Internet-Draft | RIFT YANG Model | March 2021 |
Rijsman, et al. | Expires 23 September 2021 | [Page] |
This document defines a YANG data model for the configuration and management of Routing in Fat Trees (RIFT) Protocol.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 23 September 2021.¶
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.¶
[I-D.ietf-rift-rift] introduces the protocol definition of RIFT. This document defines a YANG data model that can be used to configure and manage the RIFT protocol. The model is based on YANG 1.1 as defined in [RFC7950] and conforms to the Network Management Datastore Architecture (NDMA) as described in [RFC8342]¶
The terminology for describing YANG data models is found in [RFC6020] and [RFC7950], including:¶
The following abbreviations are used in this document and the defined model:¶
RIFT: Routing in Fat Trees [I-D.ietf-rift-rift].¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
Tree diagrams used in this document follow the notation defined in [RFC8340].¶
In this document, names of data nodes, actions, and other data model objects are often used without a prefix, as long as it is clear from the context in which YANG module each name is defined. Otherwise, names are prefixed using the standard prefix associated with the corresponding YANG module, as shown in Table 1.¶
The model covers RIFT [I-D.ietf-rift-rift].¶
This model can be used to configure and manage the RIFT protocol. The operational state data and statistics can be retrieved by this model. The subscription and push mechanism defined in [RFC8639] and [RFC8641] can be implemented by the user to subscribe to notifications on the data nodes in this model.¶
The model contains all the basic configuration parameters to operate the protocol. Depending on the implementation choices, some systems may not allow some of the advanced parameters to be configurable. The occasionally implemented parameters are modeled as optional features in this model. This model can be extended, and it has been structured in a way that such extensions can be conveniently made.¶
The RIFT YANG module augments the /routing/control-plane-protocols/ control-plane-protocol path defined in the ietf-routing module. The ietf-rift model defines a single instance of RIFT. Multiple instances are instantiated as multiple control-plane protocols instances.¶
This model imports and augments ietf-routing YANG model defined in [RFC8349]. Both configuration branch and state branch of [RFC8349] are augmented. The configuration branch covers node base and policy configuration. The container "rift" is the top level container in this data model. The presence of this container is expected to enable RIFT protocol functionality.¶
The YANG data model defined in this document conforms to the Network Management Datastore Architecture (NMDA) [RFC8342]. The operational state data is combined with the associated configuration data in the same hierarchy [RFC8407].¶
The RIFT YANG module defined in this document has all the common building blocks for the RIFT protocol.¶
The RIFT YANG module augments the /routing/control-plane-protocols/ control-plane-protocol path defined in the ietf-routing module. The ietf-rift model defines a single instance of RIFT. Multiple instances are instantiated as multiple control-plane protocols instances.¶
module: ietf-rift augment /rt:routing/rt:control-plane-protocols /rt:control-plane-protocol: +--rw rift +--rw name? string +--ro level? level +--rw system-id system-id +--rw pod? uint32 +--rw configured-level? level +--rw overload? boolean +--ro protocol-major-version uint8 +--ro protocol-minor-version uint16 +--ro hierarchy-indications? enumeration +--rw flood-reduction? boolean +--rw nonce-increasing-interval? uint16 +--rw maximum-nonce-delta? uint8 {nonce-delta-adjust}? +--rw rx-lie-multicast-address | +--rw ipv4? inet:ipv4-address | +--rw ipv6? inet:ipv6-address +--rw tx-lie-multicast-address | +--rw ipv4? inet:ipv4-address | +--rw ipv6? inet:ipv6-address +--rw lie-tx-port? inet:port-number +--rw global-link-capabilities | +--rw bfd? boolean | +--rw v4-forwarding-capable? boolean +--rw rx-flood-port? inet:port-number +--rw holdtime? | rt-types:timer-value-seconds16 +--rw tide-generation-interval? | rt-types:timer-value-seconds16 +--rw tie-security-key-id? uint32 +--rw interface* [name] | +--ro link-id? linkid-type | +--rw name if:interface-ref | +--rw cost? uint32 | +--rw address-families | | +--rw address-family* [address-family] | | +--rw address-family iana-rt-types:address-family | +--rw advertised-source-addresses | | +--rw ipv4? inet:ipv4-address | | +--rw ipv6? inet:ipv6-address | +--ro direction-type? enumeration | +--ro was-the-last-lie-accepted? boolean | +--ro last-lie-reject-reason? string | +--ro advertised-in-lies | | +--ro you-are-flood-repeater? boolean | | +--ro not-a-ztp-offer? boolean | | +--ro you-are-sending-too-quickly? boolean | +--rw link-capabilities | | +--rw bfd? boolean | | +--rw v4-forwarding-capable? boolean | +--ro state enumeration | +--ro number-of-flaps? uint32 | +--ro last-state-change? yang:date-and-time +--ro miscabled-links* linkid-type +--rw (algorithm-type)? | +--:(spf) | +--:(all-path) +--ro hal? level +--rw instance-label? uint32 {label-switching}? +--ro neighbor* [system-id] | +--ro name? string | +--ro level? level | +--ro system-id system-id | +--ro pod? uint32 | +--ro protocol-version? uint16 | +--ro protocol-minor-version? uint16 | +--ro sent-offer | | +--ro level? level | | +--ro not-a-ztp-offer? boolean | +--ro received-offer | | +--ro level? level | | +--ro not-a-ztp-offer? boolean | | +--ro best? boolean | | +--ro removed-from-consideration? boolean | | +--ro removal-reason? string | +--ro received-source-addresses | | +--ro ipv4? inet:ipv4-address | | +--ro ipv6? inet:ipv6-address | +--ro link-id-pair* [remote-id] | | +--ro local-id? uint32 | | +--ro remote-id uint32 | | +--ro if-index? uint32 | | +--ro if-name? if:interface-ref | +--ro cost? uint32 | +--ro bandwidth? uint32 | +--ro flood-reduction? boolean | +--ro received-link-capabilities | | +--ro bfd? boolean | | +--ro v4-forwarding-capable? boolean | +--ro received-in-lies | | +--ro you-are-flood-repeater? boolean | | +--ro not-a-ztp-offer? boolean | | +--ro you-are-sending-too-quickly? boolean | +--ro tx-flood-port? inet:port-number | +--ro bfd-up? boolean | +--ro outer-security-key-id? uint8 +--ro database +--ro tie* [direction-type originator tie-type tie-number] +--ro direction-type enumeration +--ro originator system-id +--ro tie-type enumeration +--ro tie-number uint32 +--ro seq? uint64 +--ro origination-time? uint32 +--ro origination-lifetime? uint32 +--ro node | +--ro name? string | +--ro level? level | +--ro system-id system-id | +--ro pod? uint32 | +--ro flood-reduction? boolean | +--ro overload? boolean | +--ro startup-time? uint64 | +--ro neighbor* [system-id] | | +--ro name? string | | +--ro level? level | | +--ro system-id system-id | | +--ro pod? uint32 | | +--ro link-id-pair* [remote-id] | | | +--ro local-id? uint32 | | | +--ro remote-id uint32 | | | +--ro if-index? uint32 | | | +--ro if-name? if:interface-ref | | +--ro cost? uint32 | | +--ro bandwidth? uint32 | | +--ro flood-reduction? boolean | | +--ro received-link-capabilities | | +--ro bfd? boolean | | +--ro v4-forwarding-capable? boolean | +--ro miscabled-links* linkid-type +--ro prefix | +--ro prefix? inet:ip-prefix | +--ro (type)? | | +--:(prefix) | | +--:(positive-disaggregation) | | +--:(negative-disaggregation) | | +--:(external) | | +--:(positive-external-disaggregation) | | +--:(pgp) | +--ro metric? uint32 | +--ro tags* uint64 | +--ro monotonic-clock | | +--ro prefix-sequence-type | | +--ro timestamp | | | ieee802-1as-timestamp-type | | +--ro transaction-id? uint8 | +--ro loopback? boolean | +--ro directly-attached? boolean | +--ro from-link? linkid-type +--ro key-value +--ro key? binary +--ro value? binary notifications: +---n error-set +--ro tie-level-error | +--ro tie* [originator] | +--ro direction-type? enumeration | +--ro originator system-id | +--ro tie-type? enumeration | +--ro tie-number? uint32 | +--ro seq? uint64 | +--ro origination-time? uint32 | +--ro origination-lifetime? uint32 +--ro neighbor-error +--ro neighbor* [system-id] +--ro name? string +--ro level? level +--ro system-id system-id +--ro pod? uint32 +--ro protocol-version? uint16 +--ro protocol-minor-version? uint16 +--ro sent-offer | +--ro level? level | +--ro not-a-ztp-offer? boolean +--ro received-offer | +--ro level? level | +--ro not-a-ztp-offer? boolean | +--ro best? boolean | +--ro removed-from-consideration? boolean | +--ro removal-reason? string +--ro received-source-addresses | +--ro ipv4? inet:ipv4-address | +--ro ipv6? inet:ipv6-address +--ro link-id-pair* [remote-id] | +--ro local-id? uint32 | +--ro remote-id uint32 | +--ro if-index? uint32 | +--ro if-name? if:interface-ref +--ro cost? uint32 +--ro bandwidth? uint32 +--ro flood-reduction? boolean +--ro received-link-capabilities | +--ro bfd? boolean | +--ro v4-forwarding-capable? boolean +--ro received-in-lies | +--ro you-are-flood-repeater? boolean | +--ro not-a-ztp-offer? boolean | +--ro you-are-sending-too-quickly? boolean +--ro tx-flood-port? inet:port-number +--ro bfd-up? boolean +--ro outer-security-key-id? uint8¶
The configuration data nodes cover node configuration attributes. RIFT configurations require node base information configurations. Some features can be used to enhance protocol, such as BFD, flooding-reducing, community attribute.¶
The state data nodes include node, neighbor, database and kv-store information.¶
Unexpected TIE and neighbor's layer error should be notified.¶
This module references [I-D.ietf-rift-rift], [RFC5881], [RFC6991], [RFC8177], [RFC8294], [RFC8343], [RFC8349], [RFC8505].¶
<CODE BEGINS> file "ietf-rift@2021-02-20.yang" module ietf-rift { yang-version 1.1; namespace "urn:ietf:params:xml:ns:yang:ietf-rift"; prefix rift; import ietf-inet-types { prefix "inet"; reference "RFC 6991: Common YANG Data Types"; } import ietf-yang-types { prefix "yang"; reference "RFC 6991: Common YANG Data Types"; } import ietf-routing { prefix "rt"; reference "RFC 8349: A YANG Data Model for Routing Management (NMDA Version)"; } import ietf-interfaces { prefix "if"; reference "RFC 8343: A YANG Data Model for Interface Management"; } import ietf-routing-types { prefix "rt-types"; reference "RFC 8294: Common YANG Data Types for the Routing Area"; } import iana-routing-types { prefix "iana-rt-types"; reference "RFC 8294: Common YANG Data Types for the Routing Area"; } organization "IETF RIFT (Routing In Fat Trees) Working Group"; contact "WG Web: <http://tools.ietf.org/wg/rift/> WG List: <mailto:rift@ietf.org> Editor: Zheng Zhang <mailto:zhang.zheng@zte.com.cn> Editor: Yuehua Wei <mailto:wei.yuehua@zte.com.cn> Editor: Shaowen Ma <mailto:mashaowen@gmail.com> Editor: Xufeng Liu <mailto:xufeng.liu.ietf@gmail.com>"; // RFC Ed.: replace XXXX with actual RFC number and remove // this note description "The module defines the YANG definitions for Routing in Fat Trees (RIFT). Copyright (c) 2020 IETF Trust and the persons identified as authors of the code. All rights reserved. Redistribution and use in source and binary forms, with or without modification, is permitted pursuant to, and subject to the license terms contained in, the Simplified BSD License set forth in Section 4.c of the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info). This version of this YANG module is part of RFC XXXX (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself for full legal notices. The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL', 'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED', 'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document are to be interpreted as described in BCP 14 (RFC 2119) (RFC 8174) when, and only when, they appear in all capitals, as shown here."; revision 2021-02-20 { description "Initial revision."; reference "RFC XXXX: A YANG Data Model for RIFT."; } /* * Features */ feature nonce-delta-adjust { description "Support weak nonce delta adjusting which is used in security in section 4.4."; } feature label-switching { description "Support label switching for instance distinguishing in section 4.3.7."; } typedef system-id { type string { pattern '[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}\.[0-9A-Fa-f]{4}'; } description "This type defines RIFT system id using pattern, the system id looks like: 0143.0438.0100.AeF0"; } typedef level { type uint8 { range "0 .. 24"; } default "0"; description "The value of node level. The max value is 24."; } typedef linkid-type { type uint32; description "This type defines the link id of an interface."; } typedef ieee802-1as-timestamp-type { type uint64; description "Timestamp per 802.1AS. It is advertised with prefix to achieve mobility as described in section 4.3.3."; } /* * Identity */ identity rift { base rt:routing-protocol; description "Identity for the RIFT routing protocol."; } /* * Groupings */ grouping base-node-info { leaf name { type string; description "The name of this node. It won't be used as the key of node, just used for description."; } leaf level { type level; config false; description "The level of this node."; } leaf system-id { type system-id; mandatory true; description "Each node is identified via a system-id which is 64 bits wide."; } leaf pod { type uint32; description "Point of Delivery. The self-contained vertical slice of a Clos or Fat Tree network containing normally only level 0 and level 1 nodes. It communicates with nodes in other PoDs via the spine. We number PoDs to distinguish them and use PoD #0 to denote 'undefined' PoD."; } description "The base information of a node."; } // base-node-info grouping node-flag { leaf overload { type boolean; description "If the overload bit in TIEs can be set."; } description "The node flag information."; } grouping link-capabilities { leaf bfd { type boolean; description "If this value is set to true, it means that BFD [RFC5881] function is enabled on the neighbor."; } leaf v4-forwarding-capable { type boolean; description "If this value is set to true, it means that the neighbor supports v4 forwarding."; } description "The features of neighbor."; } // link-capabilities grouping addresses { leaf ipv4 { type inet:ipv4-address; description "IPv4 address to be used."; } leaf ipv6 { type inet:ipv6-address; description "IPv6 address to be used."; } description "IPv4 or IPv6 address to be used."; } grouping lie-elements{ leaf you-are-flood-repeater { type boolean; description "If the neighbor on this link is flooding repeater described in section 4.2.3.9. When this value is set to true, the value can be carried in exchanged packet."; } leaf not-a-ztp-offer { type boolean; description "As described in section 4.2.7. When this value is set to true, the flag can be carried in the LIE packet. When the value received in the LIE from neighbor, it indicates the level on the LIE MUST NOT be used to derive a ZTP level by the receiving node."; } leaf you-are-sending-too-quickly { type boolean; description "Can be optionally set to indicate to neighbor that packet losses are seen on reception based on packet numbers or the rate is too high. The receiver SHOULD temporarily slow down flooding rates. When this value is set to true, the flag can be carried in packet."; } description "The elements set in the LIEs."; } // lie-elements grouping link-id-pair { leaf local-id { type uint32; description "The local-id of link connect to this neighbor."; } leaf remote-id { type uint32; description "The remote-id to reach this neighbor."; } leaf if-index { type uint32; description "The local index of this interface."; } leaf if-name { type if:interface-ref; description "The name of this interface."; } description "A pair of local and remote link IDs to identify a link between two nodes."; } // link-id-pair grouping neighbor-node { list link-id-pair { key "remote-id"; uses link-id-pair; description "The Multiple parallel links to this neighbor."; } leaf cost { type uint32; description "The cost value advertised by the neighbor."; } leaf bandwidth { type uint32; description "Total bits bandwith to neighbor, this will be normally sum of the bandwidths of all the parallel links."; } leaf flood-reduction { type boolean; description "If this neighbor enables the flood reduction function."; } container received-link-capabilities { uses link-capabilities; description "The link capabilities advertised by the neighbor."; } description "The neighbor information indicated in node TIE."; } // neighbor-node grouping neighbor { leaf protocol-version { type uint16; description "Represents the protocol encoding schema version of this neighbor."; } leaf protocol-minor-version { type uint16; description "Represents the minor protocol encoding schema version of this neighbor."; } container sent-offer { leaf level { type level; description "The level value."; } leaf not-a-ztp-offer { type boolean; description "If the neighbor needs to be offer a level."; } description "The level sent to the neighbor in case the neighbor needs to be offered."; } container received-offer { leaf level { type level; description "The level value."; } leaf not-a-ztp-offer { type boolean; description "If this interface needs to be offered a level."; } leaf best { type boolean; description "If level is the best level received from all the neighbors."; } leaf removed-from-consideration { type boolean; description "If the level value is considered to be used. If the value is not considered to be used, this value is set to 'TRUE'."; } leaf removal-reason { type string; description "The reason why this value is not considered to be used."; } description "The level offered to the interface from the neighbor. And if the level value is considered to be used."; } container received-source-addresses { uses addresses; description "The source address of LIE and TIE packets from the neighbor."; } // received-offer uses neighbor-node; container received-in-lies { uses lie-elements; description "The attributes received from this neighbor."; } leaf tx-flood-port { type inet:port-number; default "915"; description "The UDP port which is used by the neighbor to flood TIEs."; } leaf bfd-up { type boolean; description "Indication whether the link is protected by established BFD session."; } leaf outer-security-key-id { type uint8; description "As described in section 4.4.3, the received security key id from the neighbor."; } description "The neighbor information."; } // neighbor grouping direction-type { leaf direction-type { type enumeration { enum illegal { description "Illegal direction."; } enum south { description "A link to a node one level down."; } enum north { description "A link to a node one level up."; } enum east-west { description "A link to a node in the same level."; } enum max { description "The max value of direction."; } } config false; description "The type of a link."; } description "The type of a link."; } // direction-type grouping tie-header { uses direction-type; leaf originator { type system-id; description "The originator's system-id of this TIE."; } leaf tie-type { type enumeration { enum "node" { description "The node TIE."; } enum "prefix" { description "The prefix TIE."; } enum "positive-disaggregation-prefix" { description "The positive disaggregation prefix TIE."; } enum "negative-disaggregation-prefix" { description "The negative disaggregation prefix TIE."; } enum "pgp-prefix" { description "The policy guide prefix TIE."; } enum "key-value" { description "The key value TIE."; } enum "external-prefix" { description "The external prefix TIE."; } enum "positive-external-disaggregation-prefix" { description "The positive external disaggregation prefix TIE."; } } description "The types of TIE."; } leaf tie-number { type uint32; description "The number of this TIE"; } leaf seq { type uint64; description "As described in section 4.2.3.1, the sequence number of a TIE."; } leaf origination-time { type uint32; description "Absolute timestamp when the TIE was generated. This can be used on fabrics with synchronized clock to prevent lifetime modification attacks."; } leaf origination-lifetime { type uint32; description "Original lifetime when the TIE was generated. This can be used on fabrics with synchronized clock to prevent lifetime modification attacks."; } description "TIE is the acronym for 'Topology Information Element'. TIEs are exchanged between RIFT nodes to describe parts of a network such as links and address prefixes. This is the TIE header information."; } // tie-header /* * Data nodes */ augment "/rt:routing/rt:control-plane-protocols" + "/rt:control-plane-protocol" { when "derived-from-or-self(rt:type, 'rift:rift')" { description "This augment is only valid when routing protocol instance type is 'RIFT'."; } description "RIFT ( Routing in Fat Trees ) YANG model."; container rift { description "RIFT configuration and state data."; uses base-node-info; leaf configured-level { type level; description "The configured level value of this node."; } uses node-flag; leaf protocol-major-version { type uint8; config false; mandatory true; description "Represents protocol encoding schema major version."; } leaf protocol-minor-version { type uint16; config false; mandatory true; description "Represents protocol encoding schema minor version."; } leaf hierarchy-indications { type enumeration { enum "leaf-only" { description "The node will never leave the 'bottom of the hierarchy'."; } enum "leaf-only-and-leaf-2-leaf-procedures" { description "This means leaf to leaf."; } enum "top-of-fabric" { description "The node is 'top of fabric'."; } } config false; description "The hierarchy indications of this node."; } leaf flood-reduction { type boolean; description "If the node supports flood reduction function defined in section 4.2.3.8. If this value is set to 'FALSE', it means that the flood reduction function is disabled."; } leaf nonce-increasing-interval { type uint16; units seconds; description "The configurable nonce increasing interval."; } leaf maximum-nonce-delta { if-feature nonce-delta-adjust; type uint8 { range "1..5"; } description "The configurable valid nonce delta value used for security. It is used as vulnerability window defined in section 4.4.7. If the nonces in received packet exceeds the range indicated by this value, the packet MUST be discarded."; } container rx-lie-multicast-address { uses addresses; description "The configurable LIE receiving IPv4/IPv6 multicast address. '224.0.0.120' is default address value. Different multicast addresses can be used for receiving and sending."; } container tx-lie-multicast-address { uses addresses; description "The configurable LIE sending IPv4/IPv6 multicast address. 'FF02::A1F7' is default address value. Different multicast addresses can be used for receiving and sending."; } leaf lie-tx-port { type inet:port-number; description "The UDP port of LIE packet sending. The default port number is 914. The value can be set to other value associated with different RIFT instance."; } container global-link-capabilities { uses link-capabilities; description "The node default link capabilities. It can be overwrite by the configuration underneath interface and neighbor."; } leaf rx-flood-port { type inet:port-number; default "915"; description "The UDP port which can be used to receive flooded TIEs. The default port number is 915. The value can be set to other value associated with different RIFT instance."; } leaf holdtime { type rt-types:timer-value-seconds16; units seconds; default "3"; description "The holding time of LIE."; } leaf tide-generation-interval { type rt-types:timer-value-seconds16; units seconds; default "5"; description "The TIDE generation interval."; } leaf tie-security-key-id { type uint32; description "As described in section 4.4.3, this value implies key type and algorithm. Value 0 means that no valid fingerprint was computed. This key ID scope is local to the nodes on both ends of the adjacency."; } list interface { key "name"; leaf link-id { type linkid-type; config false; description "The local id of this interface."; } leaf name { type if:interface-ref; description "The interface's name."; } leaf cost { type uint32; description "The cost from this interface to the neighbor."; } container address-families { description "Containing address families on the interface."; list address-family { key address-family; description "A list of address families enabled on the interface."; leaf address-family { type iana-rt-types:address-family; description "Indication which address families are up on the interface."; } } } container advertised-source-addresses { uses addresses; description "The address used in the advertised LIE and TIE packets."; } uses direction-type; leaf was-the-last-lie-accepted { type boolean; config false; description "If the most recently received LIE was accepted or rejected. If the LIE was rejected, the neighbor error notifications should be used to find the reason."; } leaf last-lie-reject-reason { type string; config false; description "Description for the reject reason of the last LIE."; } container advertised-in-lies { config false; uses lie-elements; description "The attributes advertised in the LIEs from this interface."; } container link-capabilities { uses link-capabilities; description "The interface's link capabilities."; } leaf state { type enumeration { enum "OneWay" { description "The initial state of neighbor."; } enum "TwoWay" { description "This means leaf to leaf."; } enum "ThreeWay" { description "The node is 'top of fabric'."; } enum "Multiple-Neighbors-Wait" { description "The node is 'top of fabric'."; } } config false; mandatory true; description "The hierarchy indications of this node."; } leaf number-of-flaps { type uint32; config false; description "The number of interface state flaps."; } leaf last-state-change { type yang:date-and-time; config false; description "Time duration in the current state."; } description "The interface information on this node."; } // list interface leaf-list miscabled-links { type linkid-type; config false; description "List of miscabled links."; } choice algorithm-type { case spf { description "The algorithm is SPF."; } case all-path { description "The algorithm is all-path."; } description "The possible algorithm types."; } leaf hal { type level; config false; description "The highest defined level value seen from all valid level offers received."; } leaf instance-label { if-feature label-switching; type uint32; description "As per section 4.3.7, a locally significant, downstream assigned, interface specific label may be advertised in its LIEs. This value can be used to distinguish among multiple RIFT instances."; } list neighbor { key "system-id"; config false; uses base-node-info; uses neighbor; description "The neighbor's information."; } container database { config false; list tie { key "direction-type originator tie-type tie-number"; description "A list of TIEs (Topology Information Elements)."; uses tie-header; container node { uses base-node-info; leaf flood-reduction { type boolean; description "If the node enable the flood reduction function."; } uses node-flag; leaf startup-time { type uint64; description "Startup time of the node."; } list neighbor { key "system-id"; uses base-node-info; uses neighbor-node; description "The node TIE information of a neighbor."; } leaf-list miscabled-links { type linkid-type; config false; description "List of miscabled links."; } description "The node element information in this TIE."; } // node container prefix { leaf prefix { type inet:ip-prefix; description "The prefix information."; } choice type { case prefix { description "It is the prefixes TIE element."; } case positive-disaggregation { description "It is the positive disaggregation prefixes TIE element."; } case negative-disaggregation { description "It is the negative disaggregation prefixes TIE element."; } case external { description "It is the external prefixes TIE element."; } case positive-external-disaggregation { description "It is the positive external disaggregation prefixes TIE element."; } case pgp { description "It is the policy guide prefixes TIE element."; } description "The type of prefix TIE."; } leaf metric { type uint32; description "The metric of this prefix."; } leaf-list tags { type uint64; description "The tags of this prefix."; } container monotonic-clock { container prefix-sequence-type { leaf timestamp { type ieee802-1as-timestamp-type; mandatory true; description "The timestamp per 802.1AS can be advertised with the desired prefix North TIEs."; } leaf transaction-id { type uint8; description "As per RFC 8505, a sequence number called a Transaction ID (TID) with a prefix can be advertised."; } description "As described in section 4.3.3, the prefix sequence attribute which can be advertised for mobility."; } description "The monotonic clock for mobile addresses."; } leaf loopback { type boolean; description "Indicates if the interface is a node loopback. According to section 4.3.10, the node's loopback address can be injected into North and South Prefix TIEs for node reachability."; } leaf directly-attached { type boolean; description "Indicates that the prefix is directly attached, i.e. should be routed to even if the node is in overload."; } leaf from-link { type linkid-type; description "In case of locally originated prefixes, i.e. interface addresses this can describe which link the address belongs to."; } description "The detail information of a prefix."; } // prefix container key-value { leaf key { type binary; description "The type of key value combination."; } leaf value { type binary; description "The value of key value combination."; } description "The information used to distinguish a Key/Value pair. When the type of kv is set to 'node', node-element is making sense. When the type of kv is set to other values except 'node', prefix-info is making sense."; } // kv-store } // ties description "The TIEs information in database."; }// container database }//rift }//augment /* * Notifications */ notification error-set { description "The errors notification of RIFT."; container tie-level-error { list tie { key "originator"; uses tie-header; description "The level is undefined in the LIEs."; } description "The TIE errors set."; } container neighbor-error { list neighbor { key "system-id"; uses base-node-info; uses neighbor; description "The information of a neighbor."; } description "The neighbor errors set."; } } } <CODE ENDS>¶
The YANG module specified in this document defines a schema for data that is designed to be accessed via network management protocols such as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer is the secure transport layer, and the mandatory-to-implement secure transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer is HTTPS, and the mandatory-to-implement secure transport is TLS [RFC8446].¶
The NETCONF access control model [RFC8341] provides the means to restrict access for particular NETCONF or RESTCONF users to a preconfigured subset of all available NETCONF or RESTCONF protocol operations and content.¶
There are a number of data nodes defined in this YANG module that are writable/creatable/deletable (i.e., config true, which is the default). These data nodes may be considered sensitive or vulnerable in some network environments. Write operations (e.g., edit-config) to these data nodes without proper protection can have a negative effect on network operations. Writable data node represent configuration of each instance, node, interface, etc. These correspond to the following schema nodes:¶
Modifying the configuration may cause all the RIFT neighborship to be rebuilt. For example, the configuration changing of level or systemid, will lead to all the neighbor connections of this node rebuilt. The incorrect modification of authentication, except for the neighbor connection broken, will lead to the permanent connection broken. The modification of interface, will lead to the neighbor state changing. In general, unauthorized modification of most RIFT configurations will pose there own set of security risks and the "Security Considerations" in the respective reference RFCs should be consulted.¶
Some of the readable data nodes in this YANG module may be considered sensitive or vulnerable in some network environments. It is thus important to control read access (e.g., via get, get-config, or notification) to these data nodes. These are the subtrees and data nodes and their sensitivity/vulnerability:¶
The exposure of the database will expose the detailed topology of the network. Network operators may consider their topologies to be sensitive confidential data.¶
For RIFT authentication, configuration is supported via the specification of key-chains [RFC8177] or the direct specification of key and authentication algorithm. Hence, authentication configuration inherits the security considerations of [RFC8177]. This includes the considerations with respect to the local storage and handling of authentication keys.¶
RFC Ed.: Please replace all occurrences of 'XXXX' with the actual RFC number (and remove this note).¶
This document registers a URI in the IETF XML registry [RFC3688]. Following the format in [RFC3688], the following registration is requested to be made:¶
URI: urn:ietf:params:xml:ns:yang:ietf-rift¶
Registrant Contact: The IESG¶
XML: N/A, the requested URI is an XML namespace.¶
This document also requests one new YANG module name in the YANG Module Names registry [RFC6020] with the following suggestion:¶
name: ietf-rift¶
namespace: urn:ietf:params:xml:ns:yang:ietf-rift¶
prefix: rift¶
reference: RFC XXXX¶
The authors would like to thank Tony Przygienda, Benchong Xu (xu.benchong@zte.com.cn), for their review, valuable comments and suggestions.¶