TOC |
|
The Routing Protocol for Low Power and Lossy Networks (RPL) defines a generic Distance Vector protocol for Low Power and Lossy Networks (LLNs). RPL is instantiated to honor a particular routing objective/constraint by the adding a specific Objective Function (OF) that is designed to solve that problem. This specification defines a basic OF, OF0, that uses only the abstract properties exposed in RPL messages to maximize connectivity.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119 (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.) [RFC2119].
This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.
This Internet-Draft will expire on August 22, 2010.
Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the BSD License.
1.
Introduction
2.
Terminology
3.
Basic Objective Function
3.1.
Goal
3.2.
Selection of the Preferred Parent
3.3.
Selection of the Backup next_hop
4.
OF0 Constants and Variables
5.
IANA Considerations
6.
Security Considerations
7.
Acknowledgements
8.
References
8.1.
Normative References
8.2.
Informative References
§
Author's Address
TOC |
The IETF ROLL Working Group has defined application-specific routing requirements for a Low Power and Lossy Network (LLN) routing protocol, specified in [I‑D.ietf‑roll‑building‑routing‑reqs] (Martocci, J., Riou, N., Mil, P., and W. Vermeylen, “Building Automation Routing Requirements in Low Power and Lossy Networks,” September 2009.), [I‑D.ietf‑roll‑home‑routing‑reqs] (Brandt, A., Buron, J., and G. Porcu, “Home Automation Routing Requirements in Low Power and Lossy Networks,” September 2009.), [RFC5673] (Pister, K., Thubert, P., Dwars, S., and T. Phinney, “Industrial Routing Requirements in Low-Power and Lossy Networks,” October 2009.), and [RFC5548] (Dohler, M., Watteyne, T., Winter, T., and D. Barthel, “Routing Requirements for Urban Low-Power and Lossy Networks,” May 2009.).
Considering the wide variety of use cases, link types and metrics, the Routing Protocol for Low Power and Lossy Networks (Winter, T., Thubert, P., and R. Team, “RPL: IPv6 Routing Protocol for Low power and Lossy Networks,” March 2010.) [I‑D.ietf‑roll‑rpl] was designed as a generic core that is agnostic to metrics and instantiated using Objective Functions.
RPL forms Destination Oriented Directed Acyclic Graphs (DODAGs) within instances of the protocol, each instance being set up to honor a particular routing objective/constraint of a given deployment. This instantiation is achieved by plugging into the RPL core a specific Objective Function (OF) that is designed to solve that problem to be addressed by that instance.
the Objective Function selects the DODAG iteration that a device joins, and a number of neighbor routers within that iteration as parents and siblings. The OF is also responsible for computing the Rank of the device, that abstracts a relative position within the DODAG and is used by the RPL core to enable a degree of loop avoidance and verify forward progression towards a destination, as specified in [I‑D.ietf‑roll‑rpl] (Winter, T., Thubert, P., and R. Team, “RPL: IPv6 Routing Protocol for Low power and Lossy Networks,” March 2010.).
This document defines the Objective Function 0 (OF0), which operates on information defined in the RPL specification [I‑D.ietf‑roll‑rpl] (Winter, T., Thubert, P., and R. Team, “RPL: IPv6 Routing Protocol for Low power and Lossy Networks,” March 2010.) and does not require any additional option.
TOC |
The terminology used in this document is consistent with and incorporates that described in `Terminology in Low power And Lossy Networks' [I‑D.ietf‑roll‑terminology] (Vasseur, J., “Terminology in Low power And Lossy Networks,” March 2010.) and [I‑D.ietf‑roll‑rpl] (Winter, T., Thubert, P., and R. Team, “RPL: IPv6 Routing Protocol for Low power and Lossy Networks,” March 2010.).
TOC |
This specification defines the basic Objective Function, that is also called OF0 since it corresponds to the Objective Code Point 0. OF0 does not leverage link layer metrics such as described in [I‑D.ietf‑roll‑routing‑metrics] (Vasseur, J., Kim, M., Networks, D., and H. Chong, “Routing Metrics used for Path Calculation in Low Power and Lossy Networks,” April 2010.), but is only based on abstract information from the DIO base container, such as Rank and administrative preference.
TOC |
The Goal of the OF0 is to join a DODAG iteration that offers connectivity to a specific set of nodes or to a larger routing infrastructure. For the purpose of OF0, Grounded thus means that the root provides such connectivity. How that connectivity is asserted and maintained is out of scope.
Objective Function 0 is designed to find the nearest Grounded root. In the absence of a Grounded root, LLN inner connectivity is still desirable and floating DAGs will form, rooted at the nodes with the highest administrative preference.
The metric used in OF0 is the RPL Rank, as defined in [I‑D.ietf‑roll‑rpl] (Winter, T., Thubert, P., and R. Team, “RPL: IPv6 Routing Protocol for Low power and Lossy Networks,” March 2010.). Using a metric that in essence is similar to hop count implies that the quality of the connectivity should be asserted so that only neighbors with a good enough connectivity are presented to the OF. How that connectivity is asserted and maintained is out of scope.
The default step of Rank is DEFAULT_RANK_INCREMENT for each hop. An implementation MAY allow a step between MINIMUM_RANK_INCREMENT and MAXIMUM_RANK_INCREMENT to reflect a large variation of link quality. It MAY stretch its step of Rank by up to MAXIMUM_RANK_STRETCH in order to enable the selection of a sibling when only one parent is available. For instance, say that a node computes a step of Rank of 4 units of MINIMUM_RANK_INCREMENT from a preferred parent with a Rank of 6 units resulting in a Rank of 10 units for this node. Say that with that Rank of 10 units, this node would end up with only one parent and no sibling, though there is a neighbor with a Rank of 12 units. In that case, the node is entitled to stretch its step of Rank by a value of 2 units, thus using a step of Rank of 6 units so as to reach a Rank of 12 units and find a sibling. But the node is not entitled to use a step of Rank larger than 6 units since that would be a greedy behavior that would deprive the neighbor of this snode as a successor. Also, if the neighbor had exposed a Rank of 16 units, the stretch of Rank from 10 to 16 units would have exceeded MAXIMUM_RANK_STRETCH of 4 units and thus the neighbor would not have been selectable even as a sibling.
Optionally, the administrative preference of a root MAY be configured to supercede the goal to reach Grounded root. In that case, nodes will associate to the root with the highest preference available, regardless of whether that root is Grounded or not. Compared to a deployment with a multitude of Grounded roots that would result in a same multitude of DODAGs, such a configuration may result in possibly less but larger DODAGs, as many as roots configured with the highest priority in the reachable vincinity.
OF0 selects a preferred parent and a backup next_hop if one is available. The backup next_hop might be a parent or a sibling. All the traffic is routed via the preferred parent. When the link conditions do not let a packet through the preferred parent, the packet is passed to the backup next_hop.
TOC |
As it scans all the candidate neighbors, OF0 keeps the parent that is the best for the following criteria (in order):
TOC |
TOC |
OF0 uses the following constants:
- MinHopRankIncrease:
- 256
- DEFAULT_RANK_INCREMENT:
- 4 * MinHopRankIncrease
- MINIMUM_RANK_INCREMENT:
- 1 * MinHopRankIncrease
- MAXIMUM_RANK_INCREMENT:
- 16 * MinHopRankIncrease
- MAXIMUM_RANK_STRETCH:
- 4 * MinHopRankIncrease
TOC |
IThis specification requires the assignment of an OCP for OF0. The value of 0 is suggested.
TOC |
Security Considerations for OCP/OF are to be developed in accordance with recommendations laid out in, for example, [I‑D.tsao‑roll‑security‑framework] (Tsao, T., Alexander, R., Daza, V., and A. Lozano, “A Security Framework for Routing over Low Power and Lossy Networks,” March 2010.).
TOC |
Most specific thanks to Tim Winter, JP Vasseur, Julien Abeille and Mathilde Durvy for in-depth review and first hand implementer's feedback.
TOC |
TOC |
[RFC2119] | Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML). |
TOC |
[I-D.ietf-roll-building-routing-reqs] | Martocci, J., Riou, N., Mil, P., and W. Vermeylen, “Building Automation Routing Requirements in Low Power and Lossy Networks,” draft-ietf-roll-building-routing-reqs-07 (work in progress), September 2009 (TXT). |
[I-D.ietf-roll-home-routing-reqs] | Brandt, A., Buron, J., and G. Porcu, “Home Automation Routing Requirements in Low Power and Lossy Networks,” draft-ietf-roll-home-routing-reqs-08 (work in progress), September 2009 (TXT). |
[I-D.ietf-roll-routing-metrics] | Vasseur, J., Kim, M., Networks, D., and H. Chong, “Routing Metrics used for Path Calculation in Low Power and Lossy Networks,” draft-ietf-roll-routing-metrics-06 (work in progress), April 2010 (TXT). |
[I-D.ietf-roll-rpl] | Winter, T., Thubert, P., and R. Team, “RPL: IPv6 Routing Protocol for Low power and Lossy Networks,” draft-ietf-roll-rpl-07 (work in progress), March 2010 (TXT). |
[I-D.ietf-roll-terminology] | Vasseur, J., “Terminology in Low power And Lossy Networks,” draft-ietf-roll-terminology-03 (work in progress), March 2010 (TXT). |
[I-D.tsao-roll-security-framework] | Tsao, T., Alexander, R., Daza, V., and A. Lozano, “A Security Framework for Routing over Low Power and Lossy Networks,” draft-tsao-roll-security-framework-02 (work in progress), March 2010 (TXT). |
[RFC5548] | Dohler, M., Watteyne, T., Winter, T., and D. Barthel, “Routing Requirements for Urban Low-Power and Lossy Networks,” RFC 5548, May 2009 (TXT). |
[RFC5673] | Pister, K., Thubert, P., Dwars, S., and T. Phinney, “Industrial Routing Requirements in Low-Power and Lossy Networks,” RFC 5673, October 2009 (TXT). |
TOC |
Pascal Thubert (editor) | |
Cisco Systems | |
Village d'Entreprises Green Side | |
400, Avenue de Roumanille | |
Batiment T3 | |
Biot - Sophia Antipolis 06410 | |
FRANCE | |
Phone: | +33 497 23 26 34 |
Email: | pthubert@cisco.com |