the number of multicast IP packets received by the SMF process on this device on this interface. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv6InterfacePerfEntry 1 } smfPerfIpv6MultiPktsForwardedPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the number of multicast IP packets forwarded by the SMF process on this device on this interface. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv6InterfacePerfEntry 2 } smfPerfIpv6DuplMultiPktsDetectedPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the number of duplicate multicast IP packets detected by the SMF process on this device on this interface. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv6InterfacePerfEntry 3 } smfPerfIpv6DroppedMultiPktsTTLExceededPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the number of dropped multicast IP packets by the SMF process on this device on this interface due to TTL exceeded. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv6InterfacePerfEntry 4 } smfPerfIpv6TTLLargerThanPreviousPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of IPv6 packets received which have a TTL larger than that of a previously received identical packet by the SMF process on this device on this interface. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv6InterfacePerfEntry 5 } smfPerfIpv6HAVAssistsReqdPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of IPv6 packets received by the SMF process on this device on this interface which required the HAV assist for DPD. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv6InterfacePerfEntry 6 } smfPerfIpv6DpdHeaderInsertionsPerIf OBJECT-TYPE SYNTAX Counter32 UNITS "Packets" MAX-ACCESS read-only STATUS current DESCRIPTION "A counter of the total number of IPv6 packets received by the SMF process on this device on this interface which the device inserted the DPD header option. There is the potential for a counter discontinuity in this object if the system SMF process had been disabled and later enabled on this interface. In order to check for the occurrence of such a discontinuity when monitoring this counter object, it is recommended that the smfCfgIfSmfUpTime object also be monitored." ::= { smfPerfIpv6InterfacePerfEntry 7 } -- -- Notifications -- smfMIBNotifObjects OBJECT IDENTIFIER ::= { smfMIBNotifications 0 } smfMIBNotifControl OBJECT IDENTIFIER ::= { smfMIBNotifications 1 } -- smfMIBNotifObjects smfNotifAdminStatusChange NOTIFICATION-TYPE OBJECTS { smfCfgRouterIDAddrType, -- The originator of -- the notification. smfCfgRouterID, -- The originator of -- the notification. smfCfgAdminStatus -- The new status of the -- SMF process. } STATUS current DESCRIPTION "smfCfgAdminStatusChange is a notification sent when a the 'smfCfgAdminStatus' object changes." ::= { smfMIBNotifObjects 1 } smfNotifConfiguredOpModeChange NOTIFICATION-TYPE OBJECTS { smfCfgRouterIDAddrType, -- The originator of -- the notification. smfCfgRouterID, -- The originator of -- the notification. smfCfgOperationalMode -- The new Operations -- Mode of the SMF -- process. } STATUS current DESCRIPTION "smfNotifConfiguredOpModeChange is a notification sent when the 'smfCfgOperationalMode' object changes." ::= { smfMIBNotifObjects 2 } smfNotifIfAdminStatusChange NOTIFICATION-TYPE OBJECTS { smfCfgRouterIDAddrType, -- The originator of -- the notification. smfCfgRouterID, -- The originator of -- the notification. smfCfgIfName, -- The interface whose -- status has changed. smfCfgIfAdminStatus -- The new status of the -- SMF interface. } STATUS current DESCRIPTION "smfCfgIfAdminStatusChange is a notification sent when a the 'smfCfgIfAdminStatus' object changes." ::= { smfMIBNotifObjects 3 } smfNotifDpdMemoryOverflowEvent NOTIFICATION-TYPE OBJECTS { smfCfgRouterIDAddrType, -- The originator of -- the notification. smfCfgRouterID, -- The originator of -- the notification. smfStateDpdMemoryOverflow -- The counter of -- the overflows. } STATUS current DESCRIPTION "smfNotifDpdMemoryOverflowEvents is sent when the number of memory overflow events exceeds the the 'smfNotifDpdMemoryOverflowThreshold' within the previous number of seconds defined by the 'smfNotifDpdMemoryOverflowWindow'." ::= { smfMIBNotifObjects 4 } -- smfMIBNotifControl smfNotifDpdMemoryOverflowThreshold OBJECT-TYPE SYNTAX Integer32 (0..255) UNITS "Events" MAX-ACCESS read-write STATUS current DESCRIPTION "A threshold value for the `smfNotifDpdmemoryOverflowEvents' object. If the number of occurences exceeds this threshold within the previous number of seconds 'smfNotifDpdMemoryOverflowWindow', then the `smfNotifDpdMemoryOverflowEvent' notification is sent. The default value for this object is '1'." DEFVAL { 1 } ::= { smfMIBNotifControl 1 } smfNotifDpdMemoryOverflowWindow OBJECT-TYPE SYNTAX TimeTicks MAX-ACCESS read-write STATUS current DESCRIPTION "A time window value for the `smfNotifDpdmemoryOverflowEvents' object. If the number of occurences exceeds the `smfNotifDpdMemoryOverflowThreshold' within the previous number of seconds 'smfNotifDpdMemoryOverflowWindow', then the `smfNotifDpdMemoryOverflowEvent' notification is sent. The default value for this object is '1'." DEFVAL { 1 } ::= { smfMIBNotifControl 2 } -- -- Compliance Statements -- smfCompliances OBJECT IDENTIFIER ::= { smfMIBConformance 1 } smfMIBGroups OBJECT IDENTIFIER ::= { smfMIBConformance 2 } smfBasicCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The basic implementation requirements for managed network entities that implement the SMF RSSA process." MODULE -- this module MANDATORY-GROUPS { smfCapabObjectsGroup, smfConfigObjectsGroup } ::= { smfCompliances 1 } smfFullCompliance MODULE-COMPLIANCE STATUS current DESCRIPTION "The full implementation requirements for managed network entities that implement the SMF RSSA process." MODULE -- this module MANDATORY-GROUPS { smfCapabObjectsGroup, smfConfigObjectsGroup, smfStateObjectsGroup, smfPerfObjectsGroup, smfNotifObjectsGroup, smfNotificationsGroup } ::= { smfCompliances 2 } -- -- Units of Conformance -- smfCapabObjectsGroup OBJECT-GROUP OBJECTS { smfCapabilitiesOpModeID, smfCapabilitiesRssaID } STATUS current DESCRIPTION "Set of SMF configuration objects implemented in this module." ::= { smfMIBGroups 1 } smfConfigObjectsGroup OBJECT-GROUP OBJECTS { smfCfgAdminStatus, smfCfgSmfSysUpTime, smfCfgRouterIDAddrType, smfCfgRouterID, smfCfgOperationalMode, smfCfgRssaMember, smfCfgIpv4Dpd, smfCfgIpv6Dpd, smfCfgMaxPktLifetime, smfCfgDpdEntryMaxLifetime, smfCfgNhdpRssaMesgTLVIncluded, smfCfgNhdpRssaAddrBlockTLVIncluded, smfCfgAddrForwardingGroupName, smfCfgAddrForwardingAddrType, smfCfgAddrForwardingAddress, smfCfgAddrForwardingAddrPrefixLength, smfCfgAddrForwardingStatus, smfCfgIfName, smfCfgIfAdminStatus, smfCfgIfSmfUpTime, smfCfgIfRowStatus } STATUS current DESCRIPTION "Set of SMF configuration objects implemented in this module." ::= { smfMIBGroups 2 } smfStateObjectsGroup OBJECT-GROUP OBJECTS { smfStateNodeRsStatusIncluded, smfStateDpdMemoryOverflow, smfStateNeighborRSSA, smfStateNeighborNextHopInterface } STATUS current DESCRIPTION "Set of SMF state objects implemented in this module." ::= { smfMIBGroups 3 } smfPerfObjectsGroup OBJECT-GROUP OBJECTS { smfPerfIpv4MultiPktsRecvTotal, smfPerfIpv4MultiPktsForwardedTotal, smfPerfIpv4DuplMultiPktsDetectedTotal, smfPerfIpv4DroppedMultiPktsTTLExceededTotal, smfPerfIpv4TTLLargerThanPreviousTotal, smfPerfIpv6MultiPktsRecvTotal, smfPerfIpv6MultiPktsForwardedTotal, smfPerfIpv6DuplMultiPktsDetectedTotal, smfPerfIpv6DroppedMultiPktsTTLExceededTotal, smfPerfIpv6TTLLargerThanPreviousTotal, smfPerfIpv6HAVAssistsReqdTotal, smfPerfIpv6DpdHeaderInsertionsTotal, smfPerfIpv4MultiPktsRecvPerIf, smfPerfIpv4MultiPktsForwardedPerIf, smfPerfIpv4DuplMultiPktsDetectedPerIf, smfPerfIpv4DroppedMultiPktsTTLExceededPerIf, smfPerfIpv4TTLLargerThanPreviousPerIf, smfPerfIpv6MultiPktsRecvPerIf, smfPerfIpv6MultiPktsForwardedPerIf, smfPerfIpv6DuplMultiPktsDetectedPerIf, smfPerfIpv6DroppedMultiPktsTTLExceededPerIf, smfPerfIpv6TTLLargerThanPreviousPerIf, smfPerfIpv6HAVAssistsReqdPerIf, smfPerfIpv6DpdHeaderInsertionsPerIf } STATUS current DESCRIPTION "Set of SMF performance objects implemented in this module by total and per interface." ::= { smfMIBGroups 4 } smfNotifObjectsGroup OBJECT-GROUP OBJECTS { smfNotifDpdMemoryOverflowThreshold, smfNotifDpdMemoryOverflowWindow } STATUS current DESCRIPTION "Set of SMF notification control objects implemented in this module." ::= { smfMIBGroups 5 } smfNotificationsGroup NOTIFICATION-GROUP NOTIFICATIONS { smfNotifAdminStatusChange, smfNotifConfiguredOpModeChange, smfNotifIfAdminStatusChange, smfNotifDpdMemoryOverflowEvent } STATUS current DESCRIPTION "Set of SMF notifications implemented in this module." ::= { smfMIBGroups 6 } END
This section discusses security implications of the choices made in this SMF-MIB module.
There are a number of management objects defined in this MIB module with a MAX-ACCESS clause of read-write and/or read-create. Such objects may be considered sensitive or vulnerable in some network environments. The support for SET operations in a non-secure environment without proper protection can have a negative effect on network operations. These are the tables and objects and their sensitivity/vulnerability:
Some of the readable objects in this MIB module (i.e., objects with a MAX-ACCESS other than not-accessible) may be considered sensitive or vulnerable in some network environments. It is thus important to control even GET and/or NOTIFY access to these objects and possibly to even encrypt the values of these objects when sending them over the network via SNMP. These are the tables and objects and their sensitivity/vulnerability:
The remainder of the objects in the SMF-MIB module are performance counter objects. While these give an indication of the activity of the SMF process on this node, it is not expected that exposing these values pose a security risk to the MANET network.
SNMP versions prior to SNMPv3 did not include adequate security. Even if the network itself is secure (for example by using IPSec), even then, there is no control as to who on the secure network is allowed to access and GET/SET (read/change/create/delete) the objects in this MIB module.
Implementations MUST provide the security features described by the SNMPv3 framework (see [RFC3410] ), including full support for authentication and privacy via the User-based Security Model (USM) [RFC3414] with the AES cipher algorithm [RFC3826]. Implementations MAY also provide support for the Transport Security Model (TSM) [RFC5591] in combination with a secure transport such as SSH [RFC5592] or TLS/DTLS [RFC6353].
Further, deployment of SNMP versions prior to SNMPv3 is NOT RECOMMENDED. Instead, it is RECOMMENDED to deploy SNMPv3 and to enable cryptographic security. It is then a customer/operator responsibility to ensure that the SNMP entity giving access to an instance of this MIB module is properly configured to give access to the objects only to those principals (users) that have legitimate rights to indeed GET or SET (change/create/delete) them.
This document describes objects for configuring parameters of the Simplified Multicast Forwarding [RFC6621] process on a Mobile Ad-Hoc Network (MANET) router. This MIB module, denoted SMF-MIB, also reports state and performance information and notifications. This section provides some examples of how this MIB module can be used in MANET network deployments. A fuller discussion of MANET network management use cases and challenges will be provided elsewhere.
SMF is designed to allow MANET routers to forward IPv4 and IPv6 packets over the MANET and cover the MANET nodes through the automatic discovery of efficient estimates of the Minimum Connected Dominating Set (MCDS) of nodes within the MANET. The MCDS are estimated using the Relay Set Selection Algorithms (RSSAs) discussed within this document. In the following, three scenarios are listed where this MIB module is useful, i.e.,
Here we provide an example of the simplest of configurations to establish an operational multicast forwarding capability in a MANET. This discussion only identifies the configuration necessary through the SMF-MIB module and assumes that other configuration has occurred. Assume that the MANET is to support only IPv4 addressing and that the MANET nodes are to be configured in the context of the Parking Lot Initialization case above. Then the SMF-MIB module defines ten configuration OIDs and two configuration tables, i.e., the smfCfgAddrForwardingTable and the smfCfgInterfaceTable. Of the ten OIDs defined, all but one, i.e., the smfCfgRouterID, have DEFVAL clauses which allow for a functional configuration of the SMF process within the MANET. The smfCfgRouterIDType defaults to 'ipv4' so the smfCfgRouterID can be set as, e.g.,:
snmpset [options] <smfCfgRouterID_OID>.0 a 192.168.1.100
If the smfCfgAddrForwardingTable is left empty, then the SMF local forwarder will forward all multicast addresses. So this table does not require configuration if you want to have the MANET forward all multicast addresses.
All that remains is to configure at least one row in the smfCfgInterfaceTable. Assume that the node has a wireless interface with an <ifName>='wlan0' and an <ifIndex>='1'. All of the objects in the rows of the smfCfgInterfaceTable have a DEFVAL clause, hence only the RowStatus object needs to be set. So the SMF process will be activated on the 'wlan0' interface by the following network manager snmpset command:
snmpset [options] <smfCfgIfRowStatus>.1 i active(1)
At this point, the configured forwarder will begin a Classical Flooding algorithm to forward all multicast addresses IPv4 packets it receives. If the
To provide a more efficient multicast forwarding within the MANET, the network manager could walk the smfCapabilitiesTable to identify other SMF operational modes, e.g.,:
snmpwalk -c public -v 2c router <smfCapabilitiesTable>
SMF-MIB::smfCapabilitiesIndex.1 = INTEGER: 1
SMF-MIB::smfCapabilitiesIndex.2 = INTEGER: 2
SMF-MIB::smfCapabilitiesOpModeID.1 = INTEGER: cfOnly(1)
SMF-MIB::smfCapabilitiesOpModeiD.2 = INTEGER: independent(2)
SMF-MIB::smfCapabilitiesRssaID.1 = INTEGER: cF(1)
SMF-MIB::smfCapabilitiesRssaID.2 = INTEGER: eCDS(3)
In this example, the forwarding device also supports the Extended Connected Dominating Set (eCDS) RSSA with the forwarder in the 'independent(2)' operational mode. If the network manager were to then issue an snmpset, e.g.,:
snmpset [options] <smfCfgOperationalMode>.0 i 2
then the local forwarder would switch if forwarding behavior from Classical Flooding to the more efficient eCDS flooding.
The MIB module in this document uses the following IANA-assigned OBJECT IDENTIFIER value recorded in the SMI Numbers registry:
Descriptor OBJECT IDENTIFIER value ---------- ----------------------- SMF-MIB { experimental XXXX } IANA EDITOR NOTE: please assign XXXX, and remove this note.
This MIB document uses the template authored by D. Harrington which is based on contributions from the MIB Doctors, especially Juergen Schoenwaelder, Dave Perkins, C.M.Heard and Randy Presuhn.
The authors would like to acknowledge the valuable comments from Sean Harnedy in the early phases of the development of this MIB module. The authors would like to thank James Nguyen for his careful review and comments on this MIB module and his work on the definitions of the follow on MIB modules to configure specific RSSA algorithms related to SMF. Further, the authors would like to acknowledge to work of James Nguyen, Brian Little, Ryan Morgan and Justin Dean on their software development of the SMF-MIB.
[RFC3410] | Case, J., Mundy, R., Partain, D. and B. Stewart, "Introduction and Applicability Statements for Internet-Standard Management Framework", RFC 3410, December 2002. |
[RFC3414] | Blumenthal, U. and B. Wijnen, "User-based Security Model (USM) for version 3 of the Simple Network Management Protocol (SNMPv3)", STD 62, RFC 3414, December 2002. |
[RFC3826] | Blumenthal, U., Maino, F. and K. McCloghrie, "The Advanced Encryption Standard (AES) Cipher Algorithm in the SNMP User-based Security Model", RFC 3826, June 2004. |
[RFC5591] | Harrington, D. and W. Hardaker, "Transport Security Model for the Simple Network Management Protocol (SNMP)", RFC 5591, June 2009. |
[RFC5592] | Harrington, D., Salowey, J. and W. Hardaker, "Secure Shell Transport Model for the Simple Network Management Protocol (SNMP)", RFC 5592, June 2009. |
[RFC6353] | Hardaker, W., "Transport Layer Security (TLS) Transport Model for the Simple Network Management Protocol (SNMP)", RFC 6353, July 2011. |
This appendix contains the IANAsmfOpModeID-MIB module defined by this specification below. The RFC editor should remove this specification of the IANAsmfOpModeID-MIB upon publication of the SMF-MIB. Further, IANA should take over the IANAsmfOpModeID-MIB and to keep it synchronized with the registry identified below within the IANAsmfOpModeIdTC TEXTUAL-CONVENTION.
IANAsmfOpModeID-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, mib-2 FROM SNMPv2-SMI TEXTUAL-CONVENTION FROM SNMPv2-TC; ianasmfOpModeID MODULE-IDENTITY LAST-UPDATED "201401190000Z" -- January 19, 2014 ORGANIZATION "IANA" CONTACT-INFO "Internet Assigned Numbers Authority Postal: ICANN 4676 Admiralty Way, Suite 330 Marina del Rey, CA 90292 Tel: +1 310 823 9358 E-Mail: iana@iana.org" DESCRIPTION "This MIB module defines the IANAsmfOpModeIdTC Textual Convention, and thus the enumerated values of the smfCapabilitiesOpModeID object defined in the SMF-MIB." REVISION "201401190000Z" -- January 19, 2014 DESCRIPTION "Initial version of this MIB as published in RFC KKKK." ::= { mib-2 kkkk } IANAsmfOpModeIdTC ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An index that identifies through reference to a specific SMF operations mode. There are basically three styles of SMF operation with reduced relay sets: Independent operation 'independent(1)' - SMF performs its own relay set selection using information from an associated MANET NHDP process. CDS-aware unicast routing operation 'routing(2)'- a coexistent unicast routing protocol provides dynamic relay set state based upon its own control plane CDS or neighborhood discovery information. Cross-layer operation 'crossLayer(3)' - SMF operates using neighborhood status and triggers from a cross-layer information base for dynamic relay set selection and maintenance. IANA MUST update this textual convention accordingly. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana@iana.org)." REFERENCE "See Section 7.2. 'Reduced Relay Set Forwarding', and the Appendices A, B and C in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." SYNTAX INTEGER { independent (1), routing (2), crossLayer (3) -- future (4-255) } END
This appendix contains the IANAsmfRssaID-MIB module defined by this specification below. The RFC editor should remove this specification of the IANAsmfRssaID-MIB upon publication of the SMF-MIB. Further, IANA should take over the IANAsmfRssaID-MIB and to keep it synchronized with the registry identified below within the IANAsmfRssaIdTC TEXTUAL-CONVENTION.
IANAsmfRssaID-MIB DEFINITIONS ::= BEGIN IMPORTS MODULE-IDENTITY, mib-2 FROM SNMPv2-SMI TEXTUAL-CONVENTION FROM SNMPv2-TC; ianasmfRssaID MODULE-IDENTITY LAST-UPDATED "201401190000Z" -- January 19, 2014 ORGANIZATION "IANA" CONTACT-INFO "Internet Assigned Numbers Authority Postal: ICANN 4676 Admiralty Way, Suite 330 Marina del Rey, CA 90292 Tel: +1 310 823 9358 E-Mail: iana@iana.org" DESCRIPTION "This MIB module defines the IANAsmfRssaIdTC Textual Convention, and thus the enumerated values of the smfCapabilitiesRssaID object defined in the SMF-MIB." REVISION "201401190000Z" -- January 19, 2014 DESCRIPTION "Initial version of this MIB as published in RFC LLLL." ::= { mib-2 llll } IANAsmfRssaIdTC ::= TEXTUAL-CONVENTION STATUS current DESCRIPTION "An index that identifies through reference to a specific RSSA algorithms. Several are currently defined in the Appendix A, B and C of RFC 6621. Examples of RSSA algorithms already identified within this TC are: Classical Flooding (cF(1)) - is the standard flooding algorithm where each node in the next retransmits the information on each of its interfaces. Source-Based Multipint Relay (sMPR(2)) - this algorithm is used by Optimized Link State Routing (OLSR) and OLSR version 2 (OLSRv2) protocols for the relay of link state updates and other control information [RFC3626]. Since each router picks its neighboring relays independently, sMPR forwarders depend upon previous hop information (e.g., source MAC address) to operate correctly. Extended Connected Dominating Set (eCDS(3)) - defined in [RFC5614] this algorithm forms a single CDS mesh for the SMF operating region. Its packet-forwarding rules are not dependent upon previous hop knowledge in contrast to sMPR. Multipoint Relay Connected Dominating Set (mprCDS(4)) - This algorithm is an extension to the basic sMPR election algorithm that results in a shared (non-source-specific) SMF CDS. Thus, its forwarding rules are not dependent upon previous hop information, similar to eCDS. IANA MUST update this textual convention accordingly. The definition of this textual convention with the addition of newly assigned values is published periodically by the IANA, in either the Assigned Numbers RFC, or some derivative of it specific to Internet Network Management number assignments. (The latest arrangements can be obtained by contacting the IANA.) Requests for new values should be made to IANA via email (iana@iana.org)." REFERENCE "See, e.g., Section 8.1.1. 'SMF Message TLV Type', Appendix A. 'Essential Connecting Dominating Set (E-CDS) Algorithm', Appendix B. 'Source-Based Multipoint Relay (S-MPR) Algorithm', and Appendix C. 'Multipoint Relay Connected Dominating Set (MPR-CDS) Algorithm' in RFC 6621 - Simplified Multicast Forwarding (SMF), Macker, J., May 2012." SYNTAX INTEGER { cF(1), sMPR(2), eCDS(3), mprCDS(4) -- future(5-127) -- noStdAction(128-239) -- experimental(240-255) } END
*************************************************************** * Note to the RFC Editor (to be removed prior to publication) * * * * * * 1) The reference to RFCXXXX throughout this document point * * to the current draft-ietf-manet-smf-xx.txt. This needs * * to be replaced with the XXXX RFC number for the SMF * * publication. * * * * 2) Appendix A contains the IANAsmfOpModeID-MIB * * module which is defined by this specification in the * * appendix. The RFC editor should remove this specification * * of the IANAsmfOpModeID-MIB upon publication of * * the SMF-MIB. Further, IANA should take over the * * IANAsmfOpModeID-MIB and keep it synchronized * * with the registry identified within the contained * * IANAsmfOpModeIdTC TEXTUAL-CONVENTION. * * * * 3) Appendix B contains the IANAsmfRssaID-MIB * * module which is defined by this specification in the * * appendix. The RFC editor should remove this specification * * of the IANAsmfRssaID-MIB upon publication of * * the SMF-MIB. Further, IANA should take over the * * IANAsmfRssaID-MIB and keep it synchronized * * with the registry identified within the contained * * IANAsmfRssaID TEXTUAL-CONVENTION. * * * ***************************************************************