SFC | Y. Wei, Ed. |
Internet-Draft | ZTE Corporation |
Intended status: Standards Track | P. Quinn |
Expires: June 18, 2020 | Cisco Systems, Inc. |
U. Elzur | |
Intel | |
S. Majee | |
F5 | |
December 16, 2019 |
Network Service Header TLVs
draft-ietf-sfc-nsh-tlv-01
This draft describes Network Service Header (NSH) MD-Type 2 metadata TLVs that can be used within a service function path.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on June 18, 2020.
Copyright (c) 2019 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
Network Service Header [RFC8300] is the SFC encapsulation protocol used to create Service Function Chains. As such, NSH provides two key elements:
NSH further defines two metadata formats (MD Types): 1 and 2. MD Type 1 defines fixed length, 16 byte metadata, whereas MD Type 2 defines a variable-length TLV format for metadata. This draft defines some common TLVs for use with NSH MD Type 2.
This draft does not address metadata usage, updating/chaining of metadata or other SFP functions. Those topics are described in NSH.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |Ver|O|C|R|R|R|R|R|R| Length | MD Type | Next Protocol | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: NSH Base Header
A NSH is composed of a 4-byte Base Header, a 4-byte Service Path Header and Context Headers. The Base Header identifies the MD-Type in use: [RFC8300] for a detailed header description.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class |C| Type |R|R|R| Len | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Variable Metadata | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: NSH TLV Format
When the base header specifies MD Type= 0x2, zero or more Variable Length Context Headers MAY be added, immediately following the Service Path Header. Therefore, Length = 0x2, indicates that only the Base Header followed by the Service Path Header are present. The number, indicated in the length field, of optional Variable Length Context Headers MUST be of an integer indicating length in 4-bytes words Figure 2 below depicts the format the context header.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type |R|R|R| Len | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Variable Metadata | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: NSH TLV Class=0x0
As per NSH, TLV Class 0-7 are reserved for standards use. In this draft we use TLV Class 0 for the following Types:
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type=0x1 |R|R|R| L=0x2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |CT (4)| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tentant ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Forwarding Context
This TLV carries network-centric forwarding context, used for segregation and forwarding scope. Forwarding context can take several forms depending on the network environment. Commonly used data includes VXLAN/VXLAN- GPE VNID, VRF identification or VLAN.
Context Type (CT), 4 bits:
0x0: 24 bit VXLAN/LISP virtual network identifier (VNI)
0x1: 32 bit MPLS VPN label
0x2: VLAN
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type=0x4 |R|R|R| L=0x3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |TT (4)| Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tenant ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Tenant ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Tenant Identifier
Tenant identification is often used for segregation within a multi-tenant environment. Orchestration system generated tenant IDs are an example of such data.
Tenant Type (TT), 4 bits:
0x0: 32 bit
0x1: 64 bit
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type=0x6 |R|R|R| L=0x1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Content Type | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Content Type
Provides explicit information about the content being carried, for example, type of video or content value for billing purposes.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type=0x7 |R|R|R| L=0x2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Node ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Interface/Port | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Ingress Network Info
This data identifies ingress network node, and, if required, ingress interface.
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type=0x8 |R|R|R| L=0x1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Flow ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: Flow ID
Flow ID provides a representation of flow. Akin, but not identical to the usage described in [RFC6437].
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type=0x9 |R|R|R| L=0x3 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |GT(4) | Reserved | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Group | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Dest Group | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: End Point Group
Intent-based systems can use this data to express the logical grouping of source and/or destination objects. [GROUPBASEDPOLICY] and [GROUPPOLICY] provide examples of such a system.
Group type (4):
0x1: Group Based Policy (GBP) end point group (EPG)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type=0xA |R|R|R| L=var | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |UT(4) | URI | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ URI ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Universal Resource Identifier
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | TLV Class = 0x0 |C| Type=0xB |R|R|R| L=0x2 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | POLICY_ID | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ~ POLICY_ID ~ +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: POLICY_ID
Policy is often referred by a system generated identifier which is then used by the devices to lookup the content of the policy locally. For example this identifier could be an index to an array, a lookup key, a database Id. The identifier allows enforcement agents or services to lookup up the content of their part of the policy quite efficiently.
[RFC8300] describes the requisite security considerations for protecting NSH metadata.
The authors would like to thank Behcet Sarikaya, Dirk von Hugo and Mohamed Boucadair for their work regarding usage of subscriber and host information TLVs.
IANA is requested to create a new "Network Service Header (NSH) TLV Type" registry. TLV types 0-127 are specified in this document. New values are assigned via Standards Action [RFC8126].
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC3986] | Berners-Lee, T., Fielding, R. and L. Masinter, "Uniform Resource Identifier (URI): Generic Syntax", STD 66, RFC 3986, DOI 10.17487/RFC3986, January 2005. |
[RFC8174] | Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017. |
[RFC8300] | Quinn, P., Elzur, U. and C. Pignataro, "Network Service Header (NSH)", RFC 8300, DOI 10.17487/RFC8300, January 2018. |
[GROUPBASEDPOLICY] | OpenStack, "Group Based Policy", 2014. |
[GROUPPOLICY] | OpenDaylight, "Group Policy", 2014. |
[RFC6437] | Amante, S., Carpenter, B., Jiang, S. and J. Rajahalme, "IPv6 Flow Label Specification", RFC 6437, DOI 10.17487/RFC6437, November 2011. |
[RFC8126] | Cotton, M., Leiba, B. and T. Narten, "Guidelines for Writing an IANA Considerations Section in RFCs", BCP 26, RFC 8126, DOI 10.17487/RFC8126, June 2017. |