TOC |
|
This document defines the core features of the Extensible Messaging and Presence Protocol (XMPP), a technology for streaming Extensible Markup Language (XML) elements for the purpose of exchanging structured information in close to real time between any two or more network-aware entities. XMPP provides a generalized, extensible framework for incrementally exchanging XML data, upon which a variety of applications can be built. The framework includes methods for stream setup and teardown, channel encryption, authentication of a client to a server and of one server to another server, and primitives for push-style messages, publication of network availability information ("presence"), and request-response interactions. This document also specifies the format for XMPP addresses, which are fully internationalizable.
This document obsoletes RFC 3920.
This Internet-Draft is submitted to IETF in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF), its areas, and its working groups. Note that other groups may also distribute working documents as Internet-Drafts.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”
The list of current Internet-Drafts can be accessed at http://www.ietf.org/ietf/1id-abstracts.txt.
The list of Internet-Draft Shadow Directories can be accessed at http://www.ietf.org/shadow.html.
This Internet-Draft will expire on September 9, 2010.
Copyright (c) 2010 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the BSD License.
1.
Introduction
1.1.
Overview
1.2.
Functional Summary
1.3.
Conventions
1.4.
Acknowledgements
1.5.
Discussion Venue
2.
Architecture
2.1.
Global Addresses
2.2.
Presence
2.3.
Persistent Streams
2.4.
Structured Data
2.5.
Distributed Network
3.
Addresses
3.1.
Overview
3.2.
Domain Identifier
3.3.
Localpart
3.4.
Resourcepart
3.5.
Determination of Addresses
4.
TCP Binding
4.1.
Scope
4.2.
Hostname Resolution
4.3.
Client-to-Server Communication
4.4.
Server-to-Server Communication
4.5.
Reconnection
4.6.
Reliability
4.7.
Other Bindings
5.
XML Streams
5.1.
Overview
5.2.
Stream Negotiation
5.2.1.
Overview
5.2.2.
Stream Features Format
5.2.3.
Restarts
5.2.4.
Resending Features
5.2.5.
Completion of Stream Negotiation
5.2.6.
State Chart
5.3.
Closing a Stream
5.3.1.
With Stream Error
5.3.2.
Without Stream Error
5.3.3.
Handling of Idle Streams
5.4.
Stream Attributes
5.4.1.
from
5.4.2.
to
5.4.3.
id
5.4.4.
xml:lang
5.4.5.
version
5.4.6.
Summary of Stream Attributes
5.5.
Namespace Declarations
5.5.1.
Declaration of Streams Namespace
5.5.2.
Declaration of Default Namespace
5.5.3.
Declaration of Other Namespaces
5.6.
Stream Errors
5.6.1.
Rules
5.6.1.1.
Stream Errors Are Unrecoverable
5.6.1.2.
Stream Errors Can Occur During Setup
5.6.1.3.
Stream Errors When the Host is Unspecified or Unknown
5.6.1.4.
Where Stream Errors Are Sent
5.6.2.
Syntax
5.6.3.
Defined Stream Error Conditions
5.6.3.1.
bad-format
5.6.3.2.
bad-namespace-prefix
5.6.3.3.
conflict
5.6.3.4.
connection-timeout
5.6.3.5.
host-gone
5.6.3.6.
host-unknown
5.6.3.7.
improper-addressing
5.6.3.8.
internal-server-error
5.6.3.9.
invalid-from
5.6.3.10.
invalid-id
5.6.3.11.
invalid-namespace
5.6.3.12.
invalid-xml
5.6.3.13.
not-authorized
5.6.3.14.
policy-violation
5.6.3.15.
remote-connection-failed
5.6.3.16.
reset
5.6.3.17.
resource-constraint
5.6.3.18.
restricted-xml
5.6.3.19.
see-other-host
5.6.3.20.
system-shutdown
5.6.3.21.
undefined-condition
5.6.3.22.
unsupported-encoding
5.6.3.23.
unsupported-feature
5.6.3.24.
unsupported-stanza-type
5.6.3.25.
unsupported-version
5.6.3.26.
xml-not-well-formed
5.6.4.
Application-Specific Conditions
5.7.
Simplified Stream Examples
6.
STARTTLS Negotiation
6.1.
Overview
6.2.
Stream Negotiation Rules
6.2.1.
Mandatory-to-Negotiate
6.2.2.
Restart
6.2.3.
Data Formatting
6.2.4.
Order of Negotiation
6.3.
Process
6.3.1.
Exchange of Stream Headers and Stream Features
6.3.2.
Initiation of STARTTLS Negotiation
6.3.2.1.
STARTTLS Command
6.3.2.2.
Failure Case
6.3.2.3.
Proceed Case
6.3.3.
TLS Negotiation
6.3.3.1.
Rules
6.3.3.2.
TLS Failure
6.3.3.3.
TLS Success
7.
SASL Negotiation
7.1.
Overview
7.2.
Stream Negotiation Rules
7.2.1.
Mandatory-to-Negotiate
7.2.2.
Restart
7.2.3.
Mechanism Preferences
7.2.4.
Mechanism Offers
7.2.5.
Data Formatting
7.2.6.
Security Layers
7.2.7.
Simple Username
7.2.8.
Authorization Identity
7.2.9.
Realms
7.2.10.
Round Trips
7.3.
Process
7.3.1.
Exchange of Stream Headers and Stream Features
7.3.2.
Initiation
7.3.3.
Challenge-Response Sequence
7.3.4.
Abort
7.3.5.
Failure
7.3.6.
Success
7.4.
SASL Errors
7.4.1.
aborted
7.4.2.
account-disabled
7.4.3.
credentials-expired
7.4.4.
encryption-required
7.4.5.
incorrect-encoding
7.4.6.
invalid-authzid
7.4.7.
invalid-mechanism
7.4.8.
malformed-request
7.4.9.
mechanism-too-weak
7.4.10.
not-authorized
7.4.11.
temporary-auth-failure
7.4.12.
transition-needed
7.5.
SASL Definition
8.
Resource Binding
8.1.
Overview
8.2.
Stream Negotiation Rules
8.2.1.
Mandatory-to-Negotiate
8.2.2.
Restart
8.3.
Advertising Support
8.4.
Generation of Resource Identifiers
8.5.
Server-Generated Resource Identifier
8.5.1.
Success Case
8.5.2.
Error Cases
8.5.2.1.
Resource Constraint
8.5.2.2.
Not Allowed
8.6.
Client-Submitted Resource Identifier
8.6.1.
Success Case
8.6.2.
Error Cases
8.6.2.1.
Bad Request
8.6.2.2.
Conflict
8.6.3.
Retries
9.
XML Stanzas
9.1.
Common Attributes
9.1.1.
to
9.1.1.1.
Client-to-Server Streams
9.1.1.2.
Server-to-Server Streams
9.1.2.
from
9.1.2.1.
Client-to-Server Streams
9.1.2.2.
Server-to-Server Streams
9.1.3.
id
9.1.4.
type
9.1.5.
xml:lang
9.2.
Basic Semantics
9.2.1.
Message Semantics
9.2.2.
Presence Semantics
9.2.3.
IQ Semantics
9.3.
Stanza Errors
9.3.1.
Rules
9.3.2.
Syntax
9.3.3.
Defined Conditions
9.3.3.1.
bad-request
9.3.3.2.
conflict
9.3.3.3.
feature-not-implemented
9.3.3.4.
forbidden
9.3.3.5.
gone
9.3.3.6.
internal-server-error
9.3.3.7.
item-not-found
9.3.3.8.
jid-malformed
9.3.3.9.
not-acceptable
9.3.3.10.
not-allowed
9.3.3.11.
not-authorized
9.3.3.12.
not-modified
9.3.3.13.
payment-required
9.3.3.14.
policy-violation
9.3.3.15.
recipient-unavailable
9.3.3.16.
redirect
9.3.3.17.
registration-required
9.3.3.18.
remote-server-not-found
9.3.3.19.
remote-server-timeout
9.3.3.20.
resource-constraint
9.3.3.21.
service-unavailable
9.3.3.22.
subscription-required
9.3.3.23.
undefined-condition
9.3.3.24.
unexpected-request
9.3.4.
Application-Specific Conditions
9.4.
Extended Content
9.5.
Stanza Size
10.
Examples
10.1.
Client-to-Server
10.1.1.
TLS
10.1.2.
SASL
10.1.3.
Resource Binding
10.1.4.
Stanza Exchange
10.1.5.
Close
10.2.
Server-to-Server Examples
10.2.1.
TLS
10.2.2.
SASL
10.2.3.
Stanza Exchange
10.2.4.
Close
11.
Server Rules for Processing XML Stanzas
11.1.
No 'to' Address
11.1.1.
Overview
11.1.2.
Message
11.1.3.
Presence
11.1.4.
IQ
11.2.
Local Domain
11.2.1.
Mere Domain
11.2.2.
Domain with Resource
11.2.3.
Localpart at Domain
11.2.3.1.
No Such User
11.2.3.2.
Bare JID
11.2.3.3.
Full JID
11.3.
Remote Domain
11.3.1.
Existing Stream
11.3.2.
No Existing Stream
11.3.3.
Error Handling
12.
XML Usage
12.1.
Restrictions
12.2.
XML Namespace Names and Prefixes
12.3.
Well-Formedness
12.4.
Validation
12.5.
Inclusion of XML Declaration
12.6.
Character Encoding
12.7.
Whitespace
12.8.
XML Versions
13.
Internationalization Considerations
14.
Security Considerations
14.1.
High Security
14.2.
Certificates
14.2.1.
Certificate Generation
14.2.1.1.
General Considerations
14.2.1.2.
Server Certificates
14.2.1.3.
Client Certificates
14.2.1.4.
ASN.1 Object Identifier
14.2.2.
Certificate Validation
14.2.2.1.
Server Certificates
14.2.2.2.
Client Certificates
14.2.2.3.
Checking of Certificates in Long-Lived Streams
14.2.2.4.
Use of Certificates in XMPP Extensions
14.3.
Client-to-Server Communication
14.4.
Server-to-Server Communication
14.5.
Order of Layers
14.6.
Mandatory-to-Implement Technologies
14.7.
Hash Function Agility
14.8.
SASL Downgrade Attacks
14.9.
Lack of SASL Channel Binding to TLS
14.10.
Use of base64 in SASL
14.11.
Stringprep Profiles
14.12.
Address Spoofing
14.12.1.
Address Forging
14.12.2.
Address Mimicking
14.13.
Firewalls
14.14.
Denial of Service
14.15.
Presence Leaks
14.16.
Directory Harvesting
15.
IANA Considerations
15.1.
XML Namespace Name for TLS Data
15.2.
XML Namespace Name for SASL Data
15.3.
XML Namespace Name for Stream Errors
15.4.
XML Namespace Name for Resource Binding
15.5.
XML Namespace Name for Stanza Errors
15.6.
Nodeprep Profile of Stringprep
15.7.
Resourceprep Profile of Stringprep
15.8.
GSSAPI Service Name
15.9.
Port Numbers
16.
Conformance Requirements
17.
References
17.1.
Normative References
17.2.
Informative References
Appendix A.
Nodeprep
A.1.
Introduction
A.2.
Character Repertoire
A.3.
Mapping
A.4.
Normalization
A.5.
Prohibited Output
A.6.
Bidirectional Characters
A.7.
Notes
Appendix B.
Resourceprep
B.1.
Introduction
B.2.
Character Repertoire
B.3.
Mapping
B.4.
Normalization
B.5.
Prohibited Output
B.6.
Bidirectional Characters
Appendix C.
XML Schemas
C.1.
Streams Namespace
C.2.
Stream Error Namespace
C.3.
STARTTLS Namespace
C.4.
SASL Namespace
C.5.
Resource Binding Namespace
C.6.
Stanza Error Namespace
Appendix D.
Contact Addresses
Appendix E.
Account Provisioning
Appendix F.
Differences From RFC 3920
Appendix G.
Copying Conditions
§
Index
§
Author's Address
TOC |
TOC |
The Extensible Messaging and Presence Protocol (XMPP) is an application profile of the Extensible Markup Language [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.) for streaming XML data in close to real time between any two (or more) network-aware entities. XMPP is typically used to exchange messages, share presence information, and engage in structured request-response interactions. The basic syntax and semantics of XMPP were developed originally within the Jabber open-source community, mainly in 1999. In late 2002, the XMPP Working Group was chartered with developing an adaptation of the core Jabber protocol that would be suitable as an IETF instant messaging (IM) and presence technology. As a result of work by the XMPP WG, [RFC3920] (Saint-Andre, P., Ed., “Extensible Messaging and Presence Protocol (XMPP): Core,” October 2004.) and [RFC3921] (Saint-Andre, P., Ed., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” October 2004.) were published in October 2004, representing the most complete definition of XMPP at that time.
As a result of extensive implementation and deployment experience with XMPP since 2004, as well as more formal interoperability testing carried out under the auspices of the XMPP Standards Foundation (XSF), this document reflects consensus from the XMPP developer community regarding XMPP's core XML streaming technology. In particular, this document incorporates the following backward-compatible changes from RFC 3920:
Therefore, this document defines the core features of XMPP 1.0, thus obsoleting RFC 3920.
Note: [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.) defines the XMPP features needed to provide the basic instant messaging and presence functionality that is described in [IMP‑REQS] (Day, M., Aggarwal, S., and J. Vincent, “Instant Messaging / Presence Protocol Requirements,” February 2000.).
TOC |
This non-normative section provides a developer-friendly, functional summary of XMPP; refer to the sections that follow for a normative definition of XMPP.
The purpose of XMPP is to enable the exchange of relatively small pieces of structured data (called "XML stanzas") over a network between any two (or more) entities. XMPP is implemented using a client-server architecture, wherein a client needs to connect to a server in order to gain access to the network and thus be allowed to exchange XML stanzas with other entities (which can be associated with other servers). The process whereby a client connects to a server, exchanges XML stanzas, and ends the connection is:
Within XMPP, one server can optionally connect to another server to enable inter-domain or inter-server communication. For this to happen, the two servers need to negotiate a connection between themselves and then exchange XML stanzas; the process for doing so is:
* Note: Depending on local service policies, it is possible that a deployed server will use the older server dialback protocol to provide weak identity verification in cases where SASL negotiation would not result in strong authentication (e.g., because TLS negotiation was not mandated by the peer server, or because the certificate presented by the peer server during TLS negotiation is self-signed and thus provides only weak identity); for details, see [XEP‑0220] (Saint-Andre, P. and J. Miller, “Server Dialback,” October 2008.).
In the sections following discussion of XMPP architecture and XMPP addresses, this document specifies how clients connect to servers and specifies the basic semantics of XML stanzas. However, this document does not define the "payloads" of the XML stanzas that might be exchanged once a connection is successfully established; instead, those payloads are defined by various XMPP extensions. For example, [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.) defines extensions for basic instant messaging and presence functionality. In addition, various specifications produced in the XSF's XEP series [XEP‑0001] (Saint-Andre, P., “XMPP Extension Protocols,” January 2008.) define extensions for a wide range of more advanced functionality.
TOC |
The following capitalized keywords are to be interpreted as described in [TERMS] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.): "MUST", "SHALL", "REQUIRED"; "MUST NOT", "SHALL NOT"; "SHOULD", "RECOMMENDED"; "SHOULD NOT", "NOT RECOMMENDED"; "MAY", "OPTIONAL".
Certain security-related terms are to be understood in the sense defined in [SECTERMS] (Shirey, R., “Internet Security Glossary, Version 2,” August 2007.); such terms include, but are not limited to, "assurance", "attack", "authentication", "authorization", "certificate", "certification authority", "confidentiality", "credential", "downgrade", "encryption", "fingerprint", "hash value", "identity", "integrity", "signature", "security perimeter", "self-signed certificate", "sign", "spoof", "tamper", "trust", "trust anchor", "trust chain", "validate", "verify". Other security-related terms (for example, "denial of service") are to be understood in the sense defined in the referenced specifications.
The term "whitespace" is used to refer to any character that matches production [3] content of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.), i.e., any instance of SP, HT, CR, and LF.
Following the "XML Notation" used in [IRI] (Duerst, M. and M. Suignard, “Internationalized Resource Identifiers (IRIs),” January 2005.) to represent characters that cannot be rendered in ASCII-only documents, some examples in this document use the form "&#x...." as a notational device to represent Unicode characters (e.g., the string "ř" stands for the Unicode character LATIN SMALL LETTER R WITH CARON).
In examples, lines have been wrapped for improved readability, "[...]" means elision, and the following prepended strings are used (these prepended strings are not to be sent over the wire):
TOC |
The editor of this document finds it impossible to appropriately acknowledge the many individuals who have provided comments regarding the protocols defined herein. However, thanks are due to those who have who have provided implementation feedback, bug reports, requests for clarification, and suggestions for improvement since the publication of the RFC this document supersedes. The editor has endeavored to address all such feedback, but is solely responsible for any remaining errors and ambiguities.
TOC |
[[ RFC Editor: please remove this section. ]]
The document editor and the broader XMPP developer community welcome discussion and comments related to the topics presented in this document. The primary and preferred venue is the <xmpp@ietf.org> mailing list, for which archives and subscription information are available at https://www.ietf.org/mailman/listinfo/xmpp. Related discussions often occur on the <standards@xmpp.org> mailing list, for which archives and subscription information are available at http://mail.jabber.org/mailman/listinfo/standards.
TOC |
XMPP provides a technology for the asynchronous, end-to-end exchange of structured data by means of direct, persistent XML streams among a distributed network of globally-addressable, presence-aware clients and servers. Because this architectural style involves ubiquitous knowledge of network availability and a conceptually unlimited number of concurrent information transactions in the context of a given client-to-server or server-to-server session, we label it "Availability for Concurrent Transactions" (ACT) to distinguish it from the "Representational State Transfer" [REST] (Fielding, R., “Architectural Styles and the Design of Network-based Software Architectures,” .) architectural style familiar from the World Wide Web. Although the architecture of XMPP is similar in important ways to that of email (see [EMAIL‑ARCH] (Crocker, D., “Internet Mail Architecture,” July 2009.)), it introduces several modifications to facilitate communication in close to real time. The salient features of this ACTive architectural style are as follows.
TOC |
As with email, XMPP uses globally-unique addresses (based on the Domain Name System) in order to route and deliver messages over the network. All XMPP entities are addressable on the network, most particularly clients and servers but also various additional services that can be accessed by clients and servers. In general, server addresses are of the form "domain.tld" (e.g., "im.example.com"), accounts hosted at a server are of the form "localpart@domain.tld" (e.g., "juliet@im.example.com"), and a particular connected device or resource that is currently authorized for interaction on behalf of an account is of the form "localpart@domain.tld/resource" (e.g., "juliet@im.example.com/balcony"). XMPP addresses are defined under Section 3 (Addresses).
TOC |
XMPP includes the ability for an entity to advertise its network availability or "presence" to other entities. Such availability for communication is signalled end-to-end via dedicated communication primitives in XMPP (the <presence/> stanza). Although knowledge of network availability is not strictly necessary for the exchange of XMPP messages, it facilitates real-time interaction because the originator of a message can know before initiating communication that the intended recipient is online and available. XMPP presence is defined in [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.).
TOC |
Availability for communication is also built into point-to-point connections (e.g., a discrete client-to-server or server-to-server connection) through the use of direct, persistent XML streams between the entity that initiated the connection (either a client or a server) and the entity that received the connection (a server). Thus either party to a stream knows that it can immediately push data to the other party for immediate routing or delivery. XML streams are defined under Section 5 (XML Streams).
TOC |
The basic unit of meaning in XMPP is not an XML stream (which simply provides the transport for point-to-point communication) but an XML "stanza", which is essentially a fragment of XML that is sent over a stream. The root element of a stanza includes routing attributes (such as "from" and "to" addresses) and the child elements of the stanza contain a payload for delivery to the intended recipient. XML stanzas are defined under Section 9 (XML Stanzas).
TOC |
In practice, XMPP consists of a network of clients and servers that inter-communicate (however, communication between any two given deployed servers is strictly OPTIONAL). Thus, for example, the user <juliet@im.example.com> associated with the server <im.example.com> might be able to exchange messages, presence, and other structured data with the user <romeo@example.net> associated with the server <example.net>. This pattern is familiar from messaging protocols that make use of global addresses, such as the email network (see [SMTP] (Klensin, J., “Simple Mail Transfer Protocol,” October 2008.) and [EMAIL‑ARCH] (Crocker, D., “Internet Mail Architecture,” July 2009.)). As a result, end-to-end communication in XMPP is logically peer-to-peer but physically client-to-server-to-server-to-client, as illustrated in the following diagram.
example.net ---------------- im.example.com | | | | romeo@example.net juliet@im.example.com
Note: Architectures that employ XML streams (XML Streams) and XML stanzas (XML Stanzas) but that establish peer-to-peer connections directly between clients using technologies based on [LINKLOCAL] (Cheshire, S., Aboba, B., and E. Guttman, “Dynamic Configuration of IPv4 Link-Local Addresses,” May 2005.) have been deployed, but such architectures are not described in this specification and are best described as "XMPP-like"; for details, see [XEP‑0174] (Saint-Andre, P., “Link-Local Messaging,” November 2008.). In addition, XML streams can be established end-to-end over any reliable transport, including extensions to XMPP itself; however, such methods are out of scope for this specification.
The following paragraphs describe the responsibilities of clients and servers on the network.
A CLIENT is an entity that establishes an XML stream with a server by authenticating using the credentials of a local account and that then completes resource binding (Resource Binding) in order to enable delivery of XML stanzas between the server and the client over the negotiated stream. The client then uses XMPP to communicate with its server, other clients, and any other entities on the network, where the server is responsible for delivering stanzas to local entities or routing them to remote entities. Multiple clients can connect simultaneously to a server on behalf of the same local account, where each client is differentiated by the resourcepart of an XMPP address (e.g., <localpart@domain/home> vs. <localpart@domain/work>), as defined under Section 3 (Addresses) and Section 8 (Resource Binding).
A SERVER is an entity whose primary responsibilities are to:
Depending on the application, the secondary responsibilities of an XMPP server can include:
TOC |
TOC |
An ENTITY is anything that is network-addressable and that can communicate using XMPP. For historical reasons, the native address of an XMPP entity is called a JABBER IDENTIFIER or JID. A valid JID contains a set of ordered elements formed of an XMPP localpart, domainpart, and resourcepart.
The syntax for a JID is defined as follows using the Augmented Backus-Naur Form as specified in [ABNF] (Crocker, D. and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” January 2008.).
jid = [ localpart "@" ] domain [ "/" resource ] localpart = 1*(nodepoint) ; a "nodepoint" is a UTF-8 encoded Unicode code ; point that satisfies the Nodeprep profile of ; stringprep domain = fqdn / address-literal fqdn = *(ldhlabel ".") toplabel ldhlabel = letdig [*61(ldh) letdig] toplabel = ALPHA *61(ldh) letdig letdig = ALPHA / DIGIT ldh = ALPHA / DIGIT / "-" address-literal = IPv4address / IPv6address ; the "IPv4address" and "IPv6address" rules are ; defined in RFC 3986 resource = 1*(resourcepoint) ; a "resourcepoint" is a UTF-8 encoded Unicode ; code point that satisfies the Resourceprep ; profile of stringprep
All JIDs are based on the foregoing structure. One common use of this structure is to identify a messaging and presence account, the server that hosts the account, and a connected resource (e.g., a specific device) in the form of <localpart@domain/resource>. However, localparts other than clients are possible; for example, a specific chat room offered by a multi-user conference service (see [XEP‑0045] (Saint-Andre, P., “Multi-User Chat,” July 2007.)) could be addressed as <room@service> (where "room" is the name of the chat room and "service" is the hostname of the multi-user conference service) and a specific occupant of such a room could be addressed as <room@service/nick> (where "nick" is the occupant's room nickname). Many other JID types are possible (e.g., <domain/resource> could be a server-side script or service).
Each allowable portion of a JID (localpart, domainpart, and resourcepart) MUST NOT be more than 1023 bytes in length, resulting in a maximum total size (including the '@' and '/' separators) of 3071 bytes.
Note: While the format of a JID is consistent with [URI] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.), an entity's address on an XMPP network MUST be represented as a JID (without a URI scheme) and not a [URI] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.) or [IRI] (Duerst, M. and M. Suignard, “Internationalized Resource Identifiers (IRIs),” January 2005.) as specified in [XMPP‑URI] (Saint-Andre, P., “Internationalized Resource Identifiers (IRIs) and Uniform Resource Identifiers (URIs) for the Extensible Messaging and Presence Protocol (XMPP),” February 2008.); the latter specification is provided only for identification and interaction outside the context of the XMPP wire protocol itself.
TOC |
The DOMAINPART of a JID is that portion after the '@' character (if any) and before the '/' character (if any); it is the primary identifier and is the only REQUIRED element of a JID (a mere domainpart is a valid JID). Typically a domainpart identifies the "home" server to which clients connect for XML routing and data management functionality. However, it is not necessary for an XMPP domainpart to identify an entity that provides core XMPP server functionality (e.g., a domainpart can identity an entity such as a multi-user conference service, a publish-subscribe service, or a user directory).
Note: A single server can service multiple domainparts, i.e., multiple local domains; this is typically referred to as virtual hosting.
The domainpart for every server or service that will communicate over a network SHOULD be a fully qualified domain name (see [DNS] (Mockapetris, P., “Domain names - implementation and specification,” November 1987.)); while the domainpart MAY be either an Internet Protocol (IPv4 or IPv6) address or a text label that is resolvable on a local network (commonly called an "unqualified hostname"), it is possible that domainparts that are IP addresses will not be acceptable to other services for the sake of interdomain communication. Furthermore, domainparts that are unqualified hostnames MUST NOT be used on public networks but MAY be used on private networks.
Note: If the domainpart includes a final character considered to be a label separator (dot) by [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing Domain Names in Applications (IDNA),” March 2003.) or [DNS] (Mockapetris, P., “Domain names - implementation and specification,” November 1987.), this character MUST be stripped from the domainpart before the JID of which it is a part is used for the purpose of routing an XML stanza, comparing against another JID, or constructing an [XMPP‑URI] (Saint-Andre, P., “Internationalized Resource Identifiers (IRIs) and Uniform Resource Identifiers (URIs) for the Extensible Messaging and Presence Protocol (XMPP),” February 2008.); in particular, the character MUST be stripped before any other canonicalization steps are taken, such as application of the [NAMEPREP] (Hoffman, P. and M. Blanchet, “Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN),” March 2003.) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.) or completion of the ToASCII operation as described in [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing Domain Names in Applications (IDNA),” March 2003.).
A domainpart MUST be an "internationalized domain name" as defined in [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing Domain Names in Applications (IDNA),” March 2003.), that is, "a domain name in which every label is an internationalized label". When preparing a text label (consisting of a sequence of Unicode code points) for representation as an internationalized label in the process of constructing an XMPP domainpart or comparing two XMPP domainparts, an application MUST ensure that for each text label it is possible to apply without failing the ToASCII operation specified in [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing Domain Names in Applications (IDNA),” March 2003.) with the UseSTD3ASCIIRules flag set (thus forbidding ASCII code points other than letters, digits, and hyphens). If the ToASCII operation can be applied without failing, then the label is an internationalized label. An internationalized domain name (and therefore an XMPP domainpart) is constructed from its constituent internationalized labels by following the rules specified in [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing Domain Names in Applications (IDNA),” March 2003.).
Note: The ToASCII operation includes application of the [NAMEPREP] (Hoffman, P. and M. Blanchet, “Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN),” March 2003.) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.) and encoding using the algorithm specified in [PUNYCODE] (Costello, A., “Punycode: A Bootstring encoding of Unicode for Internationalized Domain Names in Applications (IDNA),” March 2003.); for details, see [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing Domain Names in Applications (IDNA),” March 2003.). Although the output of the ToASCII operation is not used in XMPP, it MUST be possible to apply that operation without failing.
In the terms of IDNA2008 [IDNA‑DEFS] (Klensin, J., “Internationalized Domain Names for Applications (IDNA): Definitions and Document Framework,” January 2010.), the domainpart of a JID is a "domain name slot".
TOC |
The LOCALPART of a JID is an optional identifier placed before the domainpart and separated from the latter by the '@' character. Typically a localpart uniquely identifies the entity requesting and using network access provided by a server (i.e., a local account), although it can also represent other kinds of entities (e.g., a chat room associated with a multi-user conference service). The entity represented by an XMPP localpart is addressed within the context of a specific domain.
A localpart MUST NOT be zero bytes in length and, as for all portions of a JID, MUST NOT be more than 1023 bytes in length.
A localpart MUST be formatted such that the Nodeprep profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.) can be applied without failing (see Appendix A (Nodeprep)). Before comparing two localparts, an application MUST first ensure that the Nodeprep profile has been applied to each identifier (the profile need not be applied each time a comparison is made, as long as it has been applied before comparison).
TOC |
The resourcepart of a JID is an optional identifier placed after the domainpart and separated from the latter by the '/' character. A resourcepart can modify either a <localpart@domain> address or a mere <domain> address. Typically a resourcepart uniquely identifies a specific connection (e.g., a device or location) or object (e.g., a participant in a multi-user conference room) belonging to the entity associated with an XMPP localpart at a local domain.
When an XMPP address does not include a resourcepart (i.e., when it is of the form <domain> or <localpart@domain>), it is referred to as a BARE JID. When an XMPP address includes a resourcepart (i.e., when it is of the form <domain/resource> or <localpart@domain/resource>), is referred to as a FULL JID.
A resourcepart MUST NOT be zero bytes in length and, as for all portions of a JID, MUST NOT be more than 1023 bytes in length.
A resourcepart MUST be formatted such that the Resourceprep profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.) can be applied without failing (see Appendix B (Resourceprep)). Before comparing two resourceparts, an application MUST first ensure that the Resourceprep profile has been applied to each identifier (the profile need not be applied each time a comparison is made, as long as it has been applied before comparison).
Note: For historical reasons, the term "resource identifier" is often used in XMPP to refer to the optional portion of an XMPP address that follows the domainpart and the "/" separator character; to help prevent confusion between an XMPP "resource identifier" and the meanings of "resource" and "identifier" provided in Section 1.1 of [URI] (Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” January 2005.), this specification typically uses the term "resourcepart" instead of "resource identifier" (as in RFC 3920).
XMPP entities SHOULD consider resourceparts to be opaque strings and SHOULD NOT impute meaning to any given resourcepart. In particular, the use of the '/' character as a separator between the domainpart and the resourcepart does not imply that XMPP addresses are hierarchical in the way that, say, HTTP addresses are hierarchical; thus for example an XMPP address of the form <localpart@domain/foo/bar> does not identify a resource "bar" that exists below a resource "foo" in a hierarchy of resources associated with the entity "localpart@domain".
TOC |
After the parties to an XML stream have completed the appropriate aspects of stream negotiation (typically SASL negotiation (SASL Negotiation) and, if appropriate, resource binding (Resource Binding)) the receiving entity for a stream MUST determine the initiating entity's JID.
For server-to-server communication, the initiating server's JID MUST be the authorization identity (as defined by [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.)), either (1) as directly communicated by the initiating server during SASL negotiation (SASL Negotiation) or (2) as derived by the receiving server from the authentication identity if no authorization identity was specified during SASL negotiation (SASL Negotiation). (For information about the determination of addresses in the absence of SASL negotiation when the older server dialback protocol is used, see [XEP‑0220] (Saint-Andre, P. and J. Miller, “Server Dialback,” October 2008.).)
For client-to-server communication, the client's bare JID (<localpart@domain>) MUST be the authorization identity (as defined by [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.)), either (1) as directly communicated by the client during SASL negotiation (SASL Negotiation) or (2) as derived by the server from the authentication identity if no authorization identity was specified during SASL negotiation (SASL Negotiation). The resourcepart of the full JID (<localpart@domain/resource>) MUST be the resource negotiated by the client and server during resource binding (Resource Binding).
The receiving entity MUST ensure that the resulting JID (including localpart, domainpart, resourcepart, and separator characters) conforms to the rules and formats defined earlier in this section; to meet this restriction, the receiving entity MAY replace the JID sent by the initiating entity with the canonicalized JID as determined by the receiving entity.
TOC |
TOC |
As XMPP is defined in this specification, an initiating entity (client or server) MUST open a Transmission Control Protocol [TCP] (Postel, J., “Transmission Control Protocol,” September 1981.) connection at the receiving entity (server) before it negotiates XML streams with the receiving entity. The parties then maintain that TCP connection for as long as the XML streams are in use. The rules specified in the following sections apply to the TCP binding.
TOC |
Before opening the TCP connection, the initiating entity first MUST resolve the Domain Name System (DNS) hostname associated with the receiving entity and determine the appropriate TCP port for communication with the receiving entity. The process is:
Note: If the initiating entity has been explicitly configured to associate a particular hostname (and potentially port) with the original hostname of the receiving entity (say, to "hardcode" an association between an original hostname of example.net and a configured hostname and of webcm.example.com:80), the initiating entity SHALL use the configured name instead of performing the foregoing resolution process on the original name.
Note: Many XMPP servers are implemented in such a way that they can host additional services (beyond those defined in this specification and [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.)) at hostnames that are subdomains of the hostname of the main XMPP service (e.g., conference.example.net for a [XEP‑0045] (Saint-Andre, P., “Multi-User Chat,” July 2007.) service associated with the example.net XMPP service) or subdomains of the first-level domain of the underlying host (e.g., muc.example.com for a [XEP‑0045] (Saint-Andre, P., “Multi-User Chat,” July 2007.) service associated with the im.example.com XMPP service). If an entity from a remote domain wishes to use such additional services, it would generate an appropriate XML stanza and the remote domain itself would attempt to resolve the service's hostname via an SRV lookup on resource records such as "_xmpp-server._tcp.conference.example.net." or "_xmpp-server._tcp.muc.example.com.". Therefore if a service wishes to enable entities from remote domains to access these additional services, it needs to advertise the appropriate "_xmpp-server" SRV records in addition to the "_xmpp-server" record for its main XMPP service.
TOC |
Because a client is subordinate to a server and therefore a client authenticates to the server but the server does not necessarily authenticate to the client, it is necessary to have only one TCP connection between client and server. Thus the server MUST allow the client to share a single TCP connection for XML stanzas sent from client to server and from server to client (i.e., the inital stream and response stream as specified under Section 5 (XML Streams)).
TOC |
Because two servers are peers and therefore each peer MUST authenticate with the other, the servers MUST use two TCP connections: one for XML stanzas sent from the first server to the second server and another (initiated by the second server) for XML stanzas from the second server to the first server.
This rule applies only to XML stanzas (XML Stanzas). Therefore during STARTTLS negotiation (STARTTLS Negotiation) and SASL negotiation (SASL Negotiation) the servers would use one TCP connection, but after stream setup that TCP connection would be used only for the initiating server to send XML stanzas to the receiving server. In order for the receiving server to send XML stanzas to the initiating server, the receiving server would need to reverse the roles and negotiate an XML stream from the receiving server to the initiating server.
TOC |
It can happen that an XMPP server goes offline while servicing TCP connections from local clients and from other servers. Because the number of such connections can be quite large, the reconnection algorithm employed by entities that seek to reconnect can have a significant impact on software and network performance. The following guidelines are RECOMMENDED:
Note: Because it is possible that a disconnected entity cannot determine the cause of disconnection (e.g., because there was no explicit stream error) or does not need a new stream for immediate communication (e.g., because the stream was idle and therefore timed out), it SHOULD NOT assume that is needs to reconnect immediately.
TOC |
The use of long-lived TCP connections in XMPP implies that the sending of XML stanzas over XML streams can be unreliable, since the parties to a long-lived TCP connection might not discover a connectivity disruption in a timely manner. At the XMPP application layer, long connectivity disruptions can result in undelivered stanzas. Although the core XMPP technology defined in this specification does not contain features to overcome this lack of reliability, there exist XMPP extensions for doing so (e.g., [XEP‑0198] (Karneges, J., Hildebrand, J., Saint-Andre, P., and F. Forno, “Stream Management,” June 2009.)).
TOC |
There is no necessary coupling of an XML stream to a TCP connection. For example, two entities could connect to each other via another transport, such as [HTTP] (Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.) as specified in [XEP‑0124] (Paterson, I., Smith, D., and P. Saint-Andre, “Bidirectional-streams Over Synchronous HTTP (BOSH),” April 2009.) and [XEP‑0206] (Paterson, I., “XMPP Over BOSH,” October 2008.). Although this specification neither encourages nor discourages other bindings, it defines only a binding of XMPP to TCP.
TOC |
TOC |
Two fundamental concepts make possible the rapid, asynchronous exchange of relatively small payloads of structured information between presence-aware entities: XML streams and XML stanzas. These terms are defined as follows.
- Definition of XML Stream:
- An XML STREAM is a container for the exchange of XML elements between any two entities over a network. The start of an XML stream is denoted unambiguously by an opening STREAM HEADER (i.e., an XML <stream> tag with appropriate attributes and namespace declarations), while the end of the XML stream is denoted unambiguously by a closing XML </stream> tag. During the life of the stream, the entity that initiated it can send an unbounded number of XML elements over the stream, either elements used to negotiate the stream (e.g., to complete TLS negotiation (STARTTLS Negotiation) or SASL negotiation (SASL Negotiation)) or XML stanzas. The INITIAL STREAM is negotiated from the initiating entity (typically a client or server) to the receiving entity (typically a server), and can be seen as corresponding to the initiating entity's "connection" or "session" with the receiving entity. The initial stream enables unidirectional communication from the initiating entity to the receiving entity; in order to enable information exchange from the receiving entity to the initiating entity, the receiving entity MUST negotiate a stream in the opposite direction (the RESPONSE STREAM).
- Definition of XML Stanza:
- An XML STANZA is a discrete semantic unit of structured information that is sent from one entity to another over an XML stream, and is the basic unit of meaning in XMPP. An XML stanza exists at the direct child level of the root <stream/> element; the start of any XML stanza is denoted unambiguously by the element start tag at depth=1 of the XML stream (e.g., <presence>), and the end of any XML stanza is denoted unambiguously by the corresponding close tag at depth=1 (e.g., </presence>). The only XML stanzas defined herein are the <message/>, <presence/>, and <iq/> elements qualified by the default namespace for the stream, as described under Section 9 (XML Stanzas); for example, an XML element sent for the purpose of TLS negotiation (STARTTLS Negotiation) or SASL negotiation (SASL Negotiation) is not considered to be an XML stanza, nor is a stream error or a stream feature. An XML stanza MAY contain child elements (with accompanying attributes, elements, and XML character data) as necessary in order to convey the desired information, which MAY be qualified by any XML namespace (see [XML‑NAMES] (Layman, A., Hollander, D., Tobin, R., and T. Bray, “Namespaces in XML 1.1 (Second Edition),” August 2006.) as well as Section 9.4 (Extended Content) herein).
Consider the example of a client's connection to a server. In order to connect to a server, a client initiates an XML stream by sending a stream header to the server, optionally preceded by a text declaration specifying the XML version and the character encoding supported (see Section 12.5 (Inclusion of XML Declaration) and Section 12.6 (Character Encoding)). Subject to local policies and service provisioning, the server then replies with a second XML stream back to the client, again optionally preceded by a text declaration. Once the client has completed SASL negotiation (SASL Negotiation) and resource binding (Resource Binding), the client can send an unbounded number of XML stanzas over the stream. When the client desires to close the stream, it simply sends a closing </stream> tag to the server as further described under Section 5.3 (Closing a Stream).
In essence, then, an XML stream acts as an envelope for all the XML stanzas sent during a connection. We can represent this in a simplistic fashion as follows.
+--------------------+ | <stream> | |--------------------| | <presence> | | <show/> | | </presence> | |--------------------| | <message to='foo'> | | <body/> | | </message> | |--------------------| | <iq to='bar'> | | <query/> | | </iq> | |--------------------| | <iq from='bar'> | | <query/> | | </iq> | |--------------------| | [ ... ] | |--------------------| | </stream> | +--------------------+
Note: Those who are accustomed to thinking of XML in a document-centric manner might view a client's connection to a server as consisting of two open-ended XML documents: one from the client to the server and one from the server to the client. On this analogy, the two XML streams can be considered equivalent to two "documents" (matching production [1] content of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.)) that are built up through the accumulation of XML stanzas, the root <stream/> element can be considered equivalent to the "document entity" for each "document" (as described in Section 4.8 of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.)), and the XML stanzas sent over the streams can be considered equivalent to "fragments" of the "documents" as described in [XML‑FRAG] (Grosso, P. and D. Veillard, “XML Fragment Interchange,” February 2001.). However, this perspective is merely an analogy; XMPP does not deal in documents and fragments but in streams and stanzas.
The remainder of this section defines the following aspects of XML streams:
TOC |
TOC |
Because the receiving entity for a stream acts as a gatekeeper to the domains it services, it imposes certain conditions for connecting as a client or as a peer server. At a minimum, the initiating entity needs to authenticate with the receiving entity before it is allowed to send stanzas to the receiving entity, typically using SASL as described under Section 7 (SASL Negotiation). However, the receiving entity can consider conditions other than authentication to be mandatory, such as encryption using TLS as described under Section 6 (STARTTLS Negotiation). The receiving entity informs the initiating entity about such conditions by communicating STREAM FEATURES: the set of particular protocol interactions that are mandatory for the initiating entity to complete before the receiving entity will accept XML stanzas from the initiating entity (e.g., authentication), as well as any protocol interactions that are voluntary but that might improve the handling of an XML stream (e.g., establishment of application-layer compression).
The existence of conditions for connecting implies that streams need to be negotiated. The order of layers (TCP, then TLS, then SASL, then XMPP; see Section 14.5 (Order of Layers)) implies that stream negotiation is a multi-stage process. Further structure is imposed by two factors: (1) a given stream feature might be made available only to certain entities or only after certain other features have been negotiated (e.g., resource binding is made available only after SASL authentication), and (2) stream features can be either mandatory-to-negotiate or voluntary-to-negotiate. Finally, for security reasons the parties to a stream need to discard knowledge that they gained during the negotiation process after successfully completing the protocol interactions defined for certain features (e.g., TLS in all cases and SASL in the case when a security layer might be established); this is done by flushing the old stream context and exchanging new stream headers over the existing TCP connection.
TOC |
If the initiating entity includes the 'version' attribute set to a value of at least "1.0" in the initial stream header, after sending the response stream header the receiving entity MUST send a <features/> child element (prefixed by the streams namespace prefix) to the initiating entity in order to announce any conditions for continuation of the stream negotiation process. Each condition takes the form of a child element of the <features/> element, qualified by a namespace that is different from the streams namespace and the default namespace.
If a particular stream feature is or can be mandatory-to-negotiate, the definition of that feature needs to either declare that the feature is always mandatory-to-negotiate (e.g., this is true of resource binding for XMPP clients) or specify a way for the receiving entity to flag the feature as mandatory-to-negotiate for this interaction (e.g., this is done for TLS by including an empty <required/> element in the advertisement for that stream feature).
For security reasons, certain stream features necessitate the initiating entity to send a new initial stream header upon successful negotiation of the feature (e.g., TLS in all cases and SASL in the case when a security layer might be established). If this is true of a given stream feature, the definition of that feature needs to declare that a stream restart is expected after negotiation of the feature.
A <features/> element that contains at least one mandatory feature indicates that the stream negotiation is not complete and that the initiating entity MUST negotiate further features.
R: <stream:features> <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'> <required/> </starttls> </stream:features>
A <features/> element MAY contain more than one mandatory feature. This means that the initiating entity can choose among the mandatory features. For example, perhaps a future technology will perform roughly the same function as TLS, so the receiving entity might advertise support for both TLS and the future technology.
A <features/> element that contains only voluntary features indicates that the stream negotiation is complete and that the initiating entity is cleared to send XML stanzas, but that the initiating entity MAY negotiate further features if desired.
R: <stream:features> <session xmlns='urn:ietf:params:xml:ns:xmpp-session'/> <compression xmlns='http://jabber.org/features/compress'> <method>zlib</method> <method>lzw</method> </compression> </stream:features>
A <features/> element that contains both mandatory and voluntary features indicates that the negotiation is not complete but that the initiating entity MAY complete the voluntary feature(s) before it attempts to negotiate the mandatory feature(s).
R: <stream:features> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/> <compression xmlns='http://jabber.org/features/compress'> <method>zlib</method> <method>lzw</method> </compression> </stream:features>
An empty <features/> element indicates that the stream negotiation is complete and that the initiating entity is cleared to send XML stanzas.
R: <stream:features/>
Note: The order of child elements contained in any given <features/> element is not significant.
TOC |
On successful negotiation of a feature that necessitates a stream restart, both parties MUST consider the previous stream to be replaced but MUST NOT terminate the underlying TCP connection; instead, the parties MUST reuse the existing connection, which might be in a new state (e.g., encrypted as a result of TLS negotiation). The initiating entity then MUST send a new initial stream header, which SHOULD be preceded by an XML declaration as described under Section 12.5 (Inclusion of XML Declaration). When the receiving entity receives the new initial stream header, it MUST generate a new stream ID (instead of re-using the old stream ID) before sending a new response stream header (which SHOULD be preceded by an XML declaration as described under Section 12.5 (Inclusion of XML Declaration)).
For the sake of backward compatibility, the receiving entity MUST accept stream restarts at any stage in the stream negotiation process even if the receiving entity has not indicated that a stream restart is mandatory at that stage.
TOC |
After completing negotiation of any stream feature (even stream features that do not necessitate a stream restart), the receiving entity MUST send an updated list of stream features to the initiating entity, where the list MAY be empty if there are no further features to be advertised.
At any time after stream establishment and before closing of the stream, the receiving entity MAY send additional or modified stream feature advertisements to the initiating entity (e.g., because a new feature has been enabled).
TOC |
The receiving entity indicates completion of the stream negotiation process by sending to the initiating entity either an empty <features/> element or a <features/> element that contains only voluntary features. After doing so, the receiving entity MUST NOT send additional stream features to the initiating entity (if the receiving entity has new features to offer, it can simply close the stream using a <reset/> stream error and then advertise the new features when the initiating entity reconnects, preferably closing existing streams in a staggered way so that not all of the initiating entities reconnect at once). Once stream negotiation is complete, the initiating entity is cleared to send XML stanzas over the stream for as long as the stream is maintained by both parties.
The initiating entity MUST NOT attempt to send XML stanzas (XML Stanzas) to entities other than itself (i.e., the client's connected resource or any other authenticated resource of the client's account) or the server until stream negotiation has been completed. However, if it does attempt to do so, the receiving entity MUST NOT accept such stanzas and MUST return a <not-authorized/> stream error. This rule applies to XML stanzas only (i.e., <message/>, <presence/>, and <iq/> elements qualified by the default namespace) and not to XML elements used for stream negotiation (e.g., elements used to complete TLS negotiation (STARTTLS Negotiation) or SASL negotiation (SASL Negotiation)).
TOC |
We summarize the foregoing rules in the following non-normative state chart for the stream negotiation process, presented from the perspective of the initiating entity.
+------------+ | open TCP | | connection | +------------+ | +---------------+ | send initial |<-------------------------+ | stream header | | +---------------+ | | | +------------------+ | | receive response | | | stream header | | +------------------+ | | | +----------------+ | | receive stream | | +------------------>| features | | | +----------------+ | | | | | +<-----------------+ | | | | | {empty?} ----> {all voluntary?} ----> {some mandatory?} | | | no | no | | | | yes | yes | | | | | | | | | +---------------+ +----------------+ | | | | MAY negotiate | | MUST negotiate | | | | | any or none | | one feature | | | | +---------------+ +----------------+ | | | | | | | +----------+ +-----------+ | | | | process |<-----| negotiate | | | | | complete | no | a feature | | | | +----------+ +-----------+ | | | | | | | yes | | | | | | | | +----->----+----<-----+ | | | | | | | +<---------------------------[restart mandatory?]------------->+ no yes
TOC |
An XML stream between two entities can be closed because a stream error has occurred or in some cases in the absence of an error. Where feasible, it is preferable to close a stream only if a stream error has occurred.
A stream is closed by sending a closing </stream> tag over the TCP connection.
S: </stream:stream>
After an entity sends a closing stream tag, it MUST NOT send further data over that stream.
TOC |
If a stream error has occurred, the entity that detects the error MUST close the stream as described under Section 5.6.1 (Rules).
TOC |
At any time after XML streams have been negotiated between two entities, either entity MAY close its stream to the other party in the absence of a stream error by sending a closing stream tag.
P: </stream:stream>
The entity that sends the closing stream tag SHOULD wait for the other party to also close its stream.
S: </stream:stream>
However, the entity that sends the first closing stream tag MAY consider both streams to be void if the other party does not send its closing stream tag within a reasonable amount of time (where the definition of "reasonable" is a matter of implementation or deployment).
After the entity that sent the first closing stream tag receives a reciprocal closing stream tag from the other party (or if it considers the stream to be void after a reasonable amount of time), it MUST terminate the underlying TCP connection or connections.
TOC |
An XML stream can become idle, i.e., neither entity has sent XMPP traffic over the stream for some period of time. The idle timeout period is a matter of implementation and local service policy; however, it is RECOMMENDED to be liberal in accepting idle streams, since experience has shown that doing so improves the reliability of communications over XMPP networks. In particular, it is typically more efficient to maintain a stream between two servers than it is to aggressively timeout such a stream, especially with regard to synchronization of presence information as described in [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.); therefore it is RECOMMENDED to maintain such a stream since experience has shown that server-to-server streams are cyclical and typically need to be re-established every 24 to 48 hours if they are timed out.
An XML stream can appear idle at the XMPP level because the underlying TCP connection has become idle (e.g., a client's network connection has been lost). One common method for preventing a TCP connection from going idle or for detecting an idle TCP connection is to send a space character (U+0020) over the TCP connection between XML stanzas, which is allowed for XML streams as described under Section 12.7 (Whitespace); the sending of such a space character is properly called a WHITESPACE KEEPALIVE (although the term "whitespace ping" is often used, in fact it is not a ping since no "pong" is possible). Other connection-testing methods include the application-level pings described in [XEP‑0199] (Saint-Andre, P., “XMPP Ping,” June 2009.) and the more comprehensive stream management protocol described in [XEP‑0198] (Karneges, J., Hildebrand, J., Saint-Andre, P., and F. Forno, “Stream Management,” June 2009.). Implementers are advised to support whichever connection-testing methods they deem appropriate, but to carefully weigh the network impact of such methods against the benefits of discovering idle streams in a timely manner. The length of time between the use of any particular connection test is a matter of implementation and local service policy; however, it is RECOMMENDED that any such test be performed not more than once every 60 seconds.
To close an idle stream with a local client or remote server, a server MUST close the stream without error as explained under Section 5.3.2 (Without Stream Error).
TOC |
The attributes of the root <stream/> element are defined in the following sections.
Note: The attributes of the root <stream/> element are not prepended by a namespace prefix because, as explained in [XML‑NAMES] (Layman, A., Hollander, D., Tobin, R., and T. Bray, “Namespaces in XML 1.1 (Second Edition),” August 2006.), "[d]efault namespace declarations do not apply directly to attribute names; the interpretation of unprefixed attributes is determined by the element on which they appear."
TOC |
The 'from' attribute communicates an XMPP identity of the entity sending the stream element.
Note: It is possible for an entity to have more than one XMPP identity (e.g., in the case of a server that provides virtual hosting). It is also possible that an entity does not know the XMPP identity of the principal controlling the entity (e.g., because the XMPP identity is assigned at a level other than the XMPP application layer, as in the General Security Service Application Program Interface [GSS‑API] (Linn, J., “Generic Security Service Application Program Interface Version 2, Update 1,” January 2000.)).
For initial stream headers in client-to-server communication, if the client knows the XMPP identity of the principal controlling the client (typically an account name of the form <localpart@domain>), then it MAY include the 'from' attribute and set its value to that identity; if not, then it MUST NOT include the 'from' attribute. Note: Including the XMPP identity before the stream is protected via TLS can expose that identity to eavesdroppers.
I: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
For initial stream headers in server-to-server communication, a server MUST include the 'from' attribute and MUST set its value to a hostname serviced by the initiating entity.
I: <?xml version='1.0'?> <stream:stream from='example.net' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'>
For response stream headers in both client-to-server and server-to-server communication, the receiving entity MUST include the 'from' attribute and MUST set its value to a hostname serviced by the receiving entity (which MAY be a hostname other than that specified in the 'to' attribute of the initial stream header).
R: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
Whether or not the 'from' attribute is included, each entity MUST verify the identity of the other entity before exchanging XML stanzas with it (see Section 14.3 (Client-to-Server Communication) and Section 14.4 (Server-to-Server Communication)).
Note: It is possible that implementations based on the predecessor to this specification will not include the 'from' address on stream headers; an entity SHOULD be liberal in accepting such stream headers.
TOC |
For initial stream headers in both client-to-server and server-to-server communication, the initiating entity MUST include the 'to' attribute and MUST set its value to a hostname that the initiating entity knows or expects the receiving entity to service.
I: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
For response stream headers in client-to-server communication, if the client included a 'from' attribute in the initial stream header then the server MUST include a 'to' attribute in the response stream header and MUST set its value to the bare JID specified in the 'from' attribute of the initial stream header. If the client did not include a 'from' attribute in the initial stream header then the server MUST NOT include a 'to' attribute in the response stream header.
R: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
For response stream headers in server-to-server communication, the receiving entity MUST include a 'to' attribute in the response stream header and MUST set its value to the hostname specified in the 'from' attribute of the initial stream header.
R: <?xml version='1.0'?> <stream:stream from='im.example.com' id='g4qSvGvBxJ+xeAd7QKezOQJFFlw=' to='example.net' version='1.0' xml:lang='en' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'>
Whether or not the 'to' attribute is included, each entity MUST verify the identity of the other entity before exchanging XML stanzas with it (see Section 14.3 (Client-to-Server Communication) and Section 14.4 (Server-to-Server Communication)).
Note: It is possible that implementations based on the predecessor to this specification will not include the 'to' address on stream headers; an entity SHOULD be liberal in accepting such stream headers.
TOC |
The 'id' attribute communicates a unique identifier for the stream. This identifier is called a STREAM ID. The stream ID MUST be generated by the receiving entity when it sends a response stream header, MUST BE unique within the receiving application (normally a server), and MUST be both unpredictable and nonrepeating because it can be security-critical (see [RANDOM] (Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” June 2005.) for recommendations regarding randomness for security purposes).
For initial stream headers, the initiating entity MUST NOT include the 'id' attribute; however, if the 'id' attribute is included, the receiving entity MUST silently ignore it.
For response stream headers, the receiving entity MUST include the 'id' attribute.
R: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
TOC |
The 'xml:lang' attribute communicates an entity's preferred or default language for any human-readable XML character data to be sent over the stream. The syntax of this attribute is defined in Section 2.12 of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.); in particular, the value of the 'xml:lang' attribute MUST conform to the NMTOKEN datatype (as defined in Section 2.3 of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.)) and MUST conform to the language identifier format defined in [LANGTAGS] (Phillips, A. and M. Davis, “Tags for Identifying Languages,” September 2009.).
For initial stream headers, the initiating entity SHOULD include the 'xml:lang' attribute.
I: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
For response stream headers, the receiving entity MUST include the 'xml:lang' attribute. If the initiating entity included an 'xml:lang' attribute in its initial stream header and the receiving entity supports that language in the human-readable XML character data that it generates and sends to the initiating entity (e.g., in the <text/> element for stream and stanza errors), the value of the 'xml:lang' attribute MUST be an identifier for the initiating entity's preferred language; if the receiving entity supports a language that closely matches the initiating entity's preferred language (e.g., "de" instead of "de-CH"), then the value of the 'xml:lang' attribute SHOULD be the identifier for the matching language but MAY be the identifier for the default language of the receiving entity; if the receiving entity does not support the initiating entity's preferred language or a closely matching language (or the initiating entity did not include the 'xml:lang' attribute in its initial stream header), then the value of the 'xml:lang' attribute MUST be the identifier for the default language of the receiving entity.
R: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
If the initiating entity included the 'xml:lang' attribute in its initial stream header, the receiving entity SHOULD remember that value as the default xml:lang for all stanzas sent by the initiating entity. As described under Section 9.1.5 (xml:lang), the initiating entity MAY include the 'xml:lang' attribute in any XML stanzas it sends over the stream. If the initiating entity does not include the 'xml:lang' attribute in any such stanza, the receiving entity SHOULD add the 'xml:lang' attribute to the stanza, whose value MUST be the identifier for the language preferred by the initiating entity (even if the receiving entity does not support that language for human-readable XML character data it generates and sends to the initiating entity, such as in stream or stanza errors). If the initiating entity includes the 'xml:lang' attribute in any such stanza, the receiving entity MUST NOT modify or delete it.
TOC |
The inclusion of the version attribute set to a value of at least "1.0" signals support for the stream-related protocols defined in this specification, including (TLS negotiation (STARTTLS Negotiation), SASL negotiation (SASL Negotiation), Section 5.2.2 (Stream Features Format), and stream errors (Stream Errors).
The version of XMPP specified herein is "1.0"; in particular, XMPP 1.0 encapsulates the stream-related protocols as well as the basic semantics of the three defined XML stanza types (<message/>, <presence/>, and <iq/>).
The numbering scheme for XMPP versions is "<major>.<minor>". The major and minor numbers MUST be treated as separate integers and each number MAY be incremented higher than a single digit. Thus, "XMPP 2.4" would be a lower version than "XMPP 2.13", which in turn would be lower than "XMPP 12.3". Leading zeros (e.g., "XMPP 6.01") MUST be ignored by recipients and MUST NOT be sent.
The major version number will be incremented only if the stream and stanza formats or obligatory actions have changed so dramatically that an older version entity would not be able to interoperate with a newer version entity if it simply ignored the elements and attributes it did not understand and took the actions specified in the older specification.
The minor version number will be incremented only if significant new capabilities have been added to the core protocol (e.g., a newly defined value of the 'type' attribute for message, presence, or IQ stanzas). The minor version number MUST be ignored by an entity with a smaller minor version number, but MAY be used for informational purposes by the entity with the larger minor version number (e.g., the entity with the larger minor version number would simply note that its correspondent would not be able to understand that value of the 'type' attribute and therefore would not send it).
The following rules apply to the generation and handling of the 'version' attribute within stream headers:
TOC |
The following table summarizes the attributes of the root <stream/> element.
+----------+--------------------------+-------------------------+ | | initiating to receiving | receiving to initiating | +----------+--------------------------+-------------------------+ | to | JID of receiver | JID of initiator | | from | JID of initiator | JID of receiver | | id | silently ignored | stream identifier | | xml:lang | default language | default language | | version | XMPP 1.0+ supported | XMPP 1.0+ supported | +----------+--------------------------+-------------------------+
TOC |
TOC |
A streams namespace declaration is REQUIRED in all XML stream headers and the name of the streams namespace MUST be 'http://etherx.jabber.org/streams'. If this rule is violated, the entity that receives the offending stream header MUST return a stream error to the sending entity, which SHOULD be <invalid-namespace/> but MAY be <bad-format/>.
The element names of the <stream/> element and its <features/> and <error/> children MUST be qualified by the streams namespace prefix in all instances. If this rule is violated, the entity that receives the offending element MUST return a stream error to the sending entity, which SHOULD be <bad-format/>.
For historical reasons, an implementation MAY accept only the 'stream:' prefix for these elements. If an entity receives a stream header with a streams namespace prefix it does not accept, it MUST return a stream error to the sending entity, which SHOULD be <bad-namespace-prefix/> but MAY be <bad-format/>.
TOC |
A default namespace declaration is REQUIRED and defines the allowable first-level children of the root stream element. This namespace declaration MUST be the same for the initial stream and the response stream so that both streams are qualified consistently. The default namespace declaration applies to the stream and all first-level child element sent within a stream unless explicitly qualified by the streams namespace or another namespace.
A server implementation MUST support the following two default namespaces:
A client implementation MUST support the 'jabber:client' default namespace.
If an implementation accepts a stream that is qualified by the 'jabber:client' or 'jabber:server' namespace, it MUST support the common attributes (Common Attributes) and basic semantics (Basic Semantics) of all three core stanza types (message, presence, and IQ).
For historical reasons, an implementation MAY refuse to support any other default namespaces. If an entity receives a stream header with a default namespace it does not support, it MUST return an <invalid-namespace/> stream error.
An implementation MUST NOT generate namespace prefixes for elements qualified by the default namespace if the default namespace is 'jabber:client' or 'jabber:server'.
Note: The 'jabber:client' and 'jabber:server' namespaces are nearly identical but are used in different contexts (client-to-server communication for 'jabber:client' and server-to-server communication for 'jabber:server'). The only difference between the two is that the 'to' and 'from' attributes are OPTIONAL on stanzas sent over XML streams qualified by the 'jabber:client' namespace, whereas they are REQUIRED on stanzas sent over XML streams qualified by the 'jabber:server' namespace.
An implementation MAY support a default namespace other than "jabber:client" or "jabber:server". However, because such namespaces would define applications other than XMPP, they are to be defined in separate specifications.
TOC |
Because an XML stanza is the primary unit of meaning in XMPP and because an XML stanza can be routed outside the context of the stream in which it originated, a stream header MUST NOT include namespace declarations for namespaces that are different from the streams namespace and the default namespace.
TOC |
The root stream element MAY contain an <error/> child element that is prefixed by the streams namespace prefix. The error child SHALL be sent by a compliant entity if it perceives that a stream-level error has occurred.
TOC |
The following rules apply to stream-level errors.
TOC |
Stream-level errors are unrecoverable. Therefore, if an error occurs at the level of the stream, the entity that detects the error MUST send a <error/> element with an appropriate child element that specifies the error condition and at the same time send a closing </stream> tag.
C: <message><body></message> S: <stream:error> <xml-not-well-formed xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
The entity that generates the stream error then SHOULD immediately terminate the underlying TCP connection, although it MAY wait until after it receives a closing </stream> tag from the entity to which it sent the stream error.
C: </stream:stream>
TOC |
If the error is triggered by the initial stream header, the receiving entity MUST still send the opening <stream> tag, include the <error/> element as a child of the stream element, and send the closing </stream> tag (preferably all at the same time).
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://wrong.namespace.example.org/'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <invalid-namespace xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
If the initiating entity provides no 'to' attribute or provides an unknown host in the 'to' attribute and the error occurs during stream setup, the receiving entity SHOULD provide an authoritative hostname in the 'from' attribute of the stream header sent before termination, but absent such an authoritative hostname MAY instead simply populate the response stream's 'from' attribute with the value of the initial stream header's 'to' attribute (where the value of the 'from' attribute MAY be empty if the initiating entity provided no 'to' attribute).
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='unknown.host.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <host-unknown xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
When two XML streams are used between the initiating entity and the receiving entity (one in each direction) rather than using a single bidirectional stream, stanza errors triggered by stanzas sent over the outbound stream are returned on the inbound stream (since they are inbound stanzas from the perspective of the entity that sent the triggering stanza), whereas stream errors related to the outbound stream are returned on the outbound stream (since they are not inbound stanzas from the perspective of the entity that sent the triggering stanza but strictly related to the outbound stream itself); the same is true, naturally, of any stream errors that are related to the outbound stream but not triggered by an outbound stanza.
TOC |
The syntax for stream errors is as follows, where "defined-condition" is a placeholder for one of the conditions defined under Section 5.6.3 (Defined Stream Error Conditions).
<stream:error> <defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> [<text xmlns='urn:ietf:params:xml:ns:xmpp-streams' xml:lang='langcode'> [ ... descriptive text ... ] </text>] [application-specific condition element] </stream:error>
The <error/> element:
The <text/> element is OPTIONAL. If included, it MUST be used only to provide descriptive or diagnostic information that supplements the meaning of a defined condition or application-specific condition. It MUST NOT be interpreted programmatically by an application. It MUST NOT be used as the error message presented to a human user, but MAY be shown in addition to the error message associated with the defined condition element (and, optionally, the application-specific condition element).
TOC |
The following stream-level error conditions are defined.
TOC |
The entity has sent XML that cannot be processed.
(In the following example, the client sends an XMPP message that is not well-formed XML.)
C: <message> <body>No closing body tag! </message> S: <stream:error> <bad-format xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
This error MAY be used instead of the more specific XML-related errors, such as <bad-namespace-prefix/>, <invalid-xml/>, <restricted-xml/>, <unsupported-encoding/>, and <xml-not-well-formed/>. However, the more specific errors are RECOMMENDED.
TOC |
The entity has sent a namespace prefix that is unsupported, or has sent no namespace prefix on an element that needs such a prefix (see Section 12.2 (XML Namespace Names and Prefixes)).
(In the following example, the client specifies a namespace prefix of "foobar" for the XML streams namespace.)
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xmlns='jabber:client' xmlns:foobar='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <bad-namespace-prefix xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The server is either (1) closing the existing stream for this entity because a new stream has been initiated that conflicts with the existing stream, or (2) is refusing a new stream for this entity because allowing the new stream would conflict with an existing stream (e.g., because the server allows only a certain number of connections from the same IP address).
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <conflict xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The entity has not generated any traffic over the stream for some period of time (configurable according to a local service policy) and therefore the connection is being dropped.
P: <stream:error> <connection-timeout xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The value of the 'to' attribute provided in the initial stream header corresponds to a hostname that is no longer serviced by the receiving entity.
(In the following example, the peer specifies a 'to' address of "foo.im.example.com" when connecting to the "im.example.com" server, but the server no longer hosts a service at that address.)
P: <?xml version='1.0'?> <stream:stream from='example.net' to='foo.im.example.com' version='1.0' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='g4qSvGvBxJ+xeAd7QKezOQJFFlw=' to='example.net' version='1.0' xml:lang='en' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <host-gone xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The value of the 'to' attribute provided in the initial stream header does not correspond to a hostname that is serviced by the receiving entity.
(In the following example, the peer specifies a 'to' address of "example.org" when connecting to the "im.example.com" server, but the server knows nothing of that address.)
P: <?xml version='1.0'?> <stream:stream from='example.net' to='example.org' version='1.0' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='g4qSvGvBxJ+xeAd7QKezOQJFFlw=' to='example.net' version='1.0' xml:lang='en' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <host-unknown xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
A stanza sent between two servers lacks a 'to' or 'from' attribute, the 'from' or 'to' attribute has no value, or the value is not a valid XMPP address.
(In the following example, the peer sends a stanza without a 'to' address.)
P: <message from='juliet@im.example.com'> <body>Wherefore art thou?</body> </message> S: <stream:error> <improper-addressing xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The server has experienced a misconfiguration or an otherwise-undefined internal error that prevents it from servicing the stream.
S: <stream:error> <internal-server-error xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The JID or hostname provided in a 'from' address is not a valid JID or does not match an authorized JID or validated domain as negotiated between servers via SASL or server dialback, or as negotiated between a client and a server via authentication and resource binding.
(In the following example, a peer that has authenticated only as "example.net" attempts to send a stanza from an address at "example.org".)
P: <message from='romeo@example.org' to='juliet@im.example.com'> <body>Neither, fair saint, if either thee dislike.</body> </message> S: <stream:error> <invalid-from xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The stream ID or server dialback ID is invalid or does not match an ID previously provided.
(In the following example, the server dialback ID is invalid; see [XEP‑0220] (Saint-Andre, P. and J. Miller, “Server Dialback,” October 2008.).)
P: <db:verify from='example.net' to='im.example.com' id='unknown-id' type='invalid'/> S: <stream:error> <invalid-id xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The streams namespace name is something other than "http://etherx.jabber.org/streams" (see Section 12.2 (XML Namespace Names and Prefixes)) or the default namespace is not supported (e.g., something other than "jabber:client" or "jabber:server").
(In the following example, the client specifies a namespace of 'http://wrong.namespace.example.org/' for the stream.)
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xmlns='jabber:client' xmlns:stream='http://wrong.namespace.example.org/'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <invalid-namespace xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The entity has sent invalid XML over the stream to a server that performs validation (see Section 12.4 (Validation)).
(In the following example, the peer attempts to send an IQ stanza of type "subscribe" but the XML schema defines no such value for the 'type' attribute.)
P: <iq from='example.net' id='some-id' to='im.example.com' type='subscribe'> <ping xmlns='urn:xmpp:ping'/> </iq> S: <stream:error> <invalid-xml xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The entity has attempted to send XML stanzas before the stream has been authenticated, or otherwise is not authorized to perform an action related to stream negotiation; the receiving entity MUST NOT process the offending stanza before sending the stream error.
(In the following example, the client attempts to send XML stanzas before authenticating with the server.)
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams' C: <message to='romeo@example.net'> <body>Wherefore art thou?</body> </message> S: <stream:error> <not-authorized xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The entity has violated some local service policy (e.g., the stanza exceeds a configured size limit); the server MAY choose to specify the policy in the <text/> element or in an application-specific condition element.
(In the following example, the client sends an XMPP message that is too large according to the server's local service policy.)
C: <message to='juliet@im.example.com' id='foo'> <body>[ ... the-emacs-manual ... ]</body> </message> S: <stream:error> <policy-violation xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> S: </stream:stream>
TOC |
The server is unable to properly connect to a remote entity that is needed for authentication or authorization, such as a remote authentication database or (in server dialback) the authoritative server.
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <remote-connection-failed xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The server is closing the stream because it has new (typically security-critical) features to offer or needs to reset the stream for some other reason (e.g., because the certificates used to establish a secure context for the stream have expired or have been revoked during the life of the stream).
S: <stream:error> <reset xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The server lacks the system resources necessary to service the stream.
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <resource-constraint xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The entity has attempted to send restricted XML features such as a comment, processing instruction, DTD subset, or XML entity reference (see Section 12.1 (Restrictions)).
(In the following example, the client sends an XMPP message containing an XML comment.)
C: <message to='juliet@im.example.com'> <!--<subject/>--> <body>This message has no subject.</body> </message> S: <stream:error> <restricted-xml xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The server will not provide service to the initiating entity but is redirecting traffic to another host; the XML character data of the <see-other-host/> element returned by the server SHOULD specify the alternate hostname or IP address at which to connect, which SHOULD be a valid domainpart but MAY also include a port number. When it receives a see-other-host stream error, the initiating entity SHOULD cleanly handle the disconnection and then reconnect to the host specified in the <see-other-host/> element; if no port is specified, the initiating entity SHOULD perform a [DNS‑SRV] (Gulbrandsen, A., Vixie, P., and L. Esibov, “A DNS RR for specifying the location of services (DNS SRV),” February 2000.) lookup on the provided domainpart but MAY assume that it can connect to that domainpart at the standard XMPP ports (i.e., 5222 for client-to-server connections and 5269 for server-to-server connections).
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> <stream:error> <see-other-host xmlns='urn:ietf:params:xml:ns:xmpp-streams'> [2001:41D0:1:A49b::1]:9222 </see-other-host> </stream:error> </stream:stream>
TOC |
The server is being shut down and all active streams are being closed.
S: <stream:error> <system-shutdown xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The error condition is not one of those defined by the other conditions in this list; this error condition SHOULD be used only in conjunction with an application-specific condition.
S: <stream:error> <undefined-condition xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> <app-error xmlns='http://example.com/ns'/> </stream:error> </stream:stream>
TOC |
The initiating entity has encoded the stream in an encoding that is not supported by the server (see Section 12.6 (Character Encoding)) or has otherwise improperly encoded the stream (e.g., by violating the rules of the [UTF‑8] (Yergeau, F., “UTF-8, a transformation format of ISO 10646,” November 2003.) encoding).
(In the following example, the client attempts to encode data using UTF-16 instead of UTF-8.)
C: <?xml version='1.0' encoding='UTF-16'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams' <stream:error> <unsupported-encoding xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The receiving entity has advertised a mandatory stream feature that the initiating entity does not support, and has offered no other mandatory feature alongside the unsupported feature.
(In the following example, the receiving entity requires negotiation of an example feature but the initiating entity does not support the feature.)
R: <stream:features> <example xmlns='urn:xmpp:example'/> </stream:features> I: <stream:error> <unsupported-feature xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The initiating entity has sent a first-level child of the stream that is not supported by the server or consistent with the default namespace.
(In the following example, the client attempts to send an XML stanza of <pubsub/> when the default namespace is "jabber:client".)
C: <pubsub> <publish node='princely_musings'> <item id='ae890ac52d0df67ed7cfdf51b644e901'> <entry xmlns='http://www.w3.org/2005/Atom'> <title>Soliloquy</title> <summary> To be, or not to be: that is the question: Whether 'tis nobler in the mind to suffer The slings and arrows of outrageous fortune, Or to take arms against a sea of troubles, And by opposing end them? </summary> <link rel='alternate' type='text/html' href='http://denmark.example/2003/12/13/atom03'/> <id>tag:denmark.example,2003:entry-32397</id> <published>2003-12-13T18:30:02Z</published> <updated>2003-12-13T18:30:02Z</updated> </entry> </item> </publish> </pubsub> S: <stream:error> <unsupported-stanza-type xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
The value of the 'version' attribute provided by the initiating entity in the stream header specifies a version of XMPP that is not supported by the server; the server MAY specify the version(s) it supports in the <text/> element.
(In the following example, the client specifies an XMPP version of "11.0" but the server supports only version "1.0" and "1.1".)
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='11.0' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams' <stream:error> <unsupported-version xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> <text xmlns='urn:ietf:params:xml:ns:xmpp-streams'> 1.0, 1.1 </text> </stream:error> </stream:stream>
TOC |
The initiating entity has sent XML that violates the well-formedness rules of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.) or [XML‑NAMES] (Layman, A., Hollander, D., Tobin, R., and T. Bray, “Namespaces in XML 1.1 (Second Edition),” August 2006.).
(In the following example, the client sends an XMPP message that is not well-formed XML.)
C: <message> <body>No closing body tag! </message> S: <stream:error> <xml-not-well-formed xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
TOC |
As noted, an application MAY provide application-specific stream error information by including a properly-namespaced child in the error element. The application-specific element SHOULD supplement or further qualify a defined element. Thus the <error/> element will contain two or three child elements.
C: <message> <body> My keyboard layout is: QWERTYUIOP{}| ASDFGHJKL:" ZXCVBNM<>? </body> </message> S: <stream:error> <xml-not-well-formed xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> <text xml:lang='en' xmlns='urn:ietf:params:xml:ns:xmpp-streams'> Some special application diagnostic information! </text> <escape-your-data xmlns='http://example.com/ns'/> </stream:error> </stream:stream>
TOC |
This section contains two simplified examples of a stream-based connection between a client and a server; these examples are included for the purpose of illustrating the concepts introduced thus far.
A basic connection:
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> [ ... channel encryption ... ] [ ... authentication ... ] [ ... resource binding ... ] C: <message from='juliet@im.example.com/balcony' to='romeo@example.net' xml:lang='en'> <body>Art thou not Romeo, and a Montague?</body> </message> S: <message from='romeo@example.net/orchard' to='juliet@im.example.com/balcony' xml:lang='en'> <body>Neither, fair saint, if either thee dislike.</body> </message> C: </stream:stream> S: </stream:stream>
A connection gone bad:
C: <?xml version='1.0'?> <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <?xml version='1.0'?> <stream:stream from='im.example.com' id='++TR84Sm6A3hnt3Q065SnAbbk3Y=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> [ ... channel encryption ... ] [ ... authentication ... ] [ ... resource binding ... ] C: <message from='juliet@im.example.com/balcony' to='romeo@example.net' xml:lang='en'> <body>No closing body tag! </message> S: <stream:error> <xml-not-well-formed xmlns='urn:ietf:params:xml:ns:xmpp-streams'/> </stream:error> </stream:stream>
More detailed examples are provided under Section 10 (Examples).
TOC |
TOC |
XMPP includes a method for securing the stream from tampering and eavesdropping. This channel encryption method makes use of the Transport Layer Security [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.) protocol, specifically a "STARTTLS" extension that is modelled after similar extensions for the [IMAP] (Crispin, M., “INTERNET MESSAGE ACCESS PROTOCOL - VERSION 4rev1,” March 2003.), [POP3] (Myers, J. and M. Rose, “Post Office Protocol - Version 3,” May 1996.), and [ACAP] (Newman, C. and J. Myers, “ACAP -- Application Configuration Access Protocol,” November 1997.) protocols as described in [USINGTLS] (Newman, C., “Using TLS with IMAP, POP3 and ACAP,” June 1999.). The XML namespace name for the STARTTLS extension is 'urn:ietf:params:xml:ns:xmpp-tls'.
Support for STARTTLS is REQUIRED in XMPP client and server implementations. An administrator of a given deployment MAY necessitate the use of TLS for client-to-server communication, server-to-server communication, or both. A deployed client SHOULD use TLS to secure its stream with a server prior to attempting the completion of SASL negotiation (SASL Negotiation), and deployed servers SHOULD use TLS between two domains for the purpose of securing server-to-server communication.
TOC |
TOC |
If the receiving entity advertises only the STARTTLS feature or if the receiving entity includes the <required/> child element, the parties MUST consider TLS as mandatory-to-negotiate. If TLS is mandatory-to-negotiate, the receiving entity SHOULD NOT advertise support for any stream feature except STARTTLS during the initial stage of the stream negotiation process, because further stream features might depend on prior negotiation of TLS given the order of layers in XMPP (e.g., the particular SASL mechanisms offered by the receiving entity will likely depend on whether TLS has been negotiated).
TOC |
After TLS negotiation, the parties MUST restart the stream.
TOC |
During STARTTLS negotiation, the entities MUST NOT send any whitespace as separators between XML elements (i.e., from the last character of the <starttls/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace at depth=1 of the stream as sent by the initiating entity until the last character of the <proceed/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace at depth=1 of the stream as sent by the receiving entity). This prohibition helps to ensure proper security layer byte precision. Any such whitespace shown in the STARTTLS examples provided in this document is included only for the sake of readability.
TOC |
If the initiating entity chooses to use TLS, STARTTLS negotiation MUST be completed before proceeding to SASL negotiation (SASL Negotiation); this order of negotiation is necessary to help safeguard authentication information sent during SASL negotiation, as well as to make it possible to base the use of the SASL EXTERNAL mechanism on a certificate (or other credentials) provided during prior TLS negotiation.
TOC |
TOC |
The initiating entity resolves the hostname of the receiving entity as specified under Section 4 (TCP Binding), opens a TCP connection to the advertised port at the resolved IP address, and sends an initial stream header to the receiving entity; if the initiating entity is capable of STARTTLS negotiation, it MUST include the 'version' attribute set to a value of at least "1.0" in the initial stream header.
I: <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
The receiving entity MUST send a response stream header to the initiating entity over the TCP connection opened by the initiating entity; if the receiving entity is capable of STARTTLS negotiation, it MUST include the 'version' attribute set to a value of at least "1.0" in the response stream header.
R: <stream:stream from='im.example.com' id='t7AMCin9zjMNwQKDnplntZPIDEI=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'
The receiving entity then MUST send stream features to the initiating entity. If the receiving entity supports TLS, the stream features MUST include an advertisement for support of STARTTLS negotiation, i.e., a <starttls/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace.
If the receiving entity considers STARTTLS negotiation to be mandatory, the <starttls/> element SHOULD contain an empty <required/> child element.
R: <stream:features> <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'> <required/> </starttls> </stream:features>
TOC |
TOC |
In order to begin the STARTTLS negotiation, the initiating entity issues the STARTTLS command (i.e., a <starttls/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace) to instruct the receiving entity that it wishes to begin a STARTTLS negotiation to secure the stream.
I: <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
The receiving entity MUST reply with either a <proceed/> element (proceed case) or a <failure/> element (failure case) qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace.
TOC |
If the failure case occurs, the receiving entity MUST return a <failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace, terminate the XML stream, and terminate the underlying TCP connection.
R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/> R: </stream:stream>
Causes for the failure case include but are not limited to:
Note: STARTTLS failure is not triggered by TLS errors such as bad certificate or unknown certificate authority; those errors are generated and handled during the TLS negotiation itself as described in [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.).
If the failure case occurs, the initiating entity MAY attempt to reconnect as explained under Section 4.5 (Reconnection).
TOC |
If the proceed case occurs, the receiving entity MUST return a <proceed/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-tls' namespace.
R: <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
The receiving entity MUST consider the TLS negotiation to have begun immediately after sending the closing '>' character of the <proceed/> element to the initiating entity. The initiating entity MUST consider the TLS negotiation to have begun immediately after receiving the closing '>' character of the <proceed/> element from the receiving entity.
The entities now proceed to TLS negotiation as explained in the next section.
TOC |
TOC |
In order to complete TLS negotiation over the TCP connection, the entities MUST follow the process defined in [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.).
The following rules apply:
Note: See Section 14.6 (Mandatory-to-Implement Technologies) regarding ciphers that MUST be supported for TLS; naturally, other ciphers MAY be supported as well.
TOC |
If the TLS negotiation results in failure, the receiving entity MUST terminate the TCP connection.
The receiving entity MUST NOT send a closing </stream> tag before terminating the TCP connection, since the receiving entity and initiating entity MUST consider the original stream to be replaced upon failure of the TLS negotiation.
If the failure case occurs and TLS negotation was voluntary (advertised by means of the <optional/> child element) instead of mandatory (advertised by means of the <required/> child element), the initiating entity SHOULD attempt to reconnect as explained under Section 4.5 (Reconnection) but without attempting TLS negotiation.
TOC |
If the TLS negotiation is successful, then the entities MUST proceed as follows.
I: <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
Note: The initiating entity MUST NOT send a closing </stream> tag before sending the new initial stream header, since the receiving entity and initiating entity MUST consider the original stream to be replaced upon success of the TLS negotiation.
R: <stream:stream from='im.example.com' id='vgKi/bkYME8OAj4rlXMkpucAqe4=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'
R: <stream:features> <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <mechanism>EXTERNAL</mechanism> <mechanism>PLAIN</mechanism> </mechanisms> </stream:features>
TOC |
TOC |
XMPP includes a method for authenticating a stream by means of an XMPP-specific profile of the Simple Authentication and Security Layer protocol (see [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.)). SASL provides a generalized method for adding authentication support to connection-based protocols, and XMPP uses an XML namespace profile of SASL that conforms to the profiling requirements of [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.).
Support for SASL negotiation is REQUIRED in XMPP client and server implementations.
TOC |
TOC |
The parties to a stream MUST consider SASL as mandatory-to-negotiate.
TOC |
After SASL negotiation, the parties MUST restart the stream.
TOC |
Any entity that will act as a SASL client or a SASL server MUST maintain an ordered list of its preferred SASL mechanisms according to the client or server, where the list is ordered by the perceived strength of the mechanisms. A server MUST offer and a client MUST try SASL mechanisms in the order of their perceived strength. For example, if the server offers the ordered list "PLAIN DIGEST-MD5 GSSAPI" or "DIGEST-MD5 GSSAPI PLAIN" but the client's ordered list is "GSSAPI DIGEST-MD5", the client MUST try GSSAPI first and then DIGEST-MD5 but MUST never try PLAIN (since PLAIN is not on its list).
TOC |
If the receiving entity considers TLS negotiation (STARTTLS Negotiation) to be mandatory before use of a particular SASL authentication mechanism will be acceptable, the receiving entity MUST NOT advertise that mechanism in its list of available SASL authentication mechanisms prior to successful TLS negotiation.
If during prior TLS negotiation the initiating entity presented a certificate that is acceptable to the receiving entity for purposes of strong identity verification in accordance with local service policies, the receiving entity MUST offer the SASL EXTERNAL mechanism to the initiating entity during SASL negotiation (refer to [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.)) and SHOULD prefer that mechanism. However, the EXTERNAL mechanism MAY be offered under other circumstances as well.
See Section 14.6 (Mandatory-to-Implement Technologies) regarding mechanisms that MUST be supported; naturally, other SASL mechanisms MAY be supported as well. Best practices for the use of several SASL mechanisms in the context of XMPP are described in [XEP‑0175] (Saint-Andre, P., “Best Practices for Use of SASL ANONYMOUS,” November 2007.) and [XEP‑0178] (Saint-Andre, P. and P. Millard, “Best Practices for Use of SASL EXTERNAL with Certificates,” February 2007.).
TOC |
The following data formattting rules apply to the SASL negotiation:
TOC |
Upon successful SASL negotiation that involves negotiation of a security layer, both the initiating entity and the receiving MUST discard any application-layer state (i.e, state from the XMPP layer, excluding state from the TLS negotiation or SASL negotiation).
TOC |
Some SASL mechanisms have the concept of a "simple username" (e.g., CRAM-MD5, DIGEST-MD5, and SCRAM). The exact form of the simple username in any particular mechanism is a local matter, and a simple username does not necessarily map to an application identifier (e.g., a JID or JID component). Although it is reasonable for an XMPP application to default the simple username to an XMPP domainpart (for server-to-server authentication) or to a bare JID (for client-to-server authentication), an application SHOULD provide a means for a human user to configure the simple username (as well as other aspects of credentials, such as realms) in cases where the default is unsuitable.
TOC |
An authorization identity is an optional identity specified by the initiating entity, which is typically used by an administrator to perform some management task on behalf of another user. If the initiating entity wishes to act on behalf of another entity and the selected SASL mechanism supports transmission of an authorization identity, the initiating entity MUST provide an authorization identity during SASL negotiation. If the initiating entity does not wish to act on behalf of another entity, it MUST NOT provide an authorization identity. As specified in [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.), the initiating entity MUST NOT provide an authorization identity unless the authorization identity is different from the default authorization identity derived from the authentication identity. If provided, the value of the authorization identity MUST be a bare JID of the form <domain> (i.e., an XMPP domainpart only) for servers and a bare JID of the form <localpart@domain> (i.e., localpart and domainpart) for clients.
Note: The authorization identity communicated during SASL negotiation is used to determine the canonical address for the initiating client or server according to the receiving server, as described under Section 3.5 (Determination of Addresses).
TOC |
The receiving entity MAY include a realm when negotiating certain SASL mechanisms. If the receiving entity does not communicate a realm, the initiating entity MUST NOT assume that any realm exists. The realm MUST be used only for the purpose of authentication; in particular, an initiating entity MUST NOT attempt to derive an XMPP hostname from the realm information provided by the receiving entity.
TOC |
[SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.) specifies that a using protocol such as XMPP can define two methods by which the protocol can save round trips where allowed for the SASL mechanism:
For the sake of protocol efficiency, it is RECOMMENDED for XMPP clients and servers to use these methods, however they MUST support the less efficient modes as well.
TOC |
The process for SASL negotiation is as follows.
TOC |
If SASL negotiation follows successful STARTTLS negotation (STARTTLS Negotiation), then the SASL negotiation occurs over the encrypted stream that has already been negotiated. If not, the initiating entity resolves the hostname of the receiving entity as specified under Section 4 (TCP Binding), opens a TCP connection to the advertised port at the resolved IP address, and sends an initial stream header to the receiving entity; if the initiating entity is capable of STARTTLS negotiation, it MUST include the 'version' attribute set to a value of at least "1.0" in the initial stream header.
I: <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
The receiving entity MUST send a response stream header to the initiating entity; if the receiving entity is capable of SASL negotiation, it MUST include the 'version' attribute set to a value of at least "1.0" in the response stream header.
R: <stream:stream from='im.example.com' id='vgKi/bkYME8OAj4rlXMkpucAqe4=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'
The receiving entity also MUST send stream features to the initiating entity. If the receiving entity supports SASL, the stream features MUST include an advertisement for support of SASL negotiation, i.e., a <mechanisms/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace.
The <mechanisms/> element MUST contain one <mechanism/> child element for each authentication mechanism the receiving entity offers to the initiating entity. The order of <mechanism/> elements in the XML indicates the preference order of the SASL mechanisms according to the receiving entity; however the initiating entity MUST maintain its own preference order independent of the preference order of the receiving entity.
R: <stream:features> <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <mechanism>EXTERNAL</mechanism> <mechanism>PLAIN</mechanism> </mechanisms> </stream:features>
TOC |
In order to begin the SASL negotiation, the initiating entity sends an <auth/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace and includes an appropriate value for the 'mechanism' attribute. This element MAY contain XML character data (in SASL terminology, the "initial response") if the mechanism supports or requires it; if the initiating entity needs to send a zero-length initial response, it MUST transmit the response as a single equals sign character ("="), which indicates that the response is present but contains no data.
I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='PLAIN'>AGp1bGlldAByMG0zMG15cjBtMzA=</auth>
TOC |
If necessary, the receiving entity challenges the initiating entity by sending a <challenge/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace; this element MAY contain XML character data (which MUST be generated in accordance with the definition of the SASL mechanism chosen by the initiating entity).
The initiating entity responds to the challenge by sending a <response/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace; this element MAY contain XML character data (which MUST be generated in accordance with the definition of the SASL mechanism chosen by the initiating entity).
If necessary, the receiving entity sends more challenges and the initiating entity sends more responses.
This series of challenge/response pairs continues until one of three things happens:
These scenarios are described in the following sections.
TOC |
The initiating entity aborts the handshake by sending an <abort/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace.
I: <abort xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
Upon receiving an <abort/> element, the receiving entity MUST return a <failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace and containing an <aborted/> child element.
R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/> <aborted/> </failure>
TOC |
The receiving entity reports failure of the handshake by sending a <failure/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace (the particular cause of failure MUST be communicated in an appropriate child element of the <failure/> element as defined under Section 7.4 (SASL Errors)).
R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <not-authorized/> </failure>
Where appropriate for the chosen SASL mechanism, the receiving entity SHOULD allow a configurable but reasonable number of retries (at least 2 and no more than 5); this enables the initiating entity (e.g., an end-user client) to tolerate incorrectly-provided credentials (e.g., a mistyped password) without being forced to reconnect.
If the initiating entity attempts a reasonable number of retries with the same SASL mechanism and all attempts fail, it MAY fall back to the next mechanism in its ordered list by sending a new <auth/> request to the receiving entity. If there are no remaining mechanisms in its list, the initiating entity SHOULD instead send an <abort/> element to the receiving entity.
If the initiating entity exceeds the number of retries, the receiving entity MUST return a stream error (which SHOULD be <policy-violation/> but MAY be <not-authorized/>).
TOC |
The receiving entity reports success of the handshake by sending a <success/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-sasl' namespace; this element MAY contain XML character data (in SASL terminology, "additional data with success") if the chosen SASL mechanism supports or requires it; if the receiving entity needs to send additional data of zero length, it MUST transmit the data as a single equals sign character ("=").
R: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
Note: The authorization identity communited during SASL negotiation is used to determine the canonical address for the initiating client or server according to the receiving server, as described under Section 3.5 (Determination of Addresses).
Upon receiving the <success/> element, the initiating entity MUST initiate a new stream over the existing TCP connection by sending a new initial stream header to the receiving entity.
I: <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'
Note: The initiating entity MUST NOT send a closing </stream> tag before sending the new initial stream header, since the receiving entity and initiating entity MUST consider the original stream to be replaced upon sending or receiving the <success/> element.
Upon receiving the new initial stream header from the initiating entity, the receiving entity MUST respond by sending a new response XML stream header to the initiating entity.
R: <stream:stream from='im.example.com' id='gPybzaOzBmaADgxKXu9UClbprp0=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
The receiving entity MUST also send stream features, containing any further available features or containing no features (via an empty <features/> element).
R: <stream:features> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/> </stream:features>
TOC |
The syntax of SASL errors is as follows:
<failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <defined-condition/> [<text xml:lang='langcode'> OPTIONAL descriptive text </text>] </failure>
Where "defined-condition" is one of the SASL-related error conditions defined in the following sections.
Inclusion of a defined condition is REQUIRED.
Inclusion of the <text/> element is OPTIONAL, and can be used to provide application-specific information about the error condition, which information MAY be displayed to a human but only as a supplement to the defined condition.
TOC |
The receiving entity acknowledges an <abort/> element sent by the initiating entity; sent in reply to the <abort/> element.
I: <abort xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <aborted/> </failure>
TOC |
The account of the initiating entity has been temporarily disabled; sent in reply to an <auth/> element (with or without initial response data) or a <response/> element.
I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='PLAIN'>AGp1bGlldAByMG0zMG15cjBtMzA=</auth> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <account-disabled/> <text xml:lang='en'>Call 212-555-1212 for assistance.</text> </failure>
TOC |
The authentication failed because the initiating entity provided credentials that have expired; sent in reply to a <response/> element or an <auth/> element with initial response data.
I: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> [ ... ] </response> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <credentials-expired/> </failure>
TOC |
The mechanism requested by the initiating entity cannot be used unless the underlying stream is encrypted; sent in reply to an <auth/> element (with or without initial response data).
I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='PLAIN'>AGp1bGlldAByMG0zMG15cjBtMzA=</auth> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <encryption-required/> </failure>
TOC |
The data provided by the initiating entity could not be processed because the [BASE64] (Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” October 2006.) encoding is incorrect (e.g., because the encoding does not adhere to the definition in Section 4 of [BASE64] (Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” October 2006.)); sent in reply to a <response/> element or an <auth/> element with initial response data.
I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='DIGEST-MD5'>[ ... ]</auth> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <incorrect-encoding/> </failure>
TOC |
The authzid provided by the initiating entity is invalid, either because it is incorrectly formatted or because the initiating entity does not have permissions to authorize that ID; sent in reply to a <response/> element or an <auth/> element with initial response data.
I: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> [ ... ] </response> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <invalid-authzid/> </failure>
TOC |
The initiating entity did not provide a mechanism or requested a mechanism that is not supported by the receiving entity; sent in reply to an <auth/> element.
I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='CRAM-MD5'/> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <invalid-mechanism/> </failure>
TOC |
The request is malformed (e.g., the <auth/> element includes initial response data but the mechanism does not allow that, or the data sent violates the syntax for the specified SASL mechanism); sent in reply to an <abort/>, <auth/>, <challenge/>, or <response/> element.
(In the following example, the XML character data of the <auth/> element contains more than 255 UTF-8-encoded Unicode characters and therefore violates the "token" production for the SASL ANONYMOUS mechanism as specified in [ANONYMOUS] (Zeilenga, K., “Anonymous Simple Authentication and Security Layer (SASL) Mechanism,” June 2006.).)
I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='ANONYMOUS'>[ ... some-long-token ... ]</auth> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <malformed-request/> </failure>
TOC |
The mechanism requested by the initiating entity is weaker than server policy permits for that initiating entity; sent in reply to an <auth/> element (with or without initial response data).
I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='PLAIN'>AGp1bGlldAByMG0zMG15cjBtMzA=</auth> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <mechanism-too-weak/> </failure>
TOC |
The authentication failed because the initiating entity did not provide proper credentials or the receiving entity has detected an attack but wishes to disclose as little information as possible to the attacker; sent in reply to a <response/> element or an <auth/> element with initial response data.
I: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> [ ... ] </response> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <not-authorized/> </failure>
Note: This error condition includes but is not limited to the case of incorrect credentials or an unknown username. In order to discourage directory harvest attacks, no differentiation is made between incorrect credentials and an unknown username.
TOC |
The authentication failed because of a temporary error condition within the receiving entity, and it is advisable for the initiating entity to try again later; sent in reply to an <auth/> element or a <response/> element.
I: <response xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> [ ... ] </response> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <temporary-auth-failure/> </failure>
TOC |
The authentication failed because the mechanism cannot be used until the initiating entity provides (for one time only) a plaintext password so that the receiving entity can build a hashed password for use in future authentication attempts; sent in reply to an <auth/> element with or without initial response data.
I: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='CRAM-MD5'>[ ... ]</auth> R: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <transition-needed/> </failure>
Note: An XMPP client MUST treat a <transition-needed/> SASL error with extreme caution, SHOULD NOT provide a plaintext password over an XML stream that is not encrypted via Transport Layer Security, and MUST warn a human user before allowing the user to provide a plaintext password over an unencrypted connection.
TOC |
The profiling requirements of [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.) require that the following information be supplied by the definition of a using protocol.
- service name:
- "xmpp"
- initiation sequence:
- After the initiating entity provides an opening XML stream header and the receiving entity replies in kind, the receiving entity provides a list of acceptable authentication methods. The initiating entity chooses one method from the list and sends it to the receiving entity as the value of the 'mechanism' attribute possessed by an <auth/> element, optionally including an initial response to avoid a round trip.
- exchange sequence:
- Challenges and responses are carried through the exchange of <challenge/> elements from receiving entity to initiating entity and <response/> elements from initiating entity to receiving entity. The receiving entity reports failure by sending a <failure/> element and success by sending a <success/> element; the initiating entity aborts the exchange by sending an <abort/> element. Upon successful negotiation, both sides consider the original XML stream to be closed and new stream headers are sent by both entities.
- security layer negotiation:
- The security layer takes effect immediately after sending the closing '>' character of the <success/> element for the receiving entity, and immediately after receiving the closing '>' character of the <success/> element for the initiating entity. The order of layers is first [TCP] (Postel, J., “Transmission Control Protocol,” September 1981.), then [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.), then [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.), then XMPP.
- use of the authorization identity:
- The authorization identity can be used in XMPP to denote the non-default <localpart@domain> of a client or the sending <domain> of a server; an empty string is equivalent to an absent authorization identity.
TOC |
TOC |
After a client authenticates with a server, it MUST bind a specific resource to the stream so that the server can properly address the client (see Section 3 (Addresses)). That is, there MUST be an XMPP resource associated with the bare JID (<localpart@domain>) of the client, so that the address for use over that stream is a full JID of the form <localpart@domain/resource> (including the resourcepart). This ensures that the server can deliver XML stanzas to and receive XML stanzas from the client in relation to entities other than the server itself, as explained under Section 11 (Server Rules for Processing XML Stanzas) (the client could exchange stanzas with the server itself before binding a resource since the full JID is needed only for addressing outside the context of the stream negotiated between the client and the server, but this is not commonly done).
After a client has bound a resource to the stream, it is referred to as a CONNECTED RESOURCE. A server SHOULD allow an entity to maintain multiple connected resources simultaneously, where each connected resource is associated with a distinct XML stream and differentiated from the other connected resources by a distinct resourcepart; however, a server MUST enable the administrator of an XMPP service to limit the number of connected resources in order to prevent certain denial of service attacks as described under Section 14.14 (Denial of Service).
If, before completing the resource binding step, the client attempts to send an XML stanza to an entity other than the client's account or the server, the server MUST NOT process the stanza and MUST either ignore the stanza or return a <not-authorized/> stream error to the client.
Support for resource binding is REQUIRED in XMPP client and server implementations.
TOC |
TOC |
The parties to a stream MUST consider resource binding as mandatory-to-negotiate.
TOC |
After resource binding, the parties MUST NOT restart the stream.
TOC |
Upon sending a new response stream header to the client after successful SASL negotiation, the server MUST include a <bind/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-bind' namespace in the stream features it presents to the client.
Note: Resource binding is mandatory-to-negotiate for clients.
Note: The server MUST NOT include the resource binding stream feature until after the client has authenticated, typically by means of successful SASL negotiation.
S: <stream:stream from='im.example.com' id='gPybzaOzBmaADgxKXu9UClbprp0=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <stream:features> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/> </stream:features>
Upon being so informed that resource binding is mandatory, the client MUST bind a resource to the stream as described in the following sections.
TOC |
A resourcepart MUST at a minimum be unique among the connected resources for that <localpart@domain>. Enforcement of this policy is the responsibility of the server.
A resourcepart can be security-critical. For example, if a malicious entity can guess a client's resourcepart then it might be able to determine if the client (and therefore the controlling principal) is online or offline, thus resulting in a presence leak as described under Section 14.15 (Presence Leaks). To prevent that possibility, a client can either (1) generate a random resourcepart on its own or (2) ask the server to generate a resourcepart on its behalf, which MUST be random (see [RANDOM] (Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” June 2005.)). When generating a random resourcepart, it is RECOMMENDED that the resourcepart be a Universally Unique Identifier (UUID), for which the format specified in [UUID] (Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,” July 2005.) is RECOMMENDED.
TOC |
A server that supports resource binding MUST be able to generate an XMPP resourcepart on behalf of a client.
TOC |
A client requests a server-generated resourcepart by sending an IQ stanza of type "set" (see Section 9.2.3 (IQ Semantics)) containing an empty <bind/> element qualified by the 'urn:ietf:params:xml:ns:xmpp-bind' namespace.
C: <iq id='bind_1' type='set'> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/> </iq>
Once the server has generated an XMPP resourcepart for the client, it MUST return an IQ stanza of type "result" to the client, which MUST include a <jid/> child element that specifies the full JID for the connected resource as determined by the server.
S: <iq id='bind_1' type='result'> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'> <jid> juliet@im.example.com/4db06f06-1ea4-11dc-aca3-000bcd821bfb </jid> </bind> </iq>
TOC |
When a client asks the server to generate a resourcepart during resource binding, the following stanza error conditions are possible:
TOC |
If the account has reached a limit on the number of simultaneous connected resources allowed, the server MUST return a <resource-constraint/> stanza error.
S: <iq id='bind_2' type='error'> <error type='wait'> <resource-constraint xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
If the client is otherwise not allowed to bind a resource to the stream, the server MUST return a <not-allowed/> stanza error.
S: <iq id='bind_2' type='error'> <error type='cancel'> <not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
Instead of asking the server to generate a resourcepart on its behalf, a client MAY attempt to submit a resourcepart that it has generated or that the controlling user has provided.
TOC |
A client asks its server to accept a client-submitted resourcepart by sending an IQ stanza of type "set" containing a <bind/> element with a child <resource/> element containing non-zero-length XML character data.
C: <iq id='bind_2' type='set'> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'> <resource>balcony</resource> </bind> </iq>
The server SHOULD accept the client-submitted resourcepart. It does so by returning an IQ stanza of type "result" to the client, including a <jid/> child element that specifies the full JID for the connected resource and contains without modification the client-submitted text.
S: <iq id='bind_2' type='result'> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'> <jid>juliet@im.example.com/balcony</jid> </bind> </iq>
TOC |
When a client attempts to submit its own XMPP resourcepart during resource binding, the following stanza error conditions are possible in addition to those described under Section 8.5.2 (Error Cases):
TOC |
If the provided resourcepart cannot be processed by the server (e.g. because it is of zero length or because it is not in accordance with the Resourceprep (Resourceprep) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.)), the server MAY return a <bad-request/> stanza error (but SHOULD instead apply the Resourceprep (Resourceprep) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.) or otherwise process the resourcepart so that it is in conformance).
S: <iq id='bind_2' type='error'> <error type='modify'> <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
If there is already a connected resource of the same name, the server MUST do one of the following:
Which of these the server does is up to the implementation, although it is RECOMMENDED to implement case #1.
S: <iq id='bind_2' type='result'> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'> <jid> juliet@im.example.com/balcony 4db06f06-1ea4-11dc-aca3-000bcd821bfb </jid> </bind> </iq>
In case #2, the server MUST send a <conflict/> stream error to the current resource and return an IQ stanza of type "result" (indicating success) to the newly-requested resource.
S: <iq id='bind_2' type='result'/>
In case #3, the server MUST send a <conflict/> stanza error to the newly-requested resource but maintain the XML stream for that connection so that the newly-requested resource has an opportunity to negotiate a non-conflicting resourcepart before sending another request for resource binding.
S: <iq id='bind_2' type='error'> <error type='modify'> <conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
If an error occurs when a client submits a resourcepart, the server SHOULD allow a configurable but reasonable number of retries (at least 2 and no more than 5); this enables the client to tolerate incorrectly-provided resourceparts (e.g., bad data formats or duplicate text strings) without being forced to reconnect.
After the client has reached the retry limit, the server MUST return a <policy-violation/> stream error to the client.
TOC |
After a client has connected to a server or two servers have connected to each other, either party can send XML stanzas over the negotiated stream. Three kinds of XML stanza are defined for the 'jabber:client' and 'jabber:server' namespaces: <message/>, <presence/>, and <iq/>. In addition, there are five common attributes for these stanza types. These common attributes, as well as the basic semantics of the three stanza types, are defined herein; more detailed information regarding the syntax of XML stanzas for instant messaging and presence applications is provided in [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.), and for other applications in the relevant XMPP extension specifications.
A server MUST NOT process a partial stanza and MUST NOT attach meaning to the transmission timing of any part of a stanza (before receipt of the close tag).
Support for the XML stanza syntax and semantics defined herein is REQUIRED in XMPP client and server implementations.
TOC |
The following five attributes are common to message, presence, and IQ stanzas.
TOC |
The 'to' attribute specifies the JID of the intended recipient for the stanza.
<message to='romeo@example.net'> <body>Art thou not Romeo, and a Montague?</body> </message>
For information about server processing of inbound and outbound XML stanzas based on the nature of the 'to' address, refer to Section 11 (Server Rules for Processing XML Stanzas).
TOC |
The following rules apply to inclusion of the 'to' attribute in the context of XML streams qualified by the 'jabber:client' namespace (i.e., client-to-server streams).
TOC |
The following rules apply to inclusion of the 'to' attribute in the context of XML streams qualified by the 'jabber:server' namespace (i.e., server-to-server streams).
TOC |
The 'from' attribute specifies the JID of the sender.
<message from='juliet@im.example.com/balcony' to='romeo@example.net'> <body>Art thou not Romeo, and a Montague?</body> </message>
TOC |
The following rules apply to the 'from' attribute in the context of XML streams qualified by the 'jabber:client' namespace (i.e., client-to-server streams).
TOC |
The following rules apply to the 'from' attribute in the context of XML streams qualified by the 'jabber:server' namespace (i.e., server-to-server streams).
Enforcement of these rules helps to prevent certain denial of service attacks as described under Section 14.14 (Denial of Service).
TOC |
The 'id' attribute is used by the entity that generates a stanza ("the originating entity") to track any response or error stanza that it might receive in relation to the generated stanza from another entity (such as an intermediate server or the intended recipient).
It is up to the originating entity whether the value of the 'id' attribute will be unique only within its current stream (session) or unique globally.
For <message/> and <presence/> stanzas, it is RECOMMENDED for the originating entity to include an 'id' attribute; for <iq/> stanzas, it is REQUIRED.
If the generated stanza includes an 'id' attribute then it is REQUIRED for the response or error stanza to also include an 'id' attribute, where the value of the 'id' attribute MUST match that of the generated stanza.
Note: The semantics of IQ stanzas impose additional restrictions; see Section 9.2.3 (IQ Semantics).
TOC |
The 'type' attribute specifies the purpose or context of the message, presence, or IQ stanza. The particular allowable values for the 'type' attribute vary depending on whether the stanza is a message, presence, or IQ stanza. The defined values for message and presence stanzas are specific to instant messaging and presence applications and therefore are specified in [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.), whereas the values for IQ stanzas specify the role of an IQ stanza in a structured request-response exchange and therefore are specified under Section 9.2.3 (IQ Semantics). The only 'type' value common to all three stanzas is "error"; see Section 9.3 (Stanza Errors).
TOC |
A stanza SHOULD possess an 'xml:lang' attribute (as defined in Section 2.12 of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.)) if the stanza contains XML character data that is intended to be presented to a human user (as explained in [CHARSET] (Alvestrand, H., “IETF Policy on Character Sets and Languages,” January 1998.), "internationalization is for humans"). The value of the 'xml:lang' attribute specifies the default language of any such human-readable XML character data.
<presence from='romeo@example.net/orchard' xml:lang='en'> <show>dnd</show> <status>Wooing Juliet</status> </presence>
The value of the 'xml:lang' attribute MAY be overridden by the 'xml:lang' attribute of a specific child element.
<presence from='romeo@example.net/orchard' xml:lang='en'> <show>dnd</show> <status>Wooing Juliet</status> <status xml:lang='cs'>Dvořím se Julii</status> </presence
If an outbound stanza generated by a client does not possess an 'xml:lang' attribute, the client's server SHOULD add an 'xml:lang' attribute whose value is that specified for the stream as defined under Section 5.4.4 (xml:lang).
C: <presence from='romeo@example.net/orchard'> <show>dnd</show> <status>Wooing Juliet</status> </presence> S: <presence from='romeo@example.net/orchard' to='juliet@im.example.com' xml:lang='en'> <show>dnd</show> <status>Wooing Juliet</status> </presence>
If an inbound stanza received received by a client or server does not possess an 'xml:lang' attribute, an implementation MUST assume that the default language is that specified for the stream as defined under Section 5.4.4 (xml:lang).
The value of the 'xml:lang' attribute MUST conform to the NMTOKEN datatype (as defined in Section 2.3 of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.)) and MUST conform to the format defined in [LANGTAGS] (Phillips, A. and M. Davis, “Tags for Identifying Languages,” September 2009.).
A server MUST NOT modify or delete 'xml:lang' attributes on stanzas it receives from other entities.
TOC |
TOC |
The <message/> stanza can be seen as a "push" mechanism whereby one entity pushes information to another entity, similar to the communications that occur in a system such as email. All message stanzas SHOULD possess a 'to' attribute that specifies the intended recipient of the message; upon receiving such a stanza, a server SHOULD route or deliver it to the intended recipient (see Section 11 (Server Rules for Processing XML Stanzas) for general routing and delivery rules related to XML stanzas).
TOC |
The <presence/> stanza can be seen as a specialized broadcast or "publish-subscribe" mechanism, whereby multiple entities receive information (in this case, network availability information) about an entity to which they have subscribed. In general, a publishing entity (client) SHOULD send a presence stanza with no 'to' attribute, in which case the server to which the entity is connected SHOULD broadcast that stanza to all subscribed entities. However, a publishing entity MAY also send a presence stanza with a 'to' attribute, in which case the server SHOULD route or deliver that stanza to the intended recipient. See Section 11 (Server Rules for Processing XML Stanzas) for general routing and delivery rules related to XML stanzas, and [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.) for rules specific to presence applications.
TOC |
Info/Query, or IQ, is a request-response mechanism, similar in some ways to the Hypertext Transfer Protocol [HTTP] (Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P., and T. Berners-Lee, “Hypertext Transfer Protocol -- HTTP/1.1,” June 1999.). The semantics of IQ enable an entity to make a request of, and receive a response from, another entity. The data content of the request and response is defined by the schema or other structural definition associated with the XML namespace that qualifies the direct child element of the IQ element (see Section 9.4 (Extended Content)), and the interaction is tracked by the requesting entity through use of the 'id' attribute. Thus, IQ interactions follow a common pattern of structured data exchange such as get/result or set/result (although an error can be returned in reply to a request if appropriate):
Requesting Responding Entity Entity ---------- ---------- | | | <iq id='1' type='get'> | | [ ... payload ... ] | | </iq> | | -------------------------> | | | | <iq id='1' type='result'> | | [ ... payload ... ] | | </iq> | | <------------------------- | | | | <iq id='2' type='set'> | | [ ... payload ... ] | | </iq> | | -------------------------> | | | | <iq id='2' type='error'> | | [ ... condition ... ] | | </iq> | | <------------------------- | | |
To enforce these semantics, the following rules apply:
TOC |
Stanza-related errors are handled in a manner similar to stream errors (Stream Errors). Unlike stream errors, stanza errors are recoverable; therefore they do not result in termination of the XML stream and underlying TCP connection. Instead, the entity that discovers the error condition returns an ERROR STANZA to the sender, i.e., a stanza of the same kind (message, presence, or IQ) whose 'type' attribute is set to a value of "error" and which contains an <error/> child element that specifies the error condition. The specified error condition provides a hint regarding actions that the sender can take to remedy the error if possible.
TOC |
The following rules apply to stanza errors:
TOC |
The syntax for stanza-related errors is:
<stanza-kind from='intended-recipient' to='sender' type='error'> [OPTIONAL to include sender XML here] <error type='error-type'> <defined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> [<text xmlns='urn:ietf:params:xml:ns:xmpp-stanzas' xml:lang='langcode'> OPTIONAL descriptive text </text>] [OPTIONAL application-specific condition element] </error> </stanza-kind>
The "stanza-kind" MUST be one of message, presence, or iq.
The "error-type" MUST be one of the following:
The <error/> element:
The <text/> element is OPTIONAL. If included, it MUST be used only to provide descriptive or diagnostic information that supplements the meaning of a defined condition or application-specific condition. It MUST NOT be interpreted programmatically by an application. It MUST NOT be used as the error message presented to a human user, but MAY be shown in addition to the error message associated with the defined condition element (and, optionally, the application-specific condition element).
TOC |
The following conditions are defined for use in stanza errors.
TOC |
The sender has sent a stanza containing XML that does not conform to the appropriate schema or that cannot be processed (e.g., an IQ stanza that includes an unrecognized value of the 'type' attribute, or an element that is qualified by a recognized namespace but that violates the defined syntax for the element); the associated error type SHOULD be "modify".
C: <iq from='juliet@im.example.com/balcony' id='some-id' to='im.example.com' type='subscribe'> <ping xmlns='urn:xmpp:ping'/> </iq> S: <iq from='im.example.com' id='some-id' to='juliet@im.example.com/balcony' type='error'> <error type='modify'> <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
Access cannot be granted because an existing resource exists with the same name or address; the associated error type SHOULD be "cancel".
C: <iq id='bind_2' type='set'> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'> <resource>balcony</resource> </bind> </iq> S: <iq id='bind_2' type='error'> <error type='cancel'> <conflict xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
The feature represented in the XML stanza is not implemented by the intended recipient or an intermediate server and therefore the stanza cannot be processed (e.g., the entity understands the namespace but does not recognize the element name); the associated error type SHOULD be "cancel" or "modify".
C: <iq from='juliet@im.example.com/balcony' id='subscriptions1' to='pubsub.example.com' type='get'> <pubsub xmlns='http://jabber.org/protocol/pubsub'> <subscriptions/> </pubsub> </iq> E: <iq from='pubsub.example.com id='subscriptions1' to='juliet@im.example.com/balcony' type='error'> <error type='cancel'> <feature-not-implemented xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> <unsupported xmlns='http://jabber.org/protocol/pubsub#errors' feature='retrieve-subscriptions'/> </error> </iq>
TOC |
The requesting entity does not possess the necessary permissions to perform the action; the associated error type SHOULD be "auth".
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony' type='error'> <error type='auth'> <forbidden xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
TOC |
The recipient or server can no longer be contacted at this address, typically on a permanent basis; the associated error type SHOULD be "cancel" or "modify" and the error stanza SHOULD include a new address as the XML character data of the <gone/> element (which MUST be a URI or IRI at which the entity can be contacted, typically an XMPP IRI as specified in [XMPP‑URI] (Saint-Andre, P., “Internationalized Resource Identifiers (IRIs) and Uniform Resource Identifiers (URIs) for the Extensible Messaging and Presence Protocol (XMPP),” February 2008.)).
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony' type='error'> <error type='modify'> <gone xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'> xmpp:conference.example.com </gone> </error> </presence>
TOC |
The server could not process the stanza because of a misconfiguration or an otherwise-undefined internal server error; the associated error type SHOULD be "wait" or "cancel".
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony' type='error'> <error type='wait'> <internal-server-error xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
TOC |
The addressed JID or item requested cannot be found; the associated error type SHOULD be "cancel" or "modify".
C: <presence from='userfoo@example.com/bar' to='nosuchroom@conference.example.org/foo'/> S: <presence from='nosuchroom@conference.example.org/foo' to='userfoo@example.com/bar' type='error'> <error type='cancel'> <item-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
Note: An application MUST NOT return this error if doing so would provide information about the intended recipient's network availability to an entity that is not authorized to know such information; instead it MUST return a <service-unavailable/> stanza error.
TOC |
The sending entity has provided or communicated an XMPP address (e.g., a value of the 'to' attribute) or aspect thereof (e.g., an XMPP resourcepart) that does not adhere to the syntax defined under Section 3 (Addresses); the associated error type SHOULD be "modify".
C: <presence from='juliet@im.example.com/balcony' to='ch@r@cters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='ch@r@cters@muc.example.com/JulieC' to='juliet@im.example.com/balcony' type='error'> <error type='modify'> <jid-malformed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
TOC |
The recipient or server understands the request but is refusing to process it because it does not meet criteria defined by the recipient or server (e.g., a local policy regarding stanza size limits or acceptable words in messages); the associated error type SHOULD be "modify".
C: <message to='juliet@im.example.com' id='foo'> <body>[ ... the-emacs-manual ... ]</body> </message> S: <message from='juliet@im.example.com' id='foo'> <error type='modify'> <not-acceptable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </message>
TOC |
The recipient or server does not allow any entity to perform the action (e.g., sending to entities at a blacklisted domain); the associated error type SHOULD be "cancel".
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony' type='error'> <error type='cancel'> <not-allowed xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
TOC |
The sender needs to provide proper credentials before being allowed to perform the action, or has provided improper credentials; the associated error type SHOULD be "auth".
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony'> <error type='auth'> <not-authorized xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
TOC |
The item requested has not changed since it was last requested; the associated error type SHOULD be "continue".
C: <iq from='juliet@capulet.com/balcony' id='roster2' type='get'> <query xmlns='jabber:iq:roster'> <headers xmlns='http://jabber.org/protocol/shim'> <header name='If-None-Match'> some-long-opaque-string </header> </headers> </query> </iq> S: <iq type='error' to='juliet@capulet.com/balcony' id='roster2'> <query xmlns='jabber:iq:roster'> <headers xmlns='http://jabber.org/protocol/shim'> <header name='If-None-Match'> some-long-opaque-string </header> </headers> </query> <error type='modify'> <not-modified xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
The requesting entity is not authorized to access the requested service because payment is necessary; the associated error type SHOULD be "auth".
C: <iq from='romeo@example.net/foo' id='items1' to='pubsub.example.com' type='get'> <pubsub xmlns='http://jabber.org/protocol/pubsub'> <items node='my_musings'/> </pubsub> </iq> E: <iq from='pubsub.example.com' id='items1' to='romeo@example.net/foo' type='error'> <error type='auth'> <payment-required xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
The entity has violated some local service policy (e.g., the stanza exceeds a configured size limit); the server MAY choose to specify the policy in the <text/> element or in an application-specific condition element; the associated error type SHOULD be "modify" or "wait" depending on the policy being violated.
(In the following example, the client sends an XMPP message that is too large according to the server's local service policy.)
C: <message to='juliet@im.example.com' id='foo'> <body>[ ... the-emacs-manual ... ]</body> </message> S: <message from='juliet@im.example.com' id='foo'> <error type='cancel'> <policy-violation xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </message>
TOC |
The intended recipient is temporarily unavailable; the associated error type SHOULD be "wait".
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony'> <error type='wait'> <recipient-unavailable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
Note: An application MUST NOT return this error if doing so would provide information about the intended recipient's network availability to an entity that is not authorized to know such information; instead it MUST return a <service-unavailable/> stanza error.
TOC |
The recipient or server is redirecting requests for this information to another entity, typically in a temporary fashion (the <gone/> condition is used for permanent addressing failures); the associated error type SHOULD be "modify" and the error stanza SHOULD contain the alternate address in the XML character data of the <redirect/> element (which MUST be a URI or IRI at which the entity can be contacted, typically an XMPP IRI as specified in [XMPP‑URI] (Saint-Andre, P., “Internationalized Resource Identifiers (IRIs) and Uniform Resource Identifiers (URIs) for the Extensible Messaging and Presence Protocol (XMPP),” February 2008.)).
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony' type='error'> <error type='modify'> <redirect xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'> xmpp:characters@conference.example.org </redirect> </error> </presence>
TOC |
The requesting entity is not authorized to access the requested service because prior registration is necessary; the associated error type SHOULD be "auth".
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony'> <error type='auth'> <registration-required xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
TOC |
A remote server or service specified as part or all of the JID of the intended recipient does not exist; the associated error type SHOULD be "cancel".
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony'> <error type='cancel'> <remote-server-not-found xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
TOC |
A remote server or service specified as part or all of the JID of the intended recipient (or needed to fulfill a request) could not be contacted within a reasonable amount of time; the associated error type SHOULD be "wait".
C: <presence from='juliet@im.example.com/balcony' to='characters@muc.example.com/JulieC'> <x xmlns='http://jabber.org/protocol/muc'/> </presence> E: <presence from='characters@muc.example.com/JulieC' to='juliet@im.example.com/balcony'> <error type='wait'> <remote-server-timeout xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </presence>
TOC |
The server or recipient lacks the system resources necessary to service the request; the associated error type SHOULD be "wait" or "modify".
C: <iq from='romeo@example.net/foo' id='items1' to='pubsub.example.com' type='get'> <pubsub xmlns='http://jabber.org/protocol/pubsub'> <items node='my_musings'/> </pubsub> </iq> E: <iq from='pubsub.example.com' id='items1' to='romeo@example.net/foo' type='error'> <error type='wait'> <resource-constraint xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </iq>
TOC |
The server or recipient does not currently provide the requested service; the associated error type SHOULD be "cancel".
C: <message from='romeo@example.net/foo' to='juliet@im.example.com'> <body>Hello?</body> </message> S: <message from='juliet@im.example.com/foo' to='romeo@example.net'> <error type='cancel'> <service-unavailable xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </message>
An application MUST return a <service-unavailable/> stanza error instead of <item-not-found/> or <recipient-unavailable/> if sending one of the latter errors would provide information about the intended recipient's network availability to an entity that is not authorized to know such information.
TOC |
The requesting entity is not authorized to access the requested service because a prior subscription is necessary; the associated error type SHOULD be "auth".
C: <message from='romeo@example.net/orchard' to='playbot@shakespeare.example.com' <body>help</body> </message> E: <message from='playbot@shakespeare.example.com' to='romeo@example.net/orchard' type='error'> <error type='auth'> <subscription-required xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> </error> </message>
TOC |
The error condition is not one of those defined by the other conditions in this list; any error type can be associated with this condition, and it SHOULD be used only in conjunction with an application-specific condition.
C: <message from='northumberland@shakespeare.example' id='richard2-4.1.247' to='kingrichard@royalty.england.example'> <body>My lord, dispatch; read o'er these articles.</body> <amp xmlns='http://jabber.org/protocol/amp'> <rule action='notify' condition='deliver' value='stored'/> </amp> S: <message from='example.org' id='amp1' to='northumberland@example.net/field' type='error'> <amp xmlns='http://jabber.org/protocol/amp' from='kingrichard@example.org' status='error' to='northumberland@example.net/field'> <rule action='error' condition='deliver' value='stored'/> </amp> <error type='modify'> <undefined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> <failed-rules xmlns='http://jabber.org/protocol/amp#errors'> <rule action='error' condition='deliver' value='stored'/> </failed-rules> </error> </message>
TOC |
The recipient or server understood the request but was not expecting it at this time (e.g., the request was out of order); the associated error type SHOULD be "wait" or "modify".
C: <iq from='romeo@example.net/foo' id='unsub1' to='pubsub.example.com' type='set'> <pubsub xmlns='http://jabber.org/protocol/pubsub'> <unsubscribe node='my_musings' jid='romeo@example.net'/> </pubsub> </iq> E: <iq from='pubsub.example.com' id='unsub1' to='romeo@example.net/foo' type='error'> <error type='cancel'> <unexpected-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> <not-subscribed xmlns='http://jabber.org/protocol/pubsub#errors'/> </error> </iq>
TOC |
As noted, an application MAY provide application-specific stanza error information by including a properly-namespaced child in the error element. The application-specific element SHOULD supplement or further qualify a defined element. Thus, the <error/> element will contain two or three child elements.
<iq id='some-id' type='error'> <error type='modify'> <bad-request xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> <too-many-parameters xmlns='http://example.com/ns'/> </error> </iq>
<message type='error' id='another-id'> <error type='modify'> <undefined-condition xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'/> <text xml:lang='en' xmlns='urn:ietf:params:xml:ns:xmpp-stanzas'> [ ... application-specific information ... ] </text> <too-many-parameters xmlns='http://example.com/ns'/> </error> </message>
An entity that receives an application-specific error condition it does not understand MUST ignore the condition.
TOC |
Although the message, presence, and IQ stanzas provide basic semantics for messaging, availability, and request-response interactions, XMPP uses XML namespaces (see [XML‑NAMES] (Layman, A., Hollander, D., Tobin, R., and T. Bray, “Namespaces in XML 1.1 (Second Edition),” August 2006.) to extend the basic stanza syntax for the purpose of providing additional functionality.
A message or presence stanza MAY contain one or more optional child elements specifying content that extends the meaning of the message (e.g., an XHTML-formatted version of the message body as described in [XEP‑0071] (Saint-Andre, P., “XHTML-IM,” September 2008.)), and an IQ stanza of type "get" or "set" MUST contain one such child element. Such a child element MAY have any name and MUST possess a namespace declaration (other than "jabber:client", "jabber:server", or "http://etherx.jabber.org/streams") that defines all data contained within the child element. Such a child element is called an "extension element". An extension element can be included either at the direct child level of the stanza or in any mix of levels.
Similarly, "extension attributes" are allowed. That is: a stanza itself (i.e., the <iq/>, <message/>, and <presence/> elements qualified by the "jabber:client" or "jabber:server" namespace declared as the default namespace for the stream) and any child element of such a stanza (whether a child element qualifed by the default namespace or an extension element) MAY also include one or more attributes that are qualified by XML namespaces that are different from the default namespace or the reserved "xml" prefix (including the "empty namespace" if the attribute is not prefixed). For the sake of backward compatibility and maximum interoperability, an entity that generates a stanza SHOULD NOT include such attributes in the stanza itself or in child elements of the stanza that are qualified by the default namespace (e.g., the message <body/> element).
An extension element or extension attribute is said to be EXTENDED CONTENT and the namespace name for such an element or attribute is said to be an EXTENDED NAMESPACE.
To illustrate these concepts, several examples follow.
The following stanza contains one direct child element whose extended namespace is 'jabber:iq:roster':
<iq from='juliet@capulet.com/balcony' id='roster1' type='get'> <query xmlns='jabber:iq:roster'/> </iq>
The following stanza contains two direct child elements with two different extended namespaces.
<presence from='juliet@capulet.com/balcony'> <c xmlns='http://jabber.org/protocol/caps' node='http://exodus.jabberstudio.org/caps' ver='0.9'/> <x xmlns='vcard-temp:x:update'> <photo>sha1-hash-of-image</photo> </x> </presence>
The following stanza contains two child elements, one of which is qualified by the default namespace and one of which is qualified by an extended namespace; the extension element in turn contains a child elememnt that is qualified by a different extended namespace.
<message to='juliet@capulet.com'> <body>Hello?</body> <html xmlns='http://jabber.org/protocol/xhtml-im'> <body xmlns='http://www.w3.org/1999/xhtml'> <p style='font-weight:bold'>Hello?</t> </body> </html> </message>
It is conventional in the XMPP community for implementations to not generate namespace prefixes for elements that are qualified by extended namespaces. However, if an implementation generates such namespace prefixes then it MUST include the namespace declaration in the stanza itself or a child element of the stanza, not in the stream header (see Section 5.5.3 (Declaration of Other Namespaces)).
Routing entities (typically servers) SHOULD try to maintain prefixes when serializing XML stanzas for processing, but receiving entities MUST NOT rely on the prefix strings having any particular value.
Support for any given extended namespace is OPTIONAL on the part of any implementation. If an entity does not understand such a namespace, the entity's expected behavior depends on whether the entity is (1) the recipient or (2) an entity that is routing the stanza to the recipient.
- Recipient:
- If a recipient receives a stanza that contains an element or attribute it does not understand, it MUST silently ignore that particular XML data, i.e., it MUST NOT process it or present it to a user or associated application (if any). In particular:
- If an entity receives a message or presence stanza that contains XML data qualified by a namespace it does not understand, the portion of the stanza that qualified by the unknown namespace MUST be ignored.
- If an entity receives a message stanza whose only child element is qualified by a namespace it does not understand, it MUST ignore the entire stanza.
- If an entity receives an IQ stanza of type "get" or "set" containing a child element qualified by a namespace it does not understand, the entity MUST return an IQ stanza of type "error" with an error condition of <service-unavailable/>.
- Router:
- If a routing entity (typically a server) handles a stanza that contains a child element it does not understand, it MUST ignore the associated XML data by routing or delivering it untouched to the recipient.
TOC |
XMPP is optimized for the exchange of relatively large numbers of relatively small stanzas. A client or server MAY enforce a maximum stanza size. The maximum stanza size MUST NOT be smaller than 10000 bytes, from the opening "<" character to the closing ">" character. If an entity receives a stanza that exceeds its maximum stanza size, it MUST return a <not-acceptable/> stanza error or a <policy-violation/> stream error.
TOC |
TOC |
The following examples show the XMPP data flow for a client negotiating an XML stream with a server, exchanging XML stanzas, and closing the negotiated stream. The server is "im.example.com", the server requires use of TLS, the client authenticates via the SASL PLAIN mechanism as "juliet@im.example.com", and the client binds a client-submitted resource to the stream. It is assumed that before sending the initial stream header, the client has already resolved an SRV record of _xmpp-client._tcp.im.example.com and has opened a TCP connection to the advertised port at the resolved IP address.
Note: The alternate steps shown are provided only to illustrate the protocol for failure cases; they are not exhaustive and would not necessarily be triggered by the data sent in the examples.
TOC |
Step 1: Client initiates stream to server:
C: <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
Step 2: Server responds by sending a response stream header to client:
S: <stream:stream from='im.example.com' id='t7AMCin9zjMNwQKDnplntZPIDEI=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'
Step 3: Server sends stream features to client (STARTTLS extension only at this point):
S: <stream:features> <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'> <required/> </starttls> </stream:features>
Step 4: Client sends STARTTLS command to server:
C: <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
Step 5: Server informs client that it is allowed to proceed:
S: <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
Step 5 (alt): Server informs client that STARTTLS negotiation has failed and closes both XML stream and TCP connection:
S: <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/> S: </stream:stream>
Step 6: Client and server attempt to complete TLS negotiation over the existing TCP connection (see [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.) for details).
Step 7: If TLS negotiation is successful, client initiates a new stream to server:
C: <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'>
Step 7 (alt): If TLS negotiation is unsuccessful, server closes TCP connection.
TOC |
Step 8: Server responds by sending a stream header to client along with any available stream features:
S: <stream:stream from='im.example.com' id='vgKi/bkYME8OAj4rlXMkpucAqe4=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams' S: <stream:features> <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <mechanism>DIGEST-MD5</mechanism> <mechanism>PLAIN</mechanism> </mechanisms> </stream:features>
Step 9: Client selects an authentication mechanism, in this case [PLAIN] (Zeilenga, K., “The PLAIN Simple Authentication and Security Layer (SASL) Mechanism,” August 2006.):
C: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='PLAIN'>AGp1bGlldAByMG0zMG15cjBtMzA=</auth>
The decoded base64 data is "U+0000julietU+0000r0m30myr0m30", i.e., a username of "juliet" and a password of "r0m30myr0m30" with the actual ASCII 0 (or NUL) character as separator.
Step 10: Server informs client of success:
S: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
Step 10 (alt): Server returns error to client:
S: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <not-authorized/> </failure>
Step 11: Client initiates a new stream to server:
C: <stream:stream from='juliet@im.example.com' to='im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'
TOC |
Step 12: Server responds by sending a stream header to client along with supported features (in this case resource binding):
S: <stream:stream from='im.example.com' id='gPybzaOzBmaADgxKXu9UClbprp0=' to='juliet@im.example.com' version='1.0' xml:lang='en' xmlns='jabber:client' xmlns:stream='http://etherx.jabber.org/streams'> S: <stream:features> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'/> </stream:features>
Upon being so informed that resource binding is mandatory, the client needs to bind a resource to the stream; here we assume that the client submits a human-readable text string.
Step 13: Client binds a resource:
C: <iq id='bind_1' type='set'> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'> balcony </bind> </iq>
Step 14: Server accepts submitted resourcepart and informs client of successful resource binding:
S: <iq id='bind_1' type='result'> <bind xmlns='urn:ietf:params:xml:ns:xmpp-bind'> <jid> juliet@im.example.com/balcony </jid> </bind> </iq>
TOC |
Now the client is allowed to send XML stanzas over the negotiated stream.
C: <message from='juliet@im.example.com/balcony' to='romeo@example.net' xml:lang='en'> <body>Art thou not Romeo, and a Montague?</body> </message>
If necessary, sender's server negotiates XML streams with intended recipient's server (see Section 10.2 (Server-to-Server Examples)).
The intended recipient replies and the message is delivered to the client.
E: <message from='romeo@example.net/orchard' to='juliet@im.example.com/balcony' xml:lang='en'> <body>Neither, fair saint, if either thee dislike.</body> </message>
The client can subsequently send and receive an unbounded number of subsequent XML stanzas over the stream.
TOC |
Desiring to send no further messages, the client closes the stream.
C: </stream:stream>
Consistent with the recommended stream closing handshake, the server closes the stream as well:
S: </stream:stream>
Client now terminates the underlying TCP connection.
TOC |
The following examples show the data flow for a server negotiating an XML stream with another server, exchanging XML stanzas, and closing the negotiated stream. The initiating server ("Server1") is im.example.com; the receiving server ("Server2") is example.net and it requires use of TLS; im.example.com presents a certificate and authenticates via the SASL EXTERNAL mechanism. It is assumed that before sending the initial stream header, Server1 has already resolved an SRV record of _xmpp-server._tcp.example.net and has opened a TCP connection to the advertised port at the resolved IP address.
Note: The alternate steps shown are provided only to illustrate the protocol for failure cases; they are not exhaustive and would not necessarily be triggered by the data sent in the examples.
TOC |
Step 1: Server1 initiates stream to Server2:
S1: <stream:stream from='im.example.com' to='example.net' version='1.0' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'>
Step 2: Server2 responds by sending a response stream header to Server1:
S2: <stream:stream from='example.net' id='hTiXkW+ih9k2SqdGkk/AZi0OJ/Q=' to='im.example.com' version='1.0' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'>
Step 3: Server2 sends stream features to Server1:
S2: <stream:features> <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'> <required/> </starttls> </stream:features>
Step 4: Server1 sends the STARTTLS command to Server2:
S1: <starttls xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
Step 5: Server2 informs Server1 that it is allowed to proceed:
S2: <proceed xmlns='urn:ietf:params:xml:ns:xmpp-tls'/>
Step 5 (alt): Server2 informs Server1 that STARTTLS negotiation has failed and closes stream:
S2: <failure xmlns='urn:ietf:params:xml:ns:xmpp-tls'/> S2: </stream:stream>
Step 6: Server1 and Server2 attempt to complete TLS negotiation via TCP (see [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.) for details).
Step 7: If TLS negotiation is successful, Server1 initiates a new stream to Server2:
S1: <stream:stream from='im.example.com' to='example.net' version='1.0' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'>
Step 7 (alt): If TLS negotiation is unsuccessful, Server2 closes TCP connection.
TOC |
Step 8: Server2 sends a response stream header to Server1 along with available stream features (including a preference for the SASL EXTERNAL mechanism):
S2: <stream:stream from='example.net' id='RChdjlgj/TIBcbT9Keu31zDihH4=' to='im.example.com' version='1.0' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'> S2: <stream:features> <mechanisms xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <mechanism>EXTERNAL</mechanism> </mechanisms> </stream:features>
Step 9: Server1 selects the EXTERNAL mechanism, in this case with an authorization identity encoded according to [BASE64] (Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” October 2006.):
S1: <auth xmlns='urn:ietf:params:xml:ns:xmpp-sasl' mechanism='EXTERNAL'/>aW0uZXhhbXBsZS5jb20=</auth>
The decoded authorization identity is "im.example.com".
Step 10: Server2 determines that the authorization identity provided by Server1 matches the information in the presented certificate and therefore returns success:
S2: <success xmlns='urn:ietf:params:xml:ns:xmpp-sasl'/>
Step 10 (alt): Server2 informs Server1 of failed authentication:
S2: <failure xmlns='urn:ietf:params:xml:ns:xmpp-sasl'> <not-authorized/> </failure> S2: </stream:stream>
Step 11: Server1 initiates a new stream to Server2:
S1: <stream:stream from='im.example.com' to='example.net' version='1.0' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'>
Step 12: Server2 responds by sending a stream header to Server1 along with any additional features (or, in this case, an empty features element):
S2: <stream:stream from='example.net' id='MbbV2FeojySpUIP6J91qaa+TWHM=' to='im.example.com' version='1.0' xmlns='jabber:server' xmlns:stream='http://etherx.jabber.org/streams'> S2: <stream:features/>
TOC |
Now Server1 is allowed to send XML stanzas to Server2 over the negotiated stream; here we assume that the transferred stanzas are those shown earlier for client-to-server communication, albeit over a server-to-server stream qualified by the 'jabber:server' namespace.
Server1 sends XML stanza to Server2:
S1: <message from='juliet@im.example.com/balcony' to='romeo@example.net' xml:lang='en'> <body>Art thou not Romeo, and a Montague?</body> </message>
The intended recipient replies and the message is delivered from Server2 to Server1.
Server2 sends XML stanza to Server1:
S2: <message from='romeo@example.net/orchard' to='juliet@im.example.com/balcony' xml:lang='en'> <body>Neither, fair saint, if either thee dislike.</body> </message>
TOC |
Desiring to send no further messages, Server1 closes the stream. (In practice, the stream would most likely remain open for some time, since Server1 and Server2 do not immediately know if the stream will be needed for further communication.)
S1: </stream:stream>
Consistent with the recommended stream closing handshake, Server2 closes the stream as well:
S2: </stream:stream>
Server1 now terminates the underlying TCP connection.
TOC |
An XMPP server MUST ensure in-order processing of XML stanzas between any two entities. This includes stanzas sent by a client to its server for direct processing by the server (e.g., in-order processing of a roster get and initial presence as described in [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.)).
Beyond the requirement for in-order processing, each server implementation will contain its own logic for processing stanzas it receives. Such logic determines whether the server needs to ROUTE a given stanza to another domain, DELIVER it to a local entity (typically a connected client associated with a local account), or HANDLE it directly within the server itself. The following rules apply.
Note: Particular XMPP applications MAY specify delivery rules that modify or supplement the following rules; for example, a set of delivery rules for instant messaging and presence applications is defined in [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.).
TOC |
TOC |
If the stanza possesses no 'to' attribute, the server MUST handle it directly on behalf of the entity that sent it, where the meaning of "handle it directly" depends on whether the stanza is message, presence, or IQ. Because all stanzas received from other servers MUST possess a 'to' attribute, this rule applies only to stanzas received from a local entity (such as a client) that is connected to the server.
TOC |
If the server receives a message stanza with no 'to' attribute, it MUST treat the message as if the 'to' address were the bare JID <localpart@domain> of the sending entity.
TOC |
If the server receives a presence stanza with no 'to' attribute, it MUST broadcast it to the entities that are subscribed to the sending entity's presence, if applicable ([XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.) defines the semantics of such broadcasting for presence applications).
TOC |
If the server receives an IQ stanza with no 'to' attribute, it MUST process the stanza on behalf of the account from which received the stanza, as follows:
TOC |
If the hostname of the domainpart of the JID contained in the 'to' attribute matches one of the configured hostnames of the server itself, the server MUST first determine if the hostname is serviced by the server or by a specialized local service. If the latter, the server MUST route the stanza to that service. If the former, the server MUST proceed as follows.
TOC |
If the JID contained in the 'to' attribute is of the form <domain>, then the server MUST either handle the stanza as appropriate for the stanza kind or return an error stanza to the sender.
TOC |
If the JID contained in the 'to' attribute is of the form <domain/resource>, then the server MUST either handle the stanza as appropriate for the stanza kind or return an error stanza to the sender.
TOC |
Note: For addresses of this type, more detailed rules in the context of instant messaging and presence applications are provided in [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.).
TOC |
If there is no local account associated with the <localpart@domain>, how the stanza is processed depends on the stanza type.
TOC |
If the JID contained in the 'to' attribute is of the form <localpart@domain>, how the stanza is processed depends on the stanza type.
TOC |
If the JID contained in the 'to' attribute is of the form <localpart@domain/resource> and there is no connected resource that exactly matches the full JID, the stanza is processed as if the JID were of the form <localpart@domain>.
If the JID contained in the 'to' attribute is of the form <localpart@domain/resource> and there is a connected resource that exactly matches the full JID, the server SHOULD deliver the stanza to that connected resource.
TOC |
If the hostname of the domainpart of the JID contained in the 'to' attribute does not match one of the configured hostnames of the server itself, the server SHOULD attempt to route the stanza to the remote domain (subject to local service provisioning and security policies regarding inter-domain communication, since such communication is optional for any given deployment). There are two possible cases.
TOC |
If a server-to-server stream already exists between the two domains, the sender's server will attempt to route the stanza to the authoritative server for the remote domain over the existing stream.
TOC |
If there exists no server-to-server stream between the two domains, the sender's server will proceed as follows:
TOC |
If routing of a stanza to the intended recipient's server is unsuccessful, the sender's server MUST return an error to the sender. If resolution of the remote domain is unsuccessful, the stanza error MUST be <remote-server-not-found/>. If resolution succeeds but streams cannot be negotiated, the stanza error MUST be <remote-server-timeout/>.
If stream negotiation with the intended recipient's server is successful but the remote server cannot deliver the stanza to the recipient, the remote server MUST return an appropriate error to the sender by way of the sender's server.
TOC |
TOC |
The Extensible Messaging and Presence Protocol (XMPP) defines a class of data objects called XML streams as well as the behavior of computer programs that process XML streams. XMPP is an application profile or restricted form of the Extensible Markup Language [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.), and a complete XML stream (including start and end stream tags) is a conforming XML document.
However, XMPP does not deal with XML documents but with XML streams. Because XMPP does not require the parsing of arbitrary and complete XML documents, there is no requirement that XMPP needs to support the full feature set of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.). In particular, the following features of XML are prohibited in XMPP:
An XMPP implementation MUST behave as follows with regard to these features:
TOC |
XML namespaces (see [XML‑NAMES] (Layman, A., Hollander, D., Tobin, R., and T. Bray, “Namespaces in XML 1.1 (Second Edition),” August 2006.)) are used within XMPP streams to create strict boundaries of data ownership. The basic function of namespaces is to separate different vocabularies of XML elements that are structurally mixed together. Ensuring that XMPP streams are namespace-aware enables any allowable XML to be structurally mixed with any data element within XMPP. XMPP-specific rules for XML namespace names and prefixes are defined under Section 5.5 (Namespace Declarations) for XML streams and Section 9.4 (Extended Content) for XML stanzas.
TOC |
There are two varieties of well-formedness:
The following rules apply.
An XMPP entity MUST NOT generate data that is not XML-well-formed. An XMPP entity MUST NOT accept data that is not XML-well-formed; instead it MUST return an <xml-not-well-formed/> stream error and close the stream over which the data was received.
An XMPP entity MUST NOT generate data that is not namespace-well-formed. An XMPP server SHOULD NOT route or deliver data that is not namespace-well-formed, and SHOULD return a stanza error of <not-acceptable/> or a stream error of <xml-not-well-formed/> in response to the receipt of such data.
Note: Because these restrictions were underspecified in the predecessor to this specification, it is possible that implementations based on that predecessor will send data that does not comply with the restrictions.
TOC |
A server is not responsible for ensuring that XML data delivered to a client or routed to another server is valid, in accordance with the definition of "valid" provided in Section 2.8 of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.). An implementation MAY choose to accept or provide only validated data, but such behavior is OPTIONAL. A client SHOULD NOT rely on the ability to send data that does not conform to the schemas, and SHOULD ignore any non-conformant elements or attributes on the incoming XML stream.
Note: The terms "valid" and "well-formed" are distinct in XML.
TOC |
Before sending a stream header, an implementation SHOULD send an XML declaration (matching production [23] content of [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.)). Applications MUST follow the rules provided in [XML] (Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” August 2006.) regarding the format of the XML declaration and the circumstances under which the XML declaration is included.
TOC |
Implementations MUST support the UTF-8 transformation of Universal Character Set [UCS2] (International Organization for Standardization, “Information Technology - Universal Multiple-octet coded Character Set (UCS) - Amendment 2: UCS Transformation Format 8 (UTF-8),” October 1996.) characters, as needed for conformance with [CHARSET] (Alvestrand, H., “IETF Policy on Character Sets and Languages,” January 1998.) and as defined in [UTF‑8] (Yergeau, F., “UTF-8, a transformation format of ISO 10646,” November 2003.). Implementations MUST NOT attempt to use any other encoding. If one party to an XML stream detects that the other party has attempted to send XML data with an encoding other than UTF-8, it MUST return a stream error, which SHOULD be <unsupported-encoding/> but MAY be <bad-format/>.
Note: Because it is mandatory for an XMPP implementation to support all and only the UTF-8 encoding and because UTF-8 always has the same byte order, an implementation MUST NOT send a byte order mark ("BOM") at the beginning of the data stream. If an entity receives the Unicode character U+FEFF anywhere in an XML stream (including as the first character of the stream), it MUST interpret that character as a zero width no-break space, not as a byte order mark.
TOC |
Except where explicitly disallowed (e.g., during TLS negotiation (STARTTLS Negotiation) and SASL negotiation (SASL Negotiation)), either entity MAY send whitespace as separators between XML stanzas or between any other first-level elements sent over the stream. One common use for sending such whitespace is explained under Section 5.3.3 (Handling of Idle Streams).
TOC |
XMPP is an application profile of XML 1.0. A future version of XMPP might be defined in terms of higher versions of XML, but this specification addresses XML 1.0 only.
TOC |
As specified under Section 12.6 (Character Encoding), XML streams MUST be encoded in UTF-8.
As specified under Section 5.4 (Stream Attributes), an XML stream SHOULD include an 'xml:lang' attribute specifying the default language for any XML character data that is intended to be presented to a human user. As specified under Section 9.1.5 (xml:lang), an XML stanza SHOULD include an 'xml:lang' attribute if the stanza contains XML character data that is intended to be presented to a human user. A server SHOULD apply the default 'xml:lang' attribute to stanzas it routes or delivers on behalf of connected entities, and MUST NOT modify or delete 'xml:lang' attributes on stanzas it receives from other entities.
As specified under Section 3 (Addresses), a server MUST support and enforce [IDNA] (Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing Domain Names in Applications (IDNA),” March 2003.) for domainparts, the Nodeprep (Nodeprep) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.) for localparts, and the Resourceprep (Resourceprep) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.) for resourceparts; this enables XMPP addresses to include a wide variety of Unicode characters outside the US-ASCII range.
TOC |
TOC |
For the purposes of XMPP communication (client-to-server and server-to-server), the term "high security" refers to the use of security technologies that provide both mutual authentication and integrity checking (on the importance of high security, refer to [STRONGSEC] (Schiller, J., “Strong Security Requirements for Internet Engineering Task Force Standard Protocols,” August 2002.)); in particular, when using certificate-based authentication to provide high security, a trust chain SHOULD be established out-of-band, although a shared certification authority signing certificates could allow a previously unknown certificate to establish trust in-band. See Section 14.2 (Certificates) regarding certificate validation procedures.
Implementations MUST support high security. Service provisioning SHOULD use high security, subject to local security policies.
The initial stream and the response stream MUST be secured separately, although security in both directions MAY be established via mechanisms that provide mutual authentication.
TOC |
Channel encryption of an XML stream using Transport Layer Security as described under Section 6 (STARTTLS Negotiation), and in some cases also authentication as described under Section 7 (SASL Negotiation), is commonly based on a digital certificate presented by the receiving entity (or, in the case of mutual authentication, both the receiving entity and the initiating entity). This section describes best practices regarding the generation of digital certificates to be presented by XMPP entities and the verification of digital certificates presented by XMPP entities.
Considerations specific to certificate geneneration and validation with regard to client certificates or server certificates are described in the following sections.
TOC |
TOC |
The following rules apply to public key certificates that are issued to XMPP entities:
The following rules apply to issuers of XMPP certificates:
TOC |
In a digital certificate to be presented by an XMPP server (i.e., a SERVER CERTIFICATE), it is RECOMMENDED for the certificate to include one or more JIDs (i.e., domainparts) associated with domains serviced at the server. The representations described in the following sections are RECOMMENDED. These representations are provided in preference order.
TOC |
A server's domainpart SHOULD be represented as an SRVName, i.e., as an otherName field of type "id-on-dnsSRV" as specified in [X509‑SRV] (Santesson, S., “Internet X.509 Public Key Infrastructure Subject Alternative Name for Expression of Service Name,” August 2007.).
TOC |
A server's domainpart SHOULD be represented as a dNSName, i.e., as a subjectAltName extension of type dNSName.
The dNSName MAY contain one instance of the wildcard character '*'. The wildcard character applies only to the left-most domain name component and matches any single component (thus a dNSName of *.example.com matches foo.example.com but not bar.foo.example.com or example.com itself). The wildcard character is not allowed in component fragments (thus a dNSName of im*.example.net is not allowed and SHALL NOT be taken to match im1.example.net and im2.example.net).
TOC |
A server's domainpart MAY be represented as an XmppAddr, i.e., as a UTF8String within an otherName entity inside the subjectAltName, using the [ASN.1] (CCITT, “Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1),” 1988.) Object Identifier "id-on-xmppAddr" specified under Section 14.2.1.4 (ASN.1 Object Identifier). In server certificates, this representation is included only for the sake of backward-compatibility.
TOC |
A server's domainpart SHOULD NOT be represented as a Common Name; instead, the Common Name field SHOULD be reserved for representation of a human-friendly name.
TOC |
For our first (relatively simple) example, consider a company called "Example Products, Inc." It hosts an XMPP service at "im.example.com" (i.e., user addresses at the service are of the form "user@im.example.com"), and SRV lookups for the xmpp-client and xmpp-server services at "im.example.com" yield one machine, called "x.example.com", as follows:
_xmpp-client._tcp.im.example.com. 400 IN SRV 20 0 5222 x.example.com _xmpp-server._tcp.im.example.com. 400 IN SRV 20 0 5269 x.example.com
The certificate presented by x.example.com contains the following representations:
For our second (more complex) example, consider an ISP called "Example Internet Services". It hosts an XMPP service at "example.net" (i.e., user addresses at the service are of the form "user@example.net"), but SRV lookups for the xmpp-client and xmpp-server services at "example.net" yield two machines ("x1.example.net" and "x2.example.net"), as follows:
_xmpp-client._tcp.example.net. 68400 IN SRV 20 0 5222 x1.example.net. _xmpp-client._tcp.example.net. 68400 IN SRV 20 0 5222 x2.example.net. _xmpp-server._tcp.example.net. 68400 IN SRV 20 0 5269 x1.example.net. _xmpp-server._tcp.example.net. 68400 IN SRV 20 0 5269 x2.example.net.
Example Internet Services also hosts chatrooms at chat.example.net, and provides an xmpp-server SRV record for that service as well (thus enabling entity from remote domains to access that service). It also might provide other such services in the future, so it wishes to represent a wildcard in its certificate to handle such growth.
The certificate presented by either x1.example.net or x2.example.net contains the following representations:
TOC |
In a digital certificate to be presented by an XMPP client controlled by a human user (i.e., a CLIENT CERTIFICATE), it is RECOMMENDED for the certificate to include one or more JIDs associated with an XMPP user. If included, a JID MUST be represented as an XmppAddr, i.e., as a UTF8String within an otherName entity inside the subjectAltName, using the [ASN.1] (CCITT, “Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1),” 1988.) Object Identifier "id-on-xmppAddr" specified under Section 14.2.1.4 (ASN.1 Object Identifier).
TOC |
The [ASN.1] (CCITT, “Recommendation X.208: Specification of Abstract Syntax Notation One (ASN.1),” 1988.) Object Identifier "id-on-xmppAddr" (also called an XmppAddr) is defined as follows.
id-pkix OBJECT IDENTIFIER ::= { iso(1) identified-organization(3) dod(6) internet(1) security(5) mechanisms(5) pkix(7) } id-on OBJECT IDENTIFIER ::= { id-pkix 8 } -- other name forms id-on-xmppAddr OBJECT IDENTIFIER ::= { id-on 5 } XmppAddr ::= UTF8String
As an alternative to the "id-on-xmppAddr" notation, this Object Identifier MAY be represented in dotted display format (i.e., "1.3.6.1.5.5.7.8.5") or in the Uniform Resource Name notation specified in [URN‑OID] (Mealling, M., “A URN Namespace of Object Identifiers,” February 2001.) (i.e., "urn:oid:1.3.6.1.5.5.7.8.5").
Thus for example the JID "juliet@im.example.com" as included in a certificate could be formatted in any of the following three ways:
- id-on-xmppAddr:
- subjectAltName=otherName:id-on-xmppAddr;UTF8:juliet@im.example.com
- dotted display format:
- subjectAltName=otherName:1.3.6.1.5.5.7.8.5;UTF8:juliet@im.example.com
- URN notation:
- subjectAltName=otherName:urn:oid:1.3.6.1.5.5.7.8.5;UTF8:juliet@im.example.com
Use of the "id-on-xmppAddr" format is RECOMMENDED in the generation of certificates, but all three formats MUST be supported for the purpose of certificate validation.
The "id-on-xmppAddr" object identifier MAY be used on conjuction with the extended key usage extension specified in Section 4.2.1.12 of [X509] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.) in order to explicitly define and limit the intended use of a certificate to the XMPP network.
TOC |
When an XMPP entity is presented with a server certificate or client certificate by a peer for the purpose of encryption or authentication of XML streams as described under Section 6 (STARTTLS Negotiation) and Section 7 (SASL Negotiation), the entity MUST validate the certificate to determine if the certificate will be considered a TRUSTED CERTIFICATE, i.e., a certificate that is acceptable for encryption and/or authentication in accordance with the XMPP entity's local service policies or configured settings.
For both server certificates and client certificates, the validating entity MUST verify the integrity of the certificate, MUST verify that the certificate has been properly signed by the issuing Certificate Authority, and MUST support certificate revocation messages. An implementation MUST enable a human user to view information about the full chain of certificates.
The following sections describe certificate validation rules for server-to-server and client-to-server streams.
TOC |
When an entity (client or server) validates a certificate presented by an XMPP server, there are three possible cases, as discussed in the following sections.
TOC |
If the server certificate appears to be certified by a chain of certificates terminating in a trust anchor (as described in Section 6.1 of [X509] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.)), the entity MUST check the certificate for any instances of the SRVName, dNSName, and XmppAddr (in that order of preference) as described under Section 14.2.1.2.1 (SRVName), Section 14.2.1.2.2 (dNSName), and Section 14.2.1.2.3 (XmppAddr). There are three possible sub-cases:
- Sub-Case #1:
- The server's certificate includes at least one presented identity that matches the reference identity to which the entity attempted to connect, in accordance with the matching rules specified in [TLS‑CERTS] (Saint-Andre, P. and J. Hodges, “Representation and Verification of Application Server Identity in Certificates Used with Transport Layer Security (TLS),” March 2010.). In this case, the entity MUST use the matched domainpart as the validated identity of the XMPP server.
- Sub-Case #2:
- The server's certificate includes no presented identity that matches the reference identity to which the entity attempted to connect and a human user has not permanently accepted the certificate during a previous connection attempt. In this case, the entity MUST NOT use the presented domainpart (if any) as the validated identity of the XMPP server. Instead, if the connecting entity is a user-oriented client then it MUST either (1) automatically terminate the connection with a bad certificate error or (2) show the certificate (including the entire certificate chain) to the user and give the user the choice of terminating the connecting or accepting the certificate temporarily (i.e., for this connection attempt only) or permanently (i.e., for all future connection attempts) and then continuing with the connection; if a user permanently accepts a certificate in this way, the client MUST cache the certificate (or some non-forgeable representation such as a hash value) and in future connection attempts behave as in Sub-Case #3. (It is the resposibility of the human user to verify the hash value or fingerprint of the certificate with the peer over a trusted communication layer.) If the connecting entity is an XMPP server or an automated client, the application SHOULD terminate the connection (with a bad certificate error) and log the error to an appropriate audit log; an XMPP server or automated client MAY provide a configuration setting that disables this check, but MUST enable the check by default.
- Sub-Case #3:
- The server's certificate includes no presented identity that matches the reference identity to which the entity attempted to connect but a human user has permanently accepted the certificate during a previous connection attempt; the entity MUST verify that the cached certificate was presented and MUST notify the user if the certificate has changed.
TOC |
If the server certificate is certified by a Certificate Authority not known to the entity, the entity MUST proceed as under Case #1, Sub-Case #2 or Case #1, Sub-Case #3 as appropriate.
TOC |
If the server certificate is self-signed, the entity MUST proceed as under Case #1, Sub-Case #2 or Case #1, Sub-Case #3 as appropriate.
TOC |
When an XMPP server validates a certificate presented by a client, there are three possible cases, as discussed in the following sections.
TOC |
If the client certificate appears to be certified by a chain of certificates terminating in a trust anchor (as described in Section 6.1 of [X509] (Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” May 2008.)), the server MUST check the certificate for any instances of the XmppAddr as described under Section 14.2.1.4 (ASN.1 Object Identifier). There are three possible sub-cases:
- Sub-Case #1:
- The server finds one XmppAddr for which the domainpart of the represented JID matches one of the configured hostnames of the server itself; the server SHOULD use this represented JID as the validated identity of the client.
- Sub-Case #2:
- The server finds more than one XmppAddr for which the domainpart of the represented JID matches one of the configured hostnames of the server itself; the server SHOULD use one of these represented JIDs as the validated identity of the client, choosing among them according to local service policies or based on the 'to' address of the initial stream header.
- Sub-Case #3:
- The server finds no XmppAddrs, or finds at least one XmppAddr but the domainpart of the represented JID does not match one of the configured hostnames of the server itself; the server MUST NOT use the represented JID (if any) as the validated identity of the client but instead MUST either validate the identity of the client using other means.
TOC |
If the client certificate is certified by a Certificate Authority not known to the server, the server MUST proceed as under Case #1, Sub-Case #3.
TOC |
If the client certificate is self-signed, the server MUST proceed as under Case #1, Sub-Case #3.
TOC |
Because XMPP uses long-lived XML streams, it is possible that a certificate presented during stream negotiation might expire or be revoked while the stream is still live (this is especially relevant in the context of server-to-server streams). Therefore, each party to a long-lived stream SHOULD:
If the identity presented by the initiating entity changes materially between the old stream and the new stream, then the receiving entity MUST perform a full re-authentication on the new stream.
TOC |
Certificates MAY be used in extensions to XMPP for the purpose of application-layer encryption or authentication above the level of XML streams (e.g., for end-to-end encryption). Such extensions will define their own certificate handling rules, which at a minimum SHOULD be consistent with the rules specified herein but MAY specify additional rules.
TOC |
A compliant client implementation MUST support both TLS and SASL for connections to a server.
The TLS protocol for encrypting XML streams (defined under Section 6 (STARTTLS Negotiation)) provides a reliable mechanism for helping to ensure the confidentiality and integrity of data exchanged between two entities.
The SASL protocol for authenticating XML streams (defined under Section 7 (SASL Negotiation)) provides a reliable mechanism for validating that a client connecting to a server is who it claims to be.
Client-to-server communication MUST NOT proceed until the DNS hostname asserted by the server has been resolved as specified under Section 4 (TCP Binding). If there is a mismatch between the hostname to which a client attempted to connect (e.g., "example.net") and the hostname to which the client actually connects (e.g., "x1.example.net"), the client MUST warn a human user about the mismatch and the human user MUST approve the connection before the client proceeds; however, the client MAY also allow the user to add the presented hostname to a configured set of accepted hostnames to expedite future connections.
A client's IP address and method of access MUST NOT be made public by a server, nor are any connections other than the original server connection necessary. This helps to protect the client's server from direct attack or identification by third parties.
TOC |
A compliant server implementation MUST support both TLS and SASL for inter-domain communication.
Because service provisioning is a matter of policy, it is optional for any given domain to communicate with other domains, and server-to-server communication can be disabled by the administrator of any given deployment. If a particular domain enables inter-domain communication, it SHOULD enable high security.
Administrators might want to require use of SASL for server-to-server communication to ensure both authentication and confidentiality (e.g., on an organization's private network). Compliant implementations SHOULD support SASL for this purpose.
Server-to-server communication MUST NOT proceed until the DNS hostnames asserted by both servers have been resolved as specified under Section 4 (TCP Binding).
TOC |
The order of layers in which protocols MUST be stacked is:
The rationale for this order is that [TCP] (Postel, J., “Transmission Control Protocol,” September 1981.) is the base connection layer used by all of the protocols stacked on top of TCP, [TLS] (Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” August 2008.) is often provided at the operating system layer, [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.) is often provided at the application layer, and XMPP is the application itself.
TOC |
At a minimum, all implementations MUST support the following mechanisms unless otherwise specified below:
- for authentication only:
- the SASL Salted Challenge Response mechanism [SCRAM] (Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams, “Salted Challenge Response (SCRAM) SASL and GSS-API Mechanism,” February 2010.) (preferred) and the SASL PLAIN mechanism [PLAIN] (Zeilenga, K., “The PLAIN Simple Authentication and Security Layer (SASL) Mechanism,” August 2006.) (not preferred
- for confidentiality only:
- TLS (using the TLS_RSA_WITH_AES_128_CBC_SHA cipher)
- for both confidentiality and authentication with passwords:
- TLS plus the SASL Salted Challenge Response mechanism (see [SCRAM] (Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams, “Salted Challenge Response (SCRAM) SASL and GSS-API Mechanism,” February 2010.)) and TLS plus the SASL PLAIN mechanism (see [PLAIN] (Zeilenga, K., “The PLAIN Simple Authentication and Security Layer (SASL) Mechanism,” August 2006.))
- for both confidentiality and authentication without passwords:
- TLS plus the SASL EXTERNAL mechanism (see Appendix A of [SASL] (Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” June 2006.)) using the TLS_RSA_WITH_AES_128_CBC_SHA cipher supporting peer certificates (clients SHOULD support this, and servers MUST)
Naturally, implementations MAY support other ciphers with TLS and MAY support other SASL mechanisms.
Note: The use of TLS plus SASL SCRAM or SASL PLAIN replaces the SASL DIGEST-MD5 mechanism as XMPP's mandatory-to-implement password-based method for authentication. For backward-compatibility with existing deployed infrastructure, implementations are encouraged to continue supporting the SASL DIGEST-MD5 mechanism as specified in [DIGEST‑MD5] (Leach, P. and C. Newman, “Using Digest Authentication as a SASL Mechanism,” May 2000.), however there are known interoperability issues with DIGEST-MD5 that make it impractical in the long term. The use of the SASL SCRAM mechanism is strongly preferred over the SASL PLAIN mechanism because of its superior security properties, and PLAIN is intended to be a fallback only for implementations that do not yet support SCRAM. Refer to [SCRAM] (Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams, “Salted Challenge Response (SCRAM) SASL and GSS-API Mechanism,” February 2010.) and [PLAIN] (Zeilenga, K., “The PLAIN Simple Authentication and Security Layer (SASL) Mechanism,” August 2006.) for important security considerations related to these SASL mechanisms.
TOC |
XMPP itself does not directly mandate the use of any particular hash function. However, technologies on which XMPP depends (e.g., TLS and particular SASL mechanisms), as well as various XMPP extensions, might make use of hash functions. Those who implement XMPP technologies or who develop XMPP extensions are advised to closely monitor the state of the art regarding attacks against cryptographic hashes in Internet protocols as they relate to XMPP. For helpful guidance, refer to [HASHES] (Hoffman, P. and B. Schneier, “Attacks on Cryptographic Hashes in Internet Protocols,” November 2005.).
TOC |
Because the initiating entity chooses an acceptable SASL mechanism from the list presented by the receiving entity, the initiating entity depends on the receiving entity's list for authentication. This dependency introduces the possibility of a downgrade attack if an attacker can gain control of the channel and therefore present a weak list of mechanisms. To prevent this attack, the parties SHOULD protect the channel using TLS before attempting SASL negotiation.
TOC |
The SASL framework itself does not provide a method for binding SASL authentication to a security layer providing confidentiality and integrity protection that was negotiated at a lower layer. Such a binding is known as a "channel binding" (see [CHANNEL] (Williams, N., “On the Use of Channel Bindings to Secure Channels,” November 2007.)). Some SASL mechanisms provide channel bindings. However, if a SASL mechanism does not provide a channel binding, then the mechanism cannot provide a way to verify that the source and destination end points to which the lower layer's security is bound are equivalent to the end points that SASL is authenticating; furthermore, if the end points are not identical, then the lower layer's security cannot be trusted to protect data transmitted between the SASL-authenticated entities. In such a situation, a SASL security layer SHOULD be negotiated that effectively ignores the presence of the lower-layer security.
TOC |
Both the client and the server MUST verify any base64 data received during SASL negotiation (SASL Negotiation). An implementation MUST reject (not ignore) any characters that are not explicitly allowed by the base64 alphabet; this helps to guard against creation of a covert channel that could be used to "leak" information.
An implementation MUST NOT break on invalid input and MUST reject any sequence of base64 characters containing the pad ('=') character if that character is included as something other than the last character of the data (e.g., "=AAA" or "BBBB=CCC"); this helps to guard against buffer overflow attacks and other attacks on the implementation.
While base 64 encoding visually hides otherwise easily recognized information (such as passwords), it does not provide any computational confidentiality.
All uses of base 64 encoding MUST follow the definition in Section 4 of [BASE64] (Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” October 2006.) and padding bits MUST be set to zero.
TOC |
XMPP makes use of the [NAMEPREP] (Hoffman, P. and M. Blanchet, “Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN),” March 2003.) profile of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.) for processing of domainparts; for security considerations related to Nameprep, refer to the appropriate section of [NAMEPREP] (Hoffman, P. and M. Blanchet, “Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN),” March 2003.).
In addition, XMPP defines two profiles of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.): Nodeprep (Nodeprep) for localparts and Resourceprep (Resourceprep) for resourceparts.
The Unicode and ISO/IEC 10646 repertoires have many characters that look similar. In many cases, users of security protocols might perform visual matching, such as when comparing the names of trusted third parties. Because it is impossible to map similar-looking characters without a great deal of context (such as knowing the fonts used), stringprep does nothing to map similar-looking characters together, nor to prohibit some characters because they look like others.
A localpart can be employed as one part of an entity's address in XMPP. One common usage is as the username of an instant messaging user; another is as the name of a multi-user conference room; and many other kinds of entities could use localparts as part of their addresses. The security of such services could be compromised based on different interpretations of the internationalized localpart; for example, a user entering a single internationalized localpart could access another user's account information, or a user could gain access to a hidden or otherwise restricted chat room or service.
A resourcepart can be employed as one part of an entity's address in XMPP. One common usage is as the name for an instant messaging user's connected resource; another is as the nickname of a user in a multi-user conference room; and many other kinds of entities could use resourceparts as part of their addresses. The security of such services could be compromised based on different interpretations of the internationalized resourcepart; for example, a user could attempt to initiate multiple connections with the same name, or a user could send a message to someone other than the intended recipient in a multi-user conference room.
TOC |
As discussed in [XEP‑0165] (Saint-Andre, P., “Best Practices to Prevent JID Mimicking,” December 2007.), there are two forms of address spoofing: forging and mimicking.
TOC |
In the context of XMPP technologies, address forging occurs when an entity is able to generate an XML stanza whose 'from' address does not correspond to the account credentials with which the entity authenticated onto the network (or an authorization identity provided during SASL negotiation (SASL Negotiation)). For example, address forging occurs if an entity that authenticated as "juliet@im.example.com" is able to send XML stanzas from "nurse@im.example.com" or "romeo@example.net".
Address forging is difficult in XMPP systems, given the requirement for sending servers to stamp 'from' addresses and for receiving servers to verify sending domains via server-to-server authentication. However, address forging is not impossible, since a rogue server could forge JIDs at the sending domain by ignoring the stamping requirement. A rogue server could even forge JIDs at other domains by means of a DNS poisoning attack if [DNSSEC] (Arends, R., Austein, R., Larson, M., Massey, D., and S. Rose, “DNS Security Introduction and Requirements,” March 2005.) is not used. This specification does not define methods for discovering or counteracting such rogue servers.
Note: An entity outside the security perimeter of a particular server cannot reliably distinguish between bare JIDs of the form <localpart@domain> at that server, since the server could forge any such JID; therefore only the domainpart can be authenticated or authorized with any level of assurance.
TOC |
Address mimicking occus when an entity provides legitimate authentication credentials for and sends XML stanzas from an account whose JID appears to a human user to be the same as another JID. For example, in some XMPP clients the address "paypa1@example.org" (spelled with the number one as the final character of the localpart) might appear to be the same as "paypal@example.org (spelled with the lower-case version of the letter "L"), especially on casual visual inspection; this phenomenon is sometimes called "typejacking". A more sophisticated example of address mimicking might involve the use of characters from outside the US-ASCII range, such as the Cherokee characters U+13DA U+13A2 U+13B5 U+13AC U+13A2 U+13AC U+13D2 instead of the US-ASCII characters "STPETER".
In some examples of address mimicking, it is unlikely that the average user could tell the difference between the real JID and the fake JID. (Naturally, there is no way to distinguish with full certainty which is the fake JID and which is the real JID; in some communication contexts, the JID with Cherokee characters might be the real JID and the JID with US-ASCII characters might thus appear to be the fake JID.) Because JIDs can contain almost any Unicode character, it can be relatively easy to mimic some JIDs in XMPP systems. The possibility of address mimicking introduces security vulnerabilities of the kind that have also plagued the World Wide Web, specifically the phenomenon known as phishing.
Mimicked addresses that involve characters from only one character set or from the character set typically employed by a particular user are not easy to combat (e.g., the simple typejacking attack previously described, which relies on a surface similarity between the characters "1" and "l" in some presentations). However, mimicked addresses that involve characters from more than one character set, or from a character set not typically employed by a particular user, can be mitigated somewhat through intelligent presentation. In particular, every human user of an XMPP technology presumably has a preferred language (or, in some cases, a small set of preferred languages), which an XMPP application SHOULD gather either explicitly from the user or implicitly via the operating system of the user's device. Furthermore, every language has a range (or a small set of ranges) of characters normally used to represent that language in textual form. Therefore, an XMPP application SHOULD warn the user when presenting a JID that uses characters outside the normal range of the user's preferred language(s). This recommendation is not intended to discourage communication across language communities; instead, it recognizes the existence of such language communities and encourages due caution when presenting unfamiliar character sets to human users.
For more detailed recommendations regarding prevention of address mimicking in XMPP systems, refer to [XEP‑0165] (Saint-Andre, P., “Best Practices to Prevent JID Mimicking,” December 2007.).
TOC |
Communication using XMPP normally occurs over TCP connections on port 5222 (client-to-server) or port 5269 (server-to-server), as registered with the IANA (see Section 15 (IANA Considerations)). Use of these well-known ports allows administrators to easily enable or disable XMPP activity through existing and commonly-deployed firewalls.
TOC |
[DOS] (Handley, M., Rescorla, E., and IAB, “Internet Denial-of-Service Considerations,” December 2006.) defines denial of service as follows:
- A Denial-of-Service (DoS) attack is an attack in which one or more machines target a victim and attempt to prevent the victim from doing useful work. The victim can be a network server, client or router, a network link or an entire network, an individual Internet user or a company doing business using the Internet, an Internet Service Provider (ISP), country, or any combination of or variant on these.
[XEP‑0205] (Saint-Andre, P., “Best Practices to Discourage Denial of Service Attacks,” January 2009.) provides a detailed discussion of potential denial of service attacks against XMPP systems and best practices for preventing such attacks. The recommendations include:
For more detailed recommendations regarding denial of service attacks in XMPP systems, refer to [XEP‑0205] (Saint-Andre, P., “Best Practices to Discourage Denial of Service Attacks,” January 2009.).
TOC |
One of the core aspects of XMPP is presence: information about the network availability of an XMPP entity (i.e., whether the entity is currently online or offline). A PRESENCE LEAK occurs when an entity's network availability is inadvertently and involuntarily revealed to a second entity that is not authorized to know the first entity's network availability.
Although presence is discussed more fully in [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.), it is important to note that an XMPP server MUST NOT leak presence. In particular at the core XMPP level, real-time addressing and network availability is associated with a specific connected resource; therefore, any disclosure of a connected resource's full JID comprises a presence leak. To help prevent such a presence leak, a server MUST NOT return different stanza errors if a potential attacker sends XML stanzas to the entity's bare JID (<localpart@domain>) or full JID (<localpart@domain/resource>).
TOC |
When a server generates an error stanza in response to receiving a stanza for a user account that does not exist, the use of the <service-unavailable/> stanza error condition can help protect against dictionary attacks, since this is the same error condition that is returned if, for instance, the namespace of an IQ child element is not understood, or if offline message storage or message forwarding is not enabled for a domain. However, subtle differences in the exact XML of error stanzas, as well as in the timing with which such errors are returned, can enable an attacker to determine the network presence of a user when more advanced blocking technologies are not used (see for instance [XEP‑0016] (Millard, P. and P. Saint-Andre, “Privacy Lists,” February 2007.) and [XEP‑0191] (Saint-Andre, P., “Simple Communications Blocking,” February 2007.)).
TOC |
The following sections update the registrations provided in [RFC3920] (Saint-Andre, P., Ed., “Extensible Messaging and Presence Protocol (XMPP): Core,” October 2004.).
TOC |
A URN sub-namespace for STARTTLS negotiation data in the Extensible Messaging and Presence Protocol (XMPP) is defined as follows. (This namespace name adheres to the format defined in [XML‑REG] (Mealling, M., “The IETF XML Registry,” January 2004.).)
- URI:
- urn:ietf:params:xml:ns:xmpp-tls
- Specification:
- XXXX
- Description:
- This is the XML namespace name for STARTTLS negotiation data in the Extensible Messaging and Presence Protocol (XMPP) as defined by XXXX.
- Registrant Contact:
- IETF, XMPP Working Group, <xmppwg@xmpp.org>
TOC |
A URN sub-namespace for SASL negotiation data in the Extensible Messaging and Presence Protocol (XMPP) is defined as follows. (This namespace name adheres to the format defined in [XML‑REG] (Mealling, M., “The IETF XML Registry,” January 2004.).)
- URI:
- urn:ietf:params:xml:ns:xmpp-sasl
- Specification:
- XXXX
- Description:
- This is the XML namespace name for SASL negotiation data in the Extensible Messaging and Presence Protocol (XMPP) as defined by XXXX.
- Registrant Contact:
- IETF, XMPP Working Group, <xmppwg@xmpp.org>
TOC |
A URN sub-namespace for stream error data in the Extensible Messaging and Presence Protocol (XMPP) is defined as follows. (This namespace name adheres to the format defined in [XML‑REG] (Mealling, M., “The IETF XML Registry,” January 2004.).)
- URI:
- urn:ietf:params:xml:ns:xmpp-streams
- Specification:
- XXXX
- Description:
- This is the XML namespace name for stream error data in the Extensible Messaging and Presence Protocol (XMPP) as defined by XXXX.
- Registrant Contact:
- IETF, XMPP Working Group, <xmppwg@xmpp.org>
TOC |
A URN sub-namespace for resource binding in the Extensible Messaging and Presence Protocol (XMPP) is defined as follows. (This namespace name adheres to the format defined in [XML‑REG] (Mealling, M., “The IETF XML Registry,” January 2004.).)
- URI:
- urn:ietf:params:xml:ns:xmpp-bind
- Specification:
- XXXX
- Description:
- This is the XML namespace name for resource binding in the Extensible Messaging and Presence Protocol (XMPP) as defined by XXXX.
- Registrant Contact:
- IETF, XMPP Working Group, <xmppwg@xmpp.org>
TOC |
A URN sub-namespace for stanza error data in the Extensible Messaging and Presence Protocol (XMPP) is defined as follows. (This namespace name adheres to the format defined in [XML‑REG] (Mealling, M., “The IETF XML Registry,” January 2004.).)
- URI:
- urn:ietf:params:xml:ns:xmpp-stanzas
- Specification:
- XXXX
- Description:
- This is the XML namespace name for stanza error data in the Extensible Messaging and Presence Protocol (XMPP) as defined by XXXX.
- Registrant Contact:
- IETF, XMPP Working Group, <xmppwg@xmpp.org>
TOC |
The Nodeprep profile of stringprep is defined under Nodeprep (Nodeprep). The IANA has registered Nodeprep in the stringprep profile registry.
Name of this profile:
- Nodeprep
RFC in which the profile is defined:
- XXXX
Indicator whether or not this is the newest version of the profile:
- This is the first version of Nodeprep
TOC |
The Resourceprep profile of stringprep is defined under Resourceprep (Resourceprep). The IANA has registered Resourceprep in the stringprep profile registry.
Name of this profile:
- Resourceprep
RFC in which the profile is defined:
- XXXX
Indicator whether or not this is the newest version of the profile:
- This is the first version of Resourceprep
TOC |
The IANA has registered "xmpp" as a GSSAPI (Linn, J., “Generic Security Service Application Program Interface Version 2, Update 1,” January 2000.) [GSS‑API] service name, as defined under Section 7.5 (SASL Definition).
TOC |
The IANA has registered "xmpp-client" and "xmpp-server" as keywords for [TCP] (Postel, J., “Transmission Control Protocol,” September 1981.) ports 5222 and 5269 respectively.
These ports SHOULD be used for client-to-server and server-to-server communications respectively, but other ports MAY be used.
TOC |
This section describes a protocol feature set that summarizes the conformance requirements of this specification. This feature set is appropriate for use in software certification, interoperability testing, and implementation reports. For each feature, this section provides the following information:
Note: The feature set specified here attempts to adhere to the concepts and formats proposed by Larry Masinter within the IETF's NEWTRK Working Group in 2005, as captured in [INTEROP] (Masinter, L., “Formalizing IETF Interoperability Reporting,” October 2005.). Although this feature set is more detailed than called for by [REPORTS] (Dusseault, L. and R. Sparks, “Guidance on Interoperation and Implementation Reports for Advancement to Draft Standard,” September 2009.), it provides a suitable basis for the generation of implementation reports to be submitted in support of advancing this specification from Proposed Standard to Draft Standard in accordance with [PROCESS] (Bradner, S., “The Internet Standards Process -- Revision 3,” October 1996.).
- Feature:
- address-domain-length
- Description:
- Ensure that the domainpart of an XMPP address is limited to 1023 bytes in length.
- Section:
- Section 3.2 (Domain Identifier)
- Roles:
- Both MUST.
- Feature:
- address-domain-prep
- Description:
- Ensure that the domainpart of an XMPP address conforms to the Nameprep profile of Stringprep.
- Section:
- Section 3.2 (Domain Identifier)
- Roles:
- Client SHOULD, Server MUST.
- Feature:
- address-localpart-length
- Description:
- Ensure that the localpart of an XMPP address is limited to 1023 bytes in length.
- Section:
- Section 3.3 (Localpart)
- Roles:
- Both MUST.
- Feature:
- address-localpart-prep
- Description:
- Ensure that the localpart of an XMPP address conforms to the Nodeprep profile of Stringprep.
- Section:
- Section 3.3 (Localpart)
- Roles:
- Client SHOULD, Server MUST.
- Feature:
- address-resource-length
- Description:
- Ensure that the resourcepart of an XMPP address is limited to 1023 bytes in length.
- Section:
- Section 3.4 (Resourcepart)
- Roles:
- Both MUST.
- Feature:
- address-resource-prep
- Description:
- Ensure that the resourcepart of an XMPP address conforms to the Resourceprep profile of Stringprep.
- Section:
- Section 3.2 (Domain Identifier)
- Roles:
- Client SHOULD, Server MUST.
- Feature:
- bind-gen
- Description:
- Generate a random resource on demand.
- Section:
- Section 8.5 (Server-Generated Resource Identifier)
- Roles:
- Client N/A, Server MUST.
- Feature:
- bind-mtn
- Description:
- Consider resource binding as mandatory-to-negotiate.
- Section:
- Section 8.2.1 (Mandatory-to-Negotiate)
- Roles:
- Client MUST, Server MUST.
- Feature:
- bind-restart
- Description:
- Do not restart the stream after negotiation of resource binding.
- Section:
- Section 8.2.2 (Restart)
- Roles:
- Client MUST, Server MUST.
- Feature:
- bind-support
- Description:
- Support binding of client resources to an authenticated stream.
- Section:
- Section 8 (Resource Binding)
- Roles:
- Client MUST, Server MUST.
- Feature:
- sasl-errors
- Description:
- Support SASL errors during the negotiation process.
- Section:
- Section 7.4 (SASL Errors)
- Roles:
- Client MUST, Server MUST.
- Feature:
- sasl-mtn
- Description:
- Consider SASL as mandatory-to-negotiate.
- Section:
- Section 7.2.1 (Mandatory-to-Negotiate)
- Roles:
- Client MUST, Server MUST.
- Feature:
- sasl-restart
- Description:
- Complete a stream restart after SASL negotiation.
- Section:
- Section 7.2.2 (Restart)
- Roles:
- Client MUST, Server MUST.
- Feature:
- sasl-support
- Description:
- Support the Simple Authentication and Security Layer for stream authentication.
- Section:
- Section 7 (SASL Negotiation)
- Roles:
- Client MUST, Server MUST.
- Feature:
- sasl-whitespace
- Description:
- Ensure that no whitespace is sent between XML elements during SASL negotiation.
- Section:
- Section 7.2.5 (Data Formatting)
- Roles:
- Client MUST, Server MUST.
- Feature:
- security-mti-auth-plain
- Description:
- Support the SASL PLAIN mechanism for authentication only.
- Section:
- Section 14.6 (Mandatory-to-Implement Technologies)
- Roles:
- Client MUST, Server MUST.
- Feature:
- security-mti-auth-scram
- Description:
- Support the SASL Salted Challenge Response mechanism for authentication only.
- Section:
- Section 14.6 (Mandatory-to-Implement Technologies)
- Roles:
- Client MUST, Server MUST.
- Feature:
- security-mti-both-external
- Description:
- Support TLS with SASL EXTERNAL for confidentiality and authentication.
- Section:
- Section 14.6 (Mandatory-to-Implement Technologies)
- Roles:
- Client SHOULD, Server MUST.
- Feature:
- security-mti-both-plain
- Description:
- Support TLS with SASL PLAIN for confidentiality and authentication.
- Section:
- Section 14.6 (Mandatory-to-Implement Technologies)
- Roles:
- Client MUST, Server MUST.
- Feature:
- security-mti-both-scram
- Description:
- Support TLS with SASL SCRAM for confidentiality and authentication.
- Section:
- Section 14.6 (Mandatory-to-Implement Technologies)
- Roles:
- Client MUST, Server MUST.
- Feature:
- security-mti-confidentiality
- Description:
- Support TLS using the TLS_RSA_WITH_AES_128_CBC_SHA cipher for confidentiality only.
- Section:
- Section 14.6 (Mandatory-to-Implement Technologies)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-attribute-from
- Description:
- Support the common 'from' attribute for all stanza kinds.
- Section:
- Section 9.1.1 (to)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-attribute-from-validate
- Description:
- Validate the 'from' address of all stanzas received from connected clients or peer servers.
- Section:
- Section 9.1.2 (from)
- Roles:
- Client N/A, Server MUST.
- Feature:
- stanza-attribute-id
- Description:
- Support the common 'id' attribute for all stanza kinds.
- Section:
- Section 9.1.3 (id)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-attribute-to
- Description:
- Support the common 'to' attribute for all stanza kinds.
- Section:
- Section 9.1.1 (to)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-attribute-to-validate
- Description:
- Ensure that all stanzas received from peer servers include a 'to' address.
- Section:
- Section 9.1.1 (to)
- Roles:
- Client N/A, Server MUST.
- Feature:
- stanza-attribute-type
- Description:
- Support the common 'type' attribute for all stanza kinds.
- Section:
- Section 9.1.4 (type)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-attribute-xmllang
- Description:
- Support the common 'xml:lang' attribute for all stanza kinds.
- Section:
- Section 9.1.5 (xml:lang)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-error
- Description:
- Generate and handle stanzas of type "error" for all stanza kinds.
- Section:
- Section 9.3 (Stanza Errors)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-error-child
- Description:
- Ensure that stanzas of type "error" include an <error/> child element.
- Section:
- Section 9.3 (Stanza Errors)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-error-id
- Description:
- Ensure that stanzas of type "error" preserve the 'id' provided in the triggering stanza.
- Section:
- Section 9.3 (Stanza Errors)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-error-reply
- Description:
- Do not reply to a stanza of type "error" with another stanza of type "error".
- Section:
- Section 9.3 (Stanza Errors)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-extension
- Description:
- Correctly process XML data qualified by an unsupported XML namespace, where "correctly process" means to ignore that portion of the stanza in the case of a message or presence stanza and return an error in the case of an IQ stanza (for the intended recipient) or to routeor deliver the stanza (for a routing entity such as a server).
- Section:
- Section 9.4 (Extended Content)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-iq-child
- Description:
- Include exactly one child element in an <iq/> stanza of type "get" or "set", zero or one child elements in an <iq/> stanza of type "result", and one or two child elements in an <iq/> stanza of type "error".
- Section:
- Section 9.2.3 (IQ Semantics)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-iq-id
- Description:
- Ensure that all <iq/> stanzas include an 'id' attribute.
- Section:
- Section 9.2.3 (IQ Semantics)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-iq-reply
- Description:
- Reply to an <iq/> stanzas of type "get" or "set" with an <iq/> stanzas of type "result" or "error".
- Section:
- Section 9.2.3 (IQ Semantics)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-iq-type
- Description:
- Ensure that all <iq/> stanzas include an 'type' attribute whose value is "get", "set", "result", or "error".
- Section:
- Section 9.2.3 (IQ Semantics)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-kind-iq
- Description:
- Support the <iq/> stanza.
- Section:
- Section 9.2.3 (IQ Semantics)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-kind-message
- Description:
- Support the <message/> stanza.
- Section:
- Section 9.2.1 (Message Semantics)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stanza-kind-presence
- Description:
- Support the <presence/> stanza.
- Section:
- Section 9.2.2 (Presence Semantics)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stream-attribute-initial-from
- Description:
- Include a 'from' attribute in the initial stream header.
- Section:
- Section 5.4.1 (from)
- Roles:
- Both SHOULD.
- Feature:
- stream-attribute-initial-lang
- Description:
- Include an 'xml:lang' attribute in the initial stream header.
- Section:
- Section 5.4.4 (xml:lang)
- Roles:
- Both SHOULD.
- Feature:
- stream-attribute-initial-to
- Description:
- Include a 'to' attribute in the initial stream header.
- Section:
- Section 5.4.2 (to)
- Roles:
- Both SHOULD.
- Feature:
- stream-attribute-response-from
- Description:
- Include a 'from' attribute in the response stream header.
- Section:
- Section 5.4.1 (from)
- Roles:
- Client N/A, Server MUST.
- Feature:
- stream-attribute-response-id
- Description:
- Include an 'id' attribute in the response stream header.
- Section:
- Section 5.4.3 (id)
- Roles:
- Client N/A, Server MUST.
- Feature:
- stream-attribute-response-id-unique
- Description:
- Ensure that the 'id' attribute in the response stream header is unique within the context of the receiving entity.
- Section:
- Section 5.4.3 (id)
- Roles:
- Client N/A, Server MUST.
- Feature:
- stream-attribute-response-to
- Description:
- Include a 'to' attribute in the response stream header.
- Section:
- Section 5.4.2 (to)
- Roles:
- Client N/A, Server SHOULD.
- Feature:
- stream-error-generate
- Description:
- Generate a stream error (followed by a closing stream tag and termination of the TCP connection) upon detecting a stream-related error condition.
- Section:
- Section 5.6 (Stream Errors)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stream-hostname-resolution
- Description:
- Resolve hostnames before opening a TCP connection.
- Section:
- Section 4.2 (Hostname Resolution)
- Roles:
- Both MUST.
- Feature:
- stream-negotiation-complete
- Description:
- Do not consider the stream negotiation process to be complete until the receiving entity sends a stream features advertisement that is empty or that contains only voluntary-to-negotiate features.
- Section:
- Section 5.2.5 (Completion of Stream Negotiation)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stream-negotiation-features
- Description:
- Send stream features after sending a response stream header.
- Section:
- Section 5.2.2 (Stream Features Format)
- Roles:
- Client N/A, Server MUST.
- Feature:
- stream-negotiation-restart
- Description:
- Consider the previous stream to be replaced upon negotiation of a stream feature that necessitates a stream restart, and send or receive a new initial stream header after negotiation of such a stream feature.
- Section:
- Section 5.2.3 (Restarts)
- Roles:
- Client MUST, Server MUST.
- Feature:
- stream-reconnect
- Description:
- Reconnect with intelligently (e.g., with exponential backoff) if a TCP connection is terminated unexpectedly.
- Section:
- Section 4.5 (Reconnection)
- Roles:
- Both MUST.
- Feature:
- stream-tcp-binding
- Description:
- Bind an XML stream to a TCP connection.
- Section:
- Section 4 (TCP Binding)
- Roles:
- Both MUST.
- Feature:
- tls-certs
- Description:
- Check the identity specified in a certificate that is presented during TLS negotiation.
- Section:
- Section 14.2.2 (Certificate Validation)
- Roles:
- Client MUST, Server MUST.
- Feature:
- tls-mtn
- Description:
- Consider TLS as mandatory-to-negotiate if STARTTLS is the only feature advertised or ir the STARTTLS feature includes an empty <required/> element.
- Section:
- Section 6.2.1 (Mandatory-to-Negotiate)
- Roles:
- Client MUST, Server MUST.
- Feature:
- tls-restart
- Description:
- Complete a stream restart after TLS negotiation.
- Section:
- Section 6.2.2 (Restart)
- Roles:
- Client MUST, Server MUST.
- Feature:
- tls-support
- Description:
- Support Transport Layer Security for stream encryption.
- Section:
- Section 6 (STARTTLS Negotiation)
- Roles:
- Client MUST, Server MUST.
- Feature:
- tls-whitespace
- Description:
- Ensure that no whitespace is sent between XML elements during TLS negotiation.
- Section:
- Section 6.2.3 (Data Formatting)
- Roles:
- Client MUST, Server MUST.
- Feature:
- xml-namespace-default
- Description:
- Ensure that there is a default namespace for the stream (other than the streams namespace).
- Section:
- Section 5.5.2 (Declaration of Default Namespace)
- Roles:
- Both MUST.
- Feature:
- xml-namespace-default-client
- Description:
- Support 'jabber:client' as a default namespace.
- Section:
- Section 5.5.2 (Declaration of Default Namespace)
- Roles:
- Both MUST.
- Feature:
- xml-namespace-default-server
- Description:
- Support 'jabber:server' as a default namespace.
- Section:
- Section 5.5.2 (Declaration of Default Namespace)
- Roles:
- Client N/A, Server MUST.
- Feature:
- xml-namespace-streams-declaration
- Description:
- Ensure that there is a namespace declaration for the 'http://etherx.jabber.org/streams' namespace.
- Section:
- Section 5.5.1 (Declaration of Streams Namespace)
- Roles:
- Both MUST.
- Feature:
- xml-namespace-streams-prefix
- Description:
- Ensure that all elements qualified by the 'http://etherx.jabber.org/streams' namespace are prefixed by the prefix defined in the namespace declaration.
- Section:
- Section 5.5.1 (Declaration of Streams Namespace)
- Roles:
- Both MUST.
- Feature:
- xml-restriction-comment
- Description:
- Do not generate or accept XML comments.
- Section:
- Section 12.1 (Restrictions)
- Roles:
- Client MUST, Server MUST.
- Feature:
- xml-restriction-dtd
- Description:
- Do not generate or accept internal or external DTD subsets.
- Section:
- Section 12.1 (Restrictions)
- Roles:
- Client MUST, Server MUST.
- Feature:
- xml-restriction-pi
- Description:
- Do not generate or accept XML processing instructions.
- Section:
- Section 12.1 (Restrictions)
- Roles:
- Client MUST, Server MUST.
- Feature:
- xml-restriction-ref
- Description:
- Do not generate or accept internal or external entity references with the exception of the predefined entities.
- Section:
- Section 12.1 (Restrictions)
- Roles:
- Client MUST, Server MUST.
- Feature:
- xml-wellformed-xml
- Description:
- Do not generate or accept data that is not XML-well-formed.
- Section:
- Section 12.3 (Well-Formedness)
- Roles:
- Client MUST, Server MUST.
- Feature:
- xml-wellformed-ns
- Description:
- Do not generate or accept data that is not namespace-well-formed.
- Section:
- Section 12.3 (Well-Formedness)
- Roles:
- Client MUST, Server MUST.
TOC |
TOC |
[ABNF] | Crocker, D. and P. Overell, “Augmented BNF for Syntax Specifications: ABNF,” STD 68, RFC 5234, January 2008 (TXT). |
[BASE64] | Josefsson, S., “The Base16, Base32, and Base64 Data Encodings,” RFC 4648, October 2006 (TXT). |
[CHARSET] | Alvestrand, H., “IETF Policy on Character Sets and Languages,” BCP 18, RFC 2277, January 1998 (TXT, HTML, XML). |
[DNS] | Mockapetris, P., “Domain names - implementation and specification,” STD 13, RFC 1035, November 1987 (TXT). |
[DNS-SRV] | Gulbrandsen, A., Vixie, P., and L. Esibov, “A DNS RR for specifying the location of services (DNS SRV),” RFC 2782, February 2000 (TXT). |
[IDNA] | Faltstrom, P., Hoffman, P., and A. Costello, “Internationalizing Domain Names in Applications (IDNA),” RFC 3490, March 2003 (TXT). |
[LANGTAGS] | Phillips, A. and M. Davis, “Tags for Identifying Languages,” BCP 47, RFC 5646, September 2009 (TXT). |
[NAMEPREP] | Hoffman, P. and M. Blanchet, “Nameprep: A Stringprep Profile for Internationalized Domain Names (IDN),” RFC 3491, March 2003 (TXT). |
[OCSP] | Myers, M., Ankney, R., Malpani, A., Galperin, S., and C. Adams, “X.509 Internet Public Key Infrastructure Online Certificate Status Protocol - OCSP,” RFC 2560, June 1999 (TXT). |
[PLAIN] | Zeilenga, K., “The PLAIN Simple Authentication and Security Layer (SASL) Mechanism,” RFC 4616, August 2006 (TXT). |
[RANDOM] | Eastlake, D., Schiller, J., and S. Crocker, “Randomness Requirements for Security,” BCP 106, RFC 4086, June 2005 (TXT). |
[SASL] | Melnikov, A. and K. Zeilenga, “Simple Authentication and Security Layer (SASL),” RFC 4422, June 2006 (TXT). |
[SCRAM] | Newman, C., Menon-Sen, A., Melnikov, A., and N. Williams, “Salted Challenge Response (SCRAM) SASL and GSS-API Mechanism,” draft-ietf-sasl-scram-11 (work in progress), February 2010 (TXT). |
[STRINGPREP] | Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” RFC 3454, December 2002 (TXT). |
[TCP] | Postel, J., “Transmission Control Protocol,” STD 7, RFC 793, September 1981 (TXT). |
[TERMS] | Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” BCP 14, RFC 2119, March 1997 (TXT, HTML, XML). |
[TLS] | Dierks, T. and E. Rescorla, “The Transport Layer Security (TLS) Protocol Version 1.2,” RFC 5246, August 2008 (TXT). |
[TLS-CERTS] | Saint-Andre, P. and J. Hodges, “Representation and Verification of Application Server Identity in Certificates Used with Transport Layer Security (TLS),” draft-saintandre-tls-server-id-check-03 (work in progress), March 2010 (TXT). |
[UCS2] | International Organization for Standardization, “Information Technology - Universal Multiple-octet coded Character Set (UCS) - Amendment 2: UCS Transformation Format 8 (UTF-8),” ISO Standard 10646-1 Addendum 2, October 1996. |
[UNICODE] | The Unicode Consortium, “The Unicode Standard, Version 3.2.0,” 2000. The Unicode Standard, Version 3.2.0 is defined by The Unicode Standard, Version 3.0 (Reading, MA, Addison-Wesley, 2000. ISBN 0-201-61633-5), as amended by the Unicode Standard Annex #27: Unicode 3.1 (http://www.unicode.org/reports/tr27/) and by the Unicode Standard Annex #28: Unicode 3.2 (http://www.unicode.org/reports/tr28/). |
[UTF-8] | Yergeau, F., “UTF-8, a transformation format of ISO 10646,” STD 63, RFC 3629, November 2003 (TXT). |
[UUID] | Leach, P., Mealling, M., and R. Salz, “A Universally Unique IDentifier (UUID) URN Namespace,” RFC 4122, July 2005 (TXT, HTML, XML). |
[URI] | Berners-Lee, T., Fielding, R., and L. Masinter, “Uniform Resource Identifier (URI): Generic Syntax,” STD 66, RFC 3986, January 2005 (TXT, HTML, XML). |
[X509] | Cooper, D., Santesson, S., Farrell, S., Boeyen, S., Housley, R., and W. Polk, “Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile,” RFC 5280, May 2008 (TXT). |
[X509-ALGO] | Jonsson, J. and B. Kaliski, “Public-Key Cryptography Standards (PKCS) #1: RSA Cryptography Specifications Version 2.1,” RFC 3447, February 2003 (TXT). |
[X509-SRV] | Santesson, S., “Internet X.509 Public Key Infrastructure Subject Alternative Name for Expression of Service Name,” RFC 4985, August 2007 (TXT). |
[XML] | Paoli, J., Maler, E., Sperberg-McQueen, C., Yergeau, F., and T. Bray, “Extensible Markup Language (XML) 1.0 (Fourth Edition),” World Wide Web Consortium Recommendation REC-xml-20060816, August 2006 (HTML). |
[XML-NAMES] | Layman, A., Hollander, D., Tobin, R., and T. Bray, “Namespaces in XML 1.1 (Second Edition),” World Wide Web Consortium Recommendation REC-xml-names11-20060816, August 2006 (HTML). |
TOC |
TOC |
TOC |
This appendix defines the "Nodeprep" profile of stringprep. As such, it specifies processing rules that will enable users to enter internationalized localparts in the Extensible Messaging and Presence Protocol (XMPP) and have the highest chance of getting the content of the strings correct. (An XMPP localpart is the optional portion of an XMPP address that precedes an XMPP domainpart and the '@' separator; it is often but not exclusively associated with an instant messaging username.) These processing rules are intended only for XMPP localparts and are not intended for arbitrary text or any other aspect of an XMPP address.
This profile defines the following, as required by [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.):
TOC |
This profile uses Unicode 3.2 with the list of unassigned code points being Table A.1, both defined in Appendix A of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.).
TOC |
This profile specifies mapping using the following tables from [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.):
- Table B.1
- Table B.2
TOC |
This profile specifies the use of Unicode normalization form KC, as described in [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.).
TOC |
This profile specifies the prohibition of using the following tables from [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.).
- Table C.1.1
- Table C.1.2
- Table C.2.1
- Table C.2.2
- Table C.3
- Table C.4
- Table C.5
- Table C.6
- Table C.7
- Table C.8
- Table C.9
In addition, the following additional Unicode characters are also prohibited:
- U+0022 (QUOTATION MARK), i.e., "
- U+0026 (AMPERSAND), i.e., &
- U+0027 (APOSTROPHE), i.e., '
- U+002F (SOLIDUS), i.e., /
- U+003A (COLON), i.e., :
- U+003C (LESS-THAN SIGN), i.e., <
- U+003E (GREATER-THAN SIGN), i.e., >
- U+0040 (COMMERCIAL AT), i.e., @
TOC |
This profile specifies checking bidirectional strings, as described in Section 6 of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.).
TOC |
Because the additional characters prohibited by Nodeprep are prohibited after normalization, an implementation MUST NOT enable a human user to input any Unicode code point whose decomposition includes those characters; such code points include but are not necessarily limited to the following (refer to [UNICODE] (The Unicode Consortium, “The Unicode Standard, Version 3.2.0,” 2000.) for complete information).
TOC |
TOC |
This appendix defines the "Resourceprep" profile of stringprep. As such, it specifies processing rules that will enable users to enter internationalized resourceparts in the Extensible Messaging and Presence Protocol (XMPP) and have the highest chance of getting the content of the strings correct. (An XMPP resourcepart is the optional portion of an XMPP address that follows an XMPP domainpart and the '/' separator.) These processing rules are intended only for XMPP resourceparts and are not intended for arbitrary text or any other aspect of an XMPP address.
This profile defines the following, as required by [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.):
TOC |
This profile uses Unicode 3.2 with the list of unassigned code points being Table A.1, both defined in Appendix A of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.).
TOC |
This profile specifies mapping using the following tables from [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.):
- Table B.1
TOC |
This profile specifies the use of Unicode normalization form KC, as described in [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.).
TOC |
This profile specifies the prohibition of using the following tables from [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.).
- Table C.1.2
- Table C.2.1
- Table C.2.2
- Table C.3
- Table C.4
- Table C.5
- Table C.6
- Table C.7
- Table C.8
- Table C.9
TOC |
This profile specifies checking bidirectional strings, as described in Section 6 of [STRINGPREP] (Hoffman, P. and M. Blanchet, “Preparation of Internationalized Strings ("stringprep"),” December 2002.).
TOC |
Because validation of XML streams and stanzas is optional, the following XML schemas are provided for descriptive purposes only. These schemas are not normative.
The following schemas formally define various XML namespaces used in the core XMPP protocols, in conformance with [XML‑SCHEMA] (Thompson, H., Maloney, M., Mendelsohn, N., and D. Beech, “XML Schema Part 1: Structures Second Edition,” October 2004.). For schemas defining the 'jabber:client' and 'jabber:server' namespaces, refer to [XMPP‑IM] (Saint-Andre, P., “Extensible Messaging and Presence Protocol (XMPP): Instant Messaging and Presence,” March 2010.).
TOC |
<?xml version='1.0' encoding='UTF-8'?> <xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' targetNamespace='http://etherx.jabber.org/streams' xmlns='http://etherx.jabber.org/streams' elementFormDefault='unqualified'> <xs:import namespace='jabber:client'/> <xs:import namespace='jabber:server'/> <xs:import namespace='urn:ietf:params:xml:ns:xmpp-sasl'/> <xs:import namespace='urn:ietf:params:xml:ns:xmpp-streams'/> <xs:import namespace='urn:ietf:params:xml:ns:xmpp-tls'/> <xs:element name='stream'> <xs:complexType> <xs:sequence xmlns:client='jabber:client' xmlns:server='jabber:server'> <xs:element ref='features' minOccurs='0' maxOccurs='1'/> <xs:any namespace='urn:ietf:params:xml:ns:xmpp-tls' minOccurs='0' maxOccurs='unbounded'/> <xs:any namespace='urn:ietf:params:xml:ns:xmpp-sasl' minOccurs='0' maxOccurs='unbounded'/> <xs:choice minOccurs='0' maxOccurs='1'> <xs:choice minOccurs='0' maxOccurs='unbounded'> <xs:element ref='client:message'/> <xs:element ref='client:presence'/> <xs:element ref='client:iq'/> </xs:choice> <xs:choice minOccurs='0' maxOccurs='unbounded'> <xs:element ref='server:message'/> <xs:element ref='server:presence'/> <xs:element ref='server:iq'/> <xs:element ref='db:result'/> <xs:element ref='db:verify'/> </xs:choice> </xs:choice> <xs:element ref='error' minOccurs='0' maxOccurs='1'/> </xs:sequence> <xs:attribute name='from' type='xs:string' use='optional'/> <xs:attribute name='id' type='xs:string' use='optional'/> <xs:attribute name='to' type='xs:string' use='optional'/> <xs:attribute name='version' type='xs:decimal' use='optional'/> <xs:attribute ref='xml:lang' use='optional'/> </xs:complexType> </xs:element> <xs:element name='features'> <xs:complexType> <xs:any namespace='##other'/> </xs:complexType> </xs:element> <xs:element name='error'> <xs:complexType> <xs:sequence xmlns:err='urn:ietf:params:xml:ns:xmpp-streams'> <xs:group ref='err:streamErrorGroup'/> <xs:element ref='err:text' minOccurs='0' maxOccurs='1'/> <xs:any namespace='##other' minOccurs='0' maxOccurs='1'/> </xs:sequence> </xs:complexType> </xs:element> </xs:schema>
TOC |
<?xml version='1.0' encoding='UTF-8'?> <xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' targetNamespace='urn:ietf:params:xml:ns:xmpp-streams' xmlns='urn:ietf:params:xml:ns:xmpp-streams' elementFormDefault='qualified'> <xs:element name='bad-format' type='empty'/> <xs:element name='bad-namespace-prefix' type='empty'/> <xs:element name='conflict' type='empty'/> <xs:element name='connection-timeout' type='empty'/> <xs:element name='host-gone' type='empty'/> <xs:element name='host-unknown' type='empty'/> <xs:element name='improper-addressing' type='empty'/> <xs:element name='internal-server-error' type='empty'/> <xs:element name='invalid-from' type='empty'/> <xs:element name='invalid-id' type='empty'/> <xs:element name='invalid-namespace' type='empty'/> <xs:element name='invalid-xml' type='empty'/> <xs:element name='not-authorized' type='empty'/> <xs:element name='policy-violation' type='empty'/> <xs:element name='remote-connection-failed' type='empty'/> <xs:element name='reset' type='empty'/> <xs:element name='resource-constraint' type='empty'/> <xs:element name='restricted-xml' type='empty'/> <xs:element name='see-other-host' type='xs:string'/> <xs:element name='system-shutdown' type='empty'/> <xs:element name='undefined-condition' type='empty'/> <xs:element name='unsupported-encoding' type='empty'/> <xs:element name='unsupported-stanza-type' type='empty'/> <xs:element name='unsupported-version' type='empty'/> <xs:element name='xml-not-well-formed' type='empty'/> <xs:group name='streamErrorGroup'> <xs:choice> <xs:element ref='bad-format'/> <xs:element ref='bad-namespace-prefix'/> <xs:element ref='conflict'/> <xs:element ref='connection-timeout'/> <xs:element ref='host-gone'/> <xs:element ref='host-unknown'/> <xs:element ref='improper-addressing'/> <xs:element ref='internal-server-error'/> <xs:element ref='invalid-from'/> <xs:element ref='invalid-id'/> <xs:element ref='invalid-namespace'/> <xs:element ref='invalid-xml'/> <xs:element ref='not-authorized'/> <xs:element ref='policy-violation'/> <xs:element ref='remote-connection-failed'/> <xs:element ref='reset'/> <xs:element ref='resource-constraint'/> <xs:element ref='restricted-xml'/> <xs:element ref='see-other-host'/> <xs:element ref='system-shutdown'/> <xs:element ref='undefined-condition'/> <xs:element ref='unsupported-encoding'/> <xs:element ref='unsupported-stanza-type'/> <xs:element ref='unsupported-version'/> <xs:element ref='xml-not-well-formed'/> </xs:choice> </xs:group> <xs:element name='text'> <xs:complexType> <xs:simpleContent> <xs:extension base='xs:string'> <xs:attribute ref='xml:lang' use='optional'/> </xs:extension> </xs:simpleContent> </xs:complexType> </xs:element> <xs:simpleType name='empty'> <xs:restriction base='xs:string'> <xs:enumeration value=''/> </xs:restriction> </xs:simpleType> </xs:schema>
TOC |
<?xml version='1.0' encoding='UTF-8'?> <xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' targetNamespace='urn:ietf:params:xml:ns:xmpp-tls' xmlns='urn:ietf:params:xml:ns:xmpp-tls' elementFormDefault='qualified'> <xs:element name='starttls'> <xs:complexType> <xs:choice minOccurs='0' maxOccurs='1'> <xs:element name='required' type='empty'/> </xs:choice> </xs:complexType> </xs:element> <xs:element name='proceed' type='empty'/> <xs:element name='failure' type='empty'/> <xs:simpleType name='empty'> <xs:restriction base='xs:string'> <xs:enumeration value=''/> </xs:restriction> </xs:simpleType> </xs:schema>
TOC |
<?xml version='1.0' encoding='UTF-8'?> <xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' targetNamespace='urn:ietf:params:xml:ns:xmpp-sasl' xmlns='urn:ietf:params:xml:ns:xmpp-sasl' elementFormDefault='qualified'> <xs:element name='mechanisms'> <xs:complexType> <xs:sequence> <xs:element name='mechanism' minOccurs='1' maxOccurs='unbounded' type='xs:NMTOKEN'/> <xs:any namespace='##other' minOccurs='0' minOccurs='unbounded'/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name='abort' type='empty'/> <xs:element name='auth'> <xs:complexType> <xs:simpleContent> <xs:extension base='xs:string'> <xs:attribute name='mechanism' type='xs:NMTOKEN' use='required'/> </xs:extension> </xs:simpleContent> </xs:complexType> </xs:element> <xs:element name='challenge' type='xs:string'/> <xs:element name='response' type='xs:string'/> <xs:element name='success' type='xs:string'/> <xs:element name='failure'> <xs:complexType> <xs:sequence> <xs:choice minOccurs='0'> <xs:element name='aborted' type='empty'/> <xs:element name='account-disabled' type='empty'/> <xs:element name='credentials-expired' type='empty'/> <xs:element name='encryption-required' type='empty'/> <xs:element name='incorrect-encoding' type='empty'/> <xs:element name='invalid-authzid' type='empty'/> <xs:element name='invalid-mechanism' type='empty'/> <xs:element name='malformed-request' type='empty'/> <xs:element name='mechanism-too-weak' type='empty'/> <xs:element name='not-authorized' type='empty'/> <xs:element name='temporary-auth-failure' type='empty'/> <xs:element name='transition-needed' type='empty'/> </xs:choice> <xs:element ref='text' minOccurs='0' maxOccurs='1'/> </xs:sequence> </xs:complexType> </xs:element> <xs:element name='text'> <xs:complexType> <xs:simpleContent> <xs:extension base='xs:string'> <xs:attribute ref='xml:lang' use='optional'/> </xs:extension> </xs:simpleContent> </xs:complexType> </xs:element> <xs:simpleType name='empty'> <xs:restriction base='xs:string'> <xs:enumeration value=''/> </xs:restriction> </xs:simpleType> </xs:schema>
TOC |
<?xml version='1.0' encoding='UTF-8'?> <xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' targetNamespace='urn:ietf:params:xml:ns:xmpp-bind' xmlns='urn:ietf:params:xml:ns:xmpp-bind' elementFormDefault='qualified'> <xs:element name='bind'> <xs:complexType> <xs:choice> <xs:choice> <xs:element name='resource' type='resourceType'/> <xs:element name='jid' type='fullJIDType'/> </xs:choice> <xs:any namespace='##other' minOccurs='0' minOccurs='unbounded'/> </xs:choice> </xs:complexType> </xs:element> <xs:simpleType name='fullJIDType'> <xs:restriction base='xs:string'> <xs:minLength value='8'/> <xs:maxLength value='3071'/> </xs:restriction> </xs:simpleType> <xs:simpleType name='resourceType'> <xs:restriction base='xs:string'> <xs:minLength value='1'/> <xs:maxLength value='1023'/> </xs:restriction> </xs:simpleType> </xs:schema>
TOC |
<?xml version='1.0' encoding='UTF-8'?> <xs:schema xmlns:xs='http://www.w3.org/2001/XMLSchema' targetNamespace='urn:ietf:params:xml:ns:xmpp-stanzas' xmlns='urn:ietf:params:xml:ns:xmpp-stanzas' elementFormDefault='qualified'> <xs:element name='bad-request' type='empty'/> <xs:element name='conflict' type='empty'/> <xs:element name='feature-not-implemented' type='empty'/> <xs:element name='forbidden' type='empty'/> <xs:element name='gone' type='xs:string'/> <xs:element name='internal-server-error' type='empty'/> <xs:element name='item-not-found' type='empty'/> <xs:element name='jid-malformed' type='empty'/> <xs:element name='not-acceptable' type='empty'/> <xs:element name='not-allowed' type='empty'/> <xs:element name='not-authorized' type='empty'/> <xs:element name='not-modified' type='empty'/> <xs:element name='payment-required' type='empty'/> <xs:element name='policy-violation' type='empty'/> <xs:element name='recipient-unavailable' type='empty'/> <xs:element name='redirect' type='xs:string'/> <xs:element name='registration-required' type='empty'/> <xs:element name='remote-server-not-found' type='empty'/> <xs:element name='remote-server-timeout' type='empty'/> <xs:element name='resource-constraint' type='empty'/> <xs:element name='service-unavailable' type='empty'/> <xs:element name='subscription-required' type='empty'/> <xs:element name='undefined-condition' type='empty'/> <xs:element name='unexpected-request' type='empty'/> <xs:element name='unknown-sender' type='empty'/> <xs:group name='stanzaErrorGroup'> <xs:choice> <xs:element ref='bad-request'/> <xs:element ref='conflict'/> <xs:element ref='feature-not-implemented'/> <xs:element ref='forbidden'/> <xs:element ref='gone'/> <xs:element ref='internal-server-error'/> <xs:element ref='item-not-found'/> <xs:element ref='jid-malformed'/> <xs:element ref='not-acceptable'/> <xs:element ref='not-authorized'/> <xs:element ref='not-allowed'/> <xs:element ref='not-modified'/> <xs:element ref='payment-required'/> <xs:element ref='policy-violation'/> <xs:element ref='recipient-unavailable'/> <xs:element ref='redirect'/> <xs:element ref='registration-required'/> <xs:element ref='remote-server-not-found'/> <xs:element ref='remote-server-timeout'/> <xs:element ref='resource-constraint'/> <xs:element ref='service-unavailable'/> <xs:element ref='subscription-required'/> <xs:element ref='undefined-condition'/> <xs:element ref='unexpected-request'/> <xs:element ref='unknown-sender'/> </xs:choice> </xs:group> <xs:element name='text'> <xs:complexType> <xs:simpleContent> <xs:extension base='xs:string'> <xs:attribute ref='xml:lang' use='optional'/> </xs:extension> </xs:simpleContent> </xs:complexType> </xs:element> <xs:simpleType name='empty'> <xs:restriction base='xs:string'> <xs:enumeration value=''/> </xs:restriction> </xs:simpleType> </xs:schema>
TOC |
Consistent with [MAILBOXES] (Crocker, D., “MAILBOX NAMES FOR COMMON SERVICES, ROLES AND FUNCTIONS,” May 1997.), an organization that offers an XMPP service SHOULD provide an Internet mailbox of "XMPP" for inquiries related to that service, where the host portion of the resulting mailto URI MUST be the organization's domain, not the domain of the XMPP service itself (e.g., the XMPP service might be offered at im.example.com but the Internet mailbox would be <xmpp@example.com>).
TOC |
Account provisioning is out of scope for this specification. Possible methods for account provisioning include account creation by a server administrator and in-band account registration using the 'jabber:iq:register' namespace as documented in [XEP‑0077] (Saint-Andre, P., “In-Band Registration,” January 2006.).
TOC |
Based on consensus derived from implementation and deployment experience as well as formal interoperability testing, the following substantive modifications were made from RFC 3920.
In addition, numerous changes of an editorial nature were made in order to more fully specify and clearly explain XMPP.
TOC |
Regarding this entire document or any portion of it, the author makes no guarantees and is not responsible for any damage resulting from its use. The author grants irrevocable permission to anyone to use, modify, and distribute it in any way that does not diminish the rights of anyone else to use, modify, and distribute it, provided that redistributed derivative works do not contain misleading author or version information. Derivative works need not be licensed under similar terms.
TOC |
TOC |
Peter Saint-Andre | |
Cisco | |
Email: | psaintan@cisco.com |