CFRG S. Smyshlyaev, Ed.
Internet-Draft CryptoPro
Intended status: Informational February 2, 2018
Expires: August 6, 2018

Re-keying Mechanisms for Symmetric Keys
draft-irtf-cfrg-re-keying-11

Abstract

A certain maximum amount of data can be safely encrypted when encryption is performed under a single key. This amount is called "key lifetime". This specification describes a variety of methods to increase the lifetime of symmetric keys. It provides two types of re-keying mechanisms based on hash functions and on block ciphers, that can be used with modes of operations such as CTR, GCM, CBC, CFB and OMAC.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on August 6, 2018.

Copyright Notice

Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.


Table of Contents

1. Introduction

A certain maximum amount of data can be safely encrypted when encryption is performed under a single key. Hereinafter this amount will be referred to as "key lifetime". The key lifetime can be calculated from the following considerations:

1. Methods based on the combinatorial properties of the used block cipher mode of operation

2. Methods based on side-channel analysis issues

3. Methods based on the properties of the used block cipher

As a result, it is important to replace a key as soon as the total size of the processed plaintext under that key reaches the lifetime limitation. A specific value of the key lifetime should be determined in accordance with some safety margin for protocol security and the methods outlined above.

Suppose L is a key lifetime limitation in some protocol P. For simplicity, assume that all messages have the same length m. Hence, the number of messages q that can be processed with a single key K should be such that m * q <= L. This can be depicted graphically as a rectangle with sides m and q which is enclosed by area L (see Figure 1).

                            
          +------------------------+
          |                      L | 
          | +--------m---------+   |
          | |==================|   |
          | |==================|   |
          | q==================|   |       m * q <= L
          | |==================|   |
          | |==================|   | 
          | +------------------+   |
          +------------------------+
 
Figure 1: Graphic display of the key lifetime limitation

                
                    

In practice, such amount of data that corresponds to limitation L may not be enough. The simplest and obvious way in this situation is a regular renegotiation of an initial key after processing this threshold amount of data L. However, this reduces the total performance, since it usually entails termination of application data transmission, additional service messages, the use of random number generator and many other additional calculations, including resource-intensive public key cryptography.

For the protocols based on block ciphers or stream ciphers a more efficient way to increasing the key lifetime is to use various re-keying mechanisms. This specification considers only the case of re-keying mechanisms for block ciphers, while re-keying mechanisms typical for stream ciphers (e.g., [Pietrzak2009], [FPS2012]) case go beyond the scope of this document.

Re-keying mechanisms can be applied on the different protocol levels: on the block cipher level (this approach is known as fresh re-keying and is described, for instance, in [FRESHREKEYING]), on the block cipher mode of operation level (see Section 6), on the protocol level above the block cipher mode of operation (see Section 5). The usage of the first approach is highly inefficient due to the key changing after processing each message block. Moreover, fresh re-keying mechanisms can change the block cipher internal structure, and, consequently, can require the additional security analysis for each particular block cipher. As a result, this approach depends on particular primitive properties and can not be applied to any block cipher, therefore, fresh re-keying mechanisms go beyond the scope of this document.

Thus, this document contains the list of recommended re-keying mechanisms that can be used in the symmetric encryption schemes based on the block ciphers. These mechanisms are independent from the particular block cipher specification and their security properties rely only on the standard block cipher security assumption.

This specification presents two basic approaches to extend the lifetime of a key while avoiding renegotiation that were introduced in [AAOS2017]:

1. External re-keying

2. Internal re-keying

The re-keying approaches extend the key lifetime for a single initial key by providing the possibility to limit the leakages (via side channels) and by improving combinatorial properties of the used block cipher mode of operation.

In practical applications, re-keying can be useful for protocols that need to operate in hostile environments or under restricted resource conditions (e.g., that require lightweight cryptography, where ciphers have a small block size, that imposes strict combinatorial limitations). Moreover, mechanisms that use external and internal re-keying may provide some properties of forward security and potentially some protection against future attacks (by limiting the number of plaintext-ciphertext pairs that an adversary can collect). External and internal re-keying can be used in network protocols as well as in the systems for data-at-rest encryption.

Depending on the concrete protocol characteristics there might be situations in which both external and internal re-keying mechanisms (see Section 7) can be applied. For example, the similar approach was used in the Taha's tree construction (see [TAHA]).

It is worthwhile to say that the re-keying mechanisms recommended in this document are targeted to provide PFS property and are not suitable for the cases when this property should be omitted in favor of performance characteristics, side leakage resilience or some other properties. The another re-keying approach is key updating (key regression) algorithms (e.g., [FKK2005] and [KMNT2003]), but they pursue the goal different from increasing key lifetime and the absence of PFS property is the base claim of this approach. Therefore, key regression algorithms are excluded from the considerations here.

2. Conventions Used in This Document

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

3. Basic Terms and Definitions

This document uses the following terms and definitions for the sets and operations on the elements of these sets:

V*
the set of all bit strings of a finite length (hereinafter referred to as strings), including the empty string; substrings and string components are enumerated from right to left starting from one;
V_s
the set of all bit strings of length s, where s is a non-negative integer;
|X|
the bit length of the bit string X;
A | B
concatenation of strings A and B both belonging to V*, i.e., a string in V_{|A|+|B|}, where the left substring in V_|A| is equal to A, and the right substring in V_|B| is equal to B;
(xor)
exclusive-or of two bit strings of the same length;
Z_{2^n}
ring of residues modulo 2^n;
Int_s: V_s -> Z_{2^s}
the transformation that maps a string a = (a_s, ... , a_1) in V_s into the integer Int_s(a) = 2^{s-1} * a_s + ... + 2 * a_2 + a_1 (the interpretation of the binary string as an integer);
Vec_s: Z_{2^s} -> V_s
the transformation inverse to the mapping Int_s (the interpretation of an integer as a binary string);
MSB_i: V_s -> V_i
the transformation that maps the string a = (a_s, ... , a_1) in V_s into the string MSB_i(a) = (a_s, ... , a_{s-i+1}) in V_i (most significant bits);
LSB_i: V_s -> V_i
the transformation that maps the string a = (a_s, ... , a_1) in V_s into the string LSB_i(a) = (a_i, ... , a_1) in V_i (least significant bits);
Inc_c: V_s -> V_s
the transformation that maps the string a = (a_s, ... , a_1) in V_s into the string Inc_c(a) = MSB_{|a|-c}(a) | Vec_c(Int_c(LSB_c(a)) + 1(mod 2^c)) in V_s;
a^s
denotes the string in V_s that consists of s 'a' bits;
E_{K}: V_n -> V_n
the block cipher permutation under the key K in V_k;
ceil(x)
the smallest integer that is greater than or equal to x;
floor(x)
the biggest integer that is less than or equal to x;
k
the bit-length of the K; k is assumed to be divisible by 8;
n
the block size of the block cipher (in bits); n is assumed to be divisible by 8;
b
the number of data blocks in the plaintext P (b = ceil(|P|/n));
N
the section size (the number of bits that are processed with one section key before this key is transformed).

A plaintext message P and the corresponding ciphertext C are divided into b = ceil(|P|/n) blocks, denoted P = P_1 | P_2 | ... | P_b and C = C_1 | C_2 | ... | C_b, respectively. The first b-1 blocks P_i and C_i are in V_n, for i = 1, 2, ... , b-1. The b-th blocks P_b, C_b may be an incomplete blocks, i.e., in V_r, where r <= n if not otherwise specified.

4. Choosing Constructions and Security Parameters

External re-keying is an approach assuming that a key is transformed after encrypting a limited number of entire messages. External re-keying method is chosen at the protocol level, regardless of the underlying block cipher or the encryption mode. External re-keying is recommended for protocols that process relatively short messages or for protocols that have a way to divide a long message into manageable pieces. Through external re-keying the number of messages that can be securely processed with a single initial key K is substantially increased without loss in message length.

External re-keying has the following advantages:

  1. it increases the lifetime of an initial key by increasing the number of messages processed with this key;
  2. it has negligible affect on the performance, when the number of messages processed under one initial key is sufficiently large;
  3. it provides forward and backward security of data processing keys.

However, the use of external re-keying has the following disadvantage: in case of restrictive key lifetime limitations the message sizes can become inconvenient due to impossibility of processing sufficiently large messages, so it could be necessary to perform additional fragmentation at the protocol level. E.g. if the key lifetime L is 1 GB and the message length m = 3 GB, then this message cannot be processed as a whole and it should be divided into three fragments that will be processed separately.

Internal re-keying is an approach assuming that a key is transformed during each separate message processing. Such procedures are integrated into the base modes of operations, so every internal re-keying mechanism is defined for the particular operation mode and the block size of the used cipher. Internal re-keying is recommended for protocols that process long messages: the size of each single message can be substantially increased without loss in number of messages that can be securely processed with a single initial key.

Internal re-keying has the following advantages:

  1. it increases the lifetime of an initial key by increasing the size of the messages processed with one initial key;
  2. it has minimal impact on performance;
  3. internal re-keying mechanisms without a master key does not affect short messages transformation at all;
  4. it is transparent (works like any mode of operation): does not require changes of IV’s and restarting MACing.

However, the use of internal re-keying has the following disadvantages:

  1. a specific method must not be chosen independently of a mode of operation;
  2. internal re-keying mechanisms without a master key do not provide backward security of data processing keys.

Any block cipher modes of operations with internal re-keying can be jointly used with any external re-keying mechanisms. Such joint usage increases both the number of messages processed with one initial key and their maximum possible size.

If the adversary has access to the data processing interface the use of the same cryptographic primitives both for data processing and re-keying transformation decreases the code size but can lead to some possible vulnerabilities. This vulnerability can be eliminated by using different primitives for data processing and re-keying, e.g., block cipher for data processing and hash for re-keying (see Section 5.2.2 and Section 5.3.2). However, in this case the security of the whole scheme cannot be reduced to standard notions like PRF or PRP, so security estimations become more difficult and unclear.

Summing up the above-mentioned issues briefly:

  1. If a protocol assumes processing long records (e.g., [CMS]), internal re-keying should be used. If a protocol assumes processing a significant amount of ordered records, which can be considered as a single data stream (e.g., [TLS], [SSH]), internal re-keying may also be used.
  2. For protocols which allow out-of-order delivery and lost records (e.g., [DTLS], [ESP]) external re-keying should be used as in this case records cannot be considered as a single data stream. If at the same time records are long enough, internal re-keying should be additionally used during each separate message processing.

For external re-keying:

  1. If it is desirable to separate transformations used for data processing and for key update, hash function based re-keying should be used.
  2. If parallel data processing is required, then parallel external re-keying should be used.
  3. In case of restrictive key lifetime limitations external tree-based re-keying should be used.

For internal re-keying:

  1. If the property of forward and backward security is desirable for data processing keys and if additional key material can be easily obtained for the data processing stage, internal re-keying with a master key should be used.

5. External Re-keying Mechanisms

This section presents an approach to increase the initial key lifetime by using a transformation of a data processing key (frame key) after processing a limited number of entire messages (frame). It provides external parallel and serial re-keying mechanisms (see [AbBell]). These mechanisms use initial key K only for frame keys generation and never use it directly for data processing. Such mechanisms operate outside of the base modes of operations and do not change them at all, therefore they are called "external re-keying" mechanisms in this document.

External re-keying mechanisms are recommended for usage in protocols that process quite small messages, since the maximum gain in increasing the initial key lifetime is achieved by increasing the number of messages.

External re-keying increases the initial key lifetime through the following approach. Suppose there is a protocol P with some mode of operation (base encryption or authentication mode). Let L1 be a key lifetime limitation induced by side-channel analysis methods (side-channel limitation), let L2 be a key lifetime limitation induced by methods based on the combinatorial properties of a used mode of operation (combinatorial limitation) and let q1, q2 be the total numbers of messages of length m, that can be safely processed with an initial key K according to these limitations.

Let L = min(L1, L2), q = min (q1, q2), q * m <= L. As L1 limitation is usually much stronger than L2 limitation (L1 < L2), the final key lifetime restriction is equal to the most restrictive limitation L1. Thus, as displayed in Figure 2, without re-keying only q1 (q1 * m <= L1) messages can be safely processed.

                        
           <--------m------->
           +----------------+ ^ ^  
           |================| | | 
           |================| | | 
       K-->|================| q1|
           |================| | | 
           |==============L1| | | 
           +----------------+ v |  
           |                |   | 
           |                |   | 
           |                |   q2
           |                |   |
           |                |   | 
           |                |   | 
           |                |   | 
           |                |   | 
           |                |   | 
           |                |   | 
           |                |   | 
           |              L2|   | 
           +----------------+   v 

Figure 2: Basic principles of message processing without external re-keying

                    

Suppose that the safety margin for the protocol P is fixed and the external re-keying approach is applied to the initial key K to generate the sequence of frame keys. The frame keys are generated in such a way that the leakage of a previous frame key does not have any impact on the following one, so the side channel limitation L1 goes off. Thus, the resulting key lifetime limitation of the initial key K can be calculated on the basis of a new combinatorial limitation L2'. It is proven (see [AbBell]) that the security of the mode of operation that uses external re-keying leads to an increase when compared to base mode without re-keying (thus, L2 < L2'). Hence, as displayed in Figure 3, the resulting key lifetime limitation in case of using external re-keying can be increased up to L2'.

                        
 
                 <--------m------->
           K     +----------------+ 
           |     |================|
           v     |================|
          K^1--> |================|
           |     |================|
           |     |==============L1|
           |     +----------------+ 
           |     |================|
           v     |================|
          K^2--> |================|
           |     |================|
           |     |==============L1|
           |     +----------------+
           |     |================|
           v     |================|
          ...    |      . . .     |
                 |                |
                 |                |
                 |              L2|
                 +----------------+
                 |                |
                ...              ...
                 |             L2'|
                 +----------------+  

Figure 3: Basic principles of message processing with external re-keying
                
                    

Note: the key transformation process is depicted in a simplified form. A specific approach (parallel and serial) is described below.

Consider an example. Let the message size in a protocol P be equal to 1 KB. Suppose L1 = 128 MB and L2 = 1 TB. Thus, if an external re-keying mechanism is not used, the initial key K must be renegotiated after processing 128 MB / 1 KB = 131072 messages.

If an external re-keying mechanism is used, the key lifetime limitation L1 goes off. Hence the resulting key lifetime limitation L2' can be set to more then 1 TB. Thus if an external re-keying mechanism is used, more then 1 TB / 1 KB = 2^30 messages can be processed before the initial key K is renegotiated. This is 8192 times greater than the number of messages that can be processed, when external re-keying mechanism is not used.

5.1. Methods of Key Lifetime Control

Suppose L is an amount of data that can be safely processed with one frame key. For i in {1, 2, ... , t} the frame key K^i (see Figure 4 and Figure 5) should be transformed after processing q_i messages, where q_i can be calculated in accordance with one of the following approaches:

Explicit approach:

Implicit approach:

Dynamic key changes:

5.2. Parallel Constructions

External parallel re-keying mechanisms generate frame keys K^1, K^2, ... directly from the initial key K independently of each other.

The main idea behind external re-keying with a parallel construction is presented in Figure 4:

                            
Maximum message size = m_max.
_____________________________________________________________

                                m_max
                          <---------------->
                M^{1,1}   |===             |
                M^{1,2}   |=============== |
      +->K^1-->   ...            ...       
      |         M^{1,q_1} |========        |
      |
      | 
      |         M^{2,1}   |================|  
      |         M^{2,2}   |=====           | 
K-----|->K^2-->   ...            ...        
      |         M^{2,q_2} |==========      | 
      |                                       
     ... 
      |         M^{t,1}   |============    |
      |         M^{t,2}   |=============   |
      +->K^t-->   ...            ...       
                M^{t,q_t} |==========      |
      
_____________________________________________________________

       Figure 4: External parallel re-keying mechanisms
                
                        

The frame key K^i, i = 1, ... , t-1, is updated after processing a certain amount of messages (see Section 5.1).

5.2.1. Parallel Construction Based on a KDF on a Block Cipher

ExtParallelC re-keying mechanism is based on the key derivation function on a block cipher and is used to generate t frame keys as follows:

where R = ceil(t * k/n).

5.2.2. Parallel Construction Based on a KDF on a Hash Function

ExtParallelH re-keying mechanism is based on the key derivation function HKDF-Expand, described in [RFC5869], and is used to generate t frame keys as follows:

where label is a string (may be a zero-length string) that is defined by a specific protocol.

5.2.3. Tree-based Construction

The application of external tree-based mechanism leads to the construction of the key tree with the initial key K (root key) at the 0-level and the frame keys K^1, K^2, ... at the last level as described in Figure 6.

                                

                            K_root = K
                     ___________|___________
                    |          ...          |
                    V                       V
                   K{1,1}                K{1,W1}
              ______|______           ______|______
             |     ...     |         |     ...     |
             V             V         V             V
          K{2,1}       K{2,W2}  K{2,(W1-1)*W2+1} K{2,W1*W2}
           __|__         __|__     __|__         __|__
          | ... |       | ... |   | ... |       | ... |
          V     V       V     V   V     V       V     V
       K{3,1}  ...     ...   ... ...   ...     ...   K{3,W1*W2*W3}

      ...                                             ...   
     __|__                     ...                   __|__      
    | ... |                                         | ... |   
    V     V                                         V     V   
K{h,1}   K{h,Wh}            K{h,(W1*...*W{h-1}-1)*Wh+1}  K{h,W1*...*Wh}
  //       \\                                     //       \\      
K^1       K^{Wh}           K^{(W1*...*W{h-1}-1)*Wh+1}     K^{W1*...*Wh}
_______________________________________________________________________

                   Figure 6: External Tree-based Mechanism
                    
                            

The tree height h and the number of keys Wj, j in {1, ... , h}, which can be partitioned from "parent" key, are defined in accordance with a specific protocol and key lifetime limitations for the used derivation functions.

Each j-level key K{j,w}, where j in {1, ... , h}, w in {1, ... , W1 * ... * Wj}, is derived from the (j-1)-level "parent" key K{j-1,ceil(w/Wi)} (and other appropriate input data) using the j-th level derivation function that can be based on the block cipher function or on the hash function and that is defined in accordance with a specific protocol.

The i-th frame K^i, i in {1, 2, ... , W1*...*Wh}, can be calculated as follows:

where KDF_j is the j-th level derivation function that takes two arguments (the parent key value and the integer in range from 1 to W1 * ... * Wj) and outputs the j-th level key value.

The frame key K^i is updated after processing a certain amount of messages (see Section 5.1).

In order to create an efficient implementation, during frame key K^i generation the derivation functions KDF_j, j in {1, ... , h-1}, should be used only in case when ceil(i / (W{j+1} * ... * Wh)) != ceil((i - 1) / (W{j+1} * ... * Wh)); otherwise it is necessary to use previously generated value. This approach also makes it possible to take countermeasures against side channels attacks.

Consider an example. Suppose h = 3, W1 = W2 = W3 = W and KDF_1, KDF_2, KDF_3 are key derivation functions based on the KDF_GOSTR3411_2012_256 (hereafter simply KDF) function described in [RFC7836]. The resulting ExtKeyTree function can be defined as follows:

where i in {1, 2, ... , W^3}.

The structure similar to external tree-based mechanism can be found in Section 6 of [NISTSP800-108].

5.3. Serial Constructions

External serial re-keying mechanisms generate frame keys, each of which depends on the secret state (K*_1, K*_2, ..., see Figure 5) that is updated after the generation of each new frame key. Similar approaches are used in the [SIGNAL] protocol, in the [TLSDraft] updating traffic keys mechanism and were proposed for use in the [U2F] protocol.

External serial re-keying mechanisms have the obvious disadvantage of the impossibility to be implemented in parallel, but they can be preferred if additional forward secrecy is desirable: in case all keys are securely deleted after usage, compromise of a current secret state at some time does not lead to a compromise of all previous secret states and frame keys. In terms of [TLSDraft], compromise of application_traffic_secret_N does not compromise all previous application_traffic_secret_i, i < N.

The main idea behind external re-keying with a serial construction is presented in Figure 5:

                            
Maximum message size = m_max.
_____________________________________________________________
                                     m_max
                               <---------------->           
                     M^{1,1}   |===             |
                     M^{1,2}   |=============== |
K*_1 = K --->K^1-->    ...            ...
  |                  M^{1,q_1} |========        |
  |
  |
  |                  M^{2,1}   |================| 
  v                  M^{2,2}   |=====           | 
K*_2 ------->K^2-->    ...            ...                 
  |                  M^{2,q_2} |==========      | 
  |                                               
 ...
  |                  M^{t,1}   |============    |
  v                  M^{t,2}   |=============   |
K*_t ------->K^t-->    ...            ...
                     M^{t,q_t} |==========      |
            

_____________________________________________________________

       Figure 5: External serial re-keying mechanisms
                
                        

The frame key K^i, i = 1, ... , t - 1, is updated after processing a certain amount of messages (see Section 5.1).

5.3.1. Serial Construction Based on a KDF on a Block Cipher

The frame key K^i is calculated using ExtSerialC transformation as follows:

where J = ceil(k / n), i = 1, ... , t, K*_i is calculated as follows:

where j = 1, ... , t - 1.

5.3.2. Serial Construction Based on a KDF on a Hash Function

The frame key K^i is calculated using ExtSerialH transformation as follows:

where i = 1, ... , t, HKDF-Expand is the HMAC-based key derivation function, described in [RFC5869], K*_i is calculated as follows:

where label1 and label2 are different strings from V* that are defined by a specific protocol (see, for example, TLS 1.3 updating traffic keys algorithm [TLSDraft]).

5.4. Exploiting Additional Entropy on Re-keying

In many cases exploiting additional entropy on re-keying won't increase security, but may give a false sense of that, therefore relying on additional entropy must be done with deep studying security in various security models. For example, good PRF constructions do not require additional entropy for the quality of keys so in the most cases there is no need for exploiting additional entropy on external re-keying mechanisms based on secure KDF. However, in some situations mixed-in entropy can still increase security in the case of a time-limited but complete breach of the system, when adversary can access to the frame keys generation interface, but cannot reveal master keys (master keys are stored in an HSM).

For example, an external parallel construction based on a KDF on a Hash function with a mixed-in entropy can be described as follows:

where label_i is additional entropy that must be sent to the recipient (e.g., be sent jointly with encrypted message). The entropy label_i and the corresponding key K^i must be generated directly before message processing.

6. Internal Re-keying Mechanisms

This section presents an approach to increase the key lifetime by using a transformation of a data processing key (section key) during each separate message processing. Each message is processed starting with the same key (the first section key) and each section key is updated after processing N bits of message (section).

This section provides internal re-keying mechanisms called ACPKM (Advanced Cryptographic Prolongation of Key Material) and ACPKM-Master that do not use a master key and use a master key respectively. Such mechanisms are integrated into the base modes of operation and actually form new modes of operation, therefore they are called "internal re-keying" mechanisms in this document.

Internal re-keying mechanisms are recommended to be used in protocols that process large single messages (e.g., CMS messages), since the maximum gain in increasing the key lifetime is achieved by increasing the length of a message, while it provides almost no increase in the number of messages that can be processed with one initial key.

Internal re-keying increases the key lifetime through the following approach. Suppose protocol P uses some base mode of operation. Let L1 and L2 be a side channel and combinatorial limitations respectively and for some fixed amount of messages q let m1, m2 be the lengths of messages, that can be safely processed with a single initial key K according to these limitations.

Thus, by analogy with the Section 5 without re-keying the final key lifetime restriction, as displayed in Figure 7, is equal to L1 and only q messages of the length m1 can be safely processed.

                        
             K
             |
             v
   ^ +----------------+------------------------------------+ 
   | |==============L1|                                  L2|
   | |================|                                    |
   q |================|                                    |
   | |================|                                    |
   | |================|                                    |
   v +----------------+------------------------------------+
     <-------m1------->
     <----------------------------m2----------------------->
   
Figure 7: Basic principles of message processing without internal re-keying

                
                    

Suppose that the safety margin for the protocol P is fixed and internal re-keying approach is applied to the base mode of operation. Suppose further that every message is processed with a section key, which is transformed after processing N bits of data, where N is a parameter. If q * N does not exceed L1 then the side channel limitation L1 goes off and the resulting key lifetime limitation of the initial key K can be calculated on the basis of a new combinatorial limitation L2'. The security of the mode of operation that uses internal re-keying increases when compared to base mode of operation without re-keying (thus, L2 < L2'). Hence, as displayed in Figure 8, the resulting key lifetime limitation in case of using internal re-keying can be increased up to L2'.

                        
  K-----> K^1-------------> K^2 -----------> . . .
          |                 |
          v                 v
^ +----------------+----------------+-------------------+--...--+
| |==============L1|==============L1|======           L2|    L2’|
| |================|================|======             |       |
q |================|================|====== . . .       |       |
| |================|================|======             |       |
| |================|================|======             |       |
v +----------------+----------------+-------------------+--...--+
  <-------N-------->
  
Figure 8: Basic principles of message processing with internal re-keying

                
                    

Note: the key transformation process is depicted in a simplified form. A specific approach (ACPKM and ACPKM-Master re-keying mechanisms) is described below.

Since the performance of encryption can slightly decrease for rather small values of N, the parameter N should be selected for a particular protocol as maximum possible to provide necessary key lifetime for the considered security models.

Consider an example. Suppose L1 = 128 MB and L2 = 10 TB. Let the message size in the protocol be large/unlimited (may exhaust the whole key lifetime L2). The most restrictive resulting key lifetime limitation is equal to 128 MB.

Thus, there is a need to put a limit on the maximum message size m_max. For example, if m_max = 32 MB, it may happen that the renegotiation of initial key K would be required after processing only four messages.

If an internal re-keying mechanism with section size N = 1 MB is used, more than L1 / N = 128 MB / 1 MB = 128 messages can be processed before the renegotiation of initial key K (instead of 4 messages in case when an internal re-keying mechanism is not used). Note that only one section of each message is processed with the section key K^i, and, consequently, the key lifetime limitation L1 goes off. Hence the resulting key lifetime limitation L2' can be set to more then 10 TB (in the case when a single large message is processed using the initial key K).

6.1. Methods of Key Lifetime Control

Suppose L is an amount of data that can be safely processed with one section key, N is a section size (fixed parameter). Suppose M^{i}_1 is the first section of message M^{i}, i = 1, ... , q (see Figure 9 and Figure 10), then the parameter q can be calculated in accordance with one of the following two approaches:

6.2. Constructions that Do Not Require Master Key

This section describes the block cipher modes that use the ACPKM re-keying mechanism, which does not use a master key: an initial key is used directly for the data encryption.

6.2.1. ACPKM Re-keying Mechanisms

This section defines periodical key transformation without a master key, which is called ACPKM re-keying mechanism. This mechanism can be applied to one of the base encryption modes (CTR and GCM block cipher modes) for getting an extension of this encryption mode that uses periodical key transformation without a master key. This extension can be considered as a new encryption mode.

An additional parameter that defines functioning of base encryption modes with the ACPKM re-keying mechanism is the section size N. The value of N is measured in bits and is fixed within a specific protocol based on the requirements of the system capacity and the key lifetime. The section size N MUST be divisible by the block size n.

The main idea behind internal re-keying without a master key is presented in Figure 9:

                                
Section size = const = N,
maximum message size = m_max.
____________________________________________________________________

              ACPKM       ACPKM              ACPKM
       K^1 = K ---> K^2 ---...-> K^{l_max-1} ----> K^{l_max}
           |          |                |           |
           |          |                |           |
           v          v                v           v
M^{1} |==========|==========| ... |==========|=======:  |
M^{2} |==========|==========| ... |===       |       :  |
  .        .          .        .       .          .  :  
  :        :          :        :       :          :  :  
M^{q} |==========|==========| ... |==========|=====  :  |
                   section                           :  
                 <---------->                      m_max  
                    N bit                            
___________________________________________________________________
l_max = ceil(m_max/N).

            Figure 9: Internal re-keying without a master key
                
                            

During the processing of the input message M with the length m in some encryption mode that uses ACPKM key transformation of the initial key K the message is divided into l = ceil(m / N) sections (denoted as M = M_1 | M_2 | ... | M_l, where M_i is in V_N for i in {1, 2, ... , l - 1} and M_l is in V_r, r <= N). The first section of each message is processed with the section key K^1 = K. To process the (i + 1)-th section of each message the section key K^{i+1} is calculated using ACPKM transformation as follows:

where J = ceil(k/n) and D_1, D_2, ... , D_J are in V_n and are calculated as follows:

where D is the following constant in V_{1024}:

D = ( 80 | 81 | 82 | 83 | 84 | 85 | 86 | 87 
    | 88 | 89 | 8a | 8b | 8c | 8d | 8e | 8f 
    | 90 | 91 | 92 | 93 | 94 | 95 | 96 | 97 
    | 98 | 99 | 9a | 9b | 9c | 9d | 9e | 9f 
    | a0 | a1 | a2 | a3 | a4 | a5 | a6 | a7 
    | a8 | a9 | aa | ab | ac | ad | ae | af 
    | b0 | b1 | b2 | b3 | b4 | b5 | b6 | b7 
    | b8 | b9 | ba | bb | bc | bd | be | bf 
    | c0 | c1 | c2 | c3 | c4 | c5 | c6 | c7 
    | c8 | c9 | ca | cb | cc | cd | ce | cf 
    | d0 | d1 | d2 | d3 | d4 | d5 | d6 | d7 
    | d8 | d9 | da | db | dc | dd | de | df 
    | e0 | e1 | e2 | e3 | e4 | e5 | e6 | e7 
    | e8 | e9 | ea | eb | ec | ed | ee | ef 
    | f0 | f1 | f2 | f3 | f4 | f5 | f6 | f7 
    | f8 | f9 | fa | fb | fc | fd | fe | ff )  
                            

N o t e : The constant D is such that D_1, ... , D_J are pairwise different for any allowed n and k values.

N o t e : The constant D is such that the highest bit of its each octet is equal to 1. This condition is important, as in conjunction with a certain mode message length limitation it allows to prevent collisions of block cipher permutation inputs in cases of key transformation and message processing (for more details see Section 4.4 of [AAOS2017]).

6.2.2. CTR-ACPKM Encryption Mode

This section defines a CTR-ACPKM encryption mode that uses the ACPKM internal re-keying mechanism for the periodical key transformation.

The CTR-ACPKM mode can be considered as the base encryption mode CTR (see [MODES]) extended by the ACPKM re-keying mechanism.

The CTR-ACPKM encryption mode can be used with the following parameters:

The CTR-ACPKM mode encryption and decryption procedures are defined as follows:

                                
+----------------------------------------------------------------+
|  CTR-ACPKM-Encrypt(N, K, ICN, P)                               |
|----------------------------------------------------------------|
|  Input:                                                        |
|  - section size N,                                             |
|  - initial key K,                                              |
|  - initial counter nonce ICN in V_{n-c},                       |
|  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                |
|  Output:                                                       |
|  - ciphertext C.                                               |
|----------------------------------------------------------------|
|  1. CTR_1 = ICN | 0^c                                          |
|  2. For j = 2, 3, ... , b do                                   |
|         CTR_{j} = Inc_c(CTR_{j-1})                             |
|  3. K^1 = K                                                    |
|  4. For i = 2, 3, ... , ceil(|P| / N)                          |
|         K^i = ACPKM(K^{i-1})                                   |
|  5. For j = 1, 2, ... , b do                                   |
|         i = ceil(j * n / N),                                   |
|         G_j = E_{K^i}(CTR_j)                                   |
|  6. C = P (xor) MSB_{|P|}(G_1 | ... | G_b)                     |
|  7. Return C                                                   |
+----------------------------------------------------------------+

+----------------------------------------------------------------+
|  CTR-ACPKM-Decrypt(N, K, ICN, C)                               |
|----------------------------------------------------------------|
|  Input:                                                        |
|  - section size N,                                             |
|  - initial key K,                                              |
|  - initial counter nonce ICN in V_{n-c},                       |
|  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.               |
|  Output:                                                       |
|  - plaintext P.                                                |
|----------------------------------------------------------------|
|  1. P = CTR-ACPKM-Encrypt(N, K, ICN, C)                        |
|  2. Return P                                                   |  
+----------------------------------------------------------------+
                            

The initial counter nonce ICN value for each message that is encrypted under the given initial key K must be chosen in a unique manner.

6.2.3. GCM-ACPKM Authenticated Encryption Mode

This section defines GCM-ACPKM authenticated encryption mode that uses the ACPKM internal re-keying mechanism for the periodical key transformation.

The GCM-ACPKM mode can be considered as the base authenticated encryption mode GCM (see [GCM]) extended by the ACPKM re-keying mechanism.

The GCM-ACPKM authenticated encryption mode can be used with the following parameters:

The GCM-ACPKM mode encryption and decryption procedures are defined as follows:

                                
+-------------------------------------------------------------------+
|  GHASH(X, H)                                                      |
|-------------------------------------------------------------------|
|  Input:                                                           |  
|  - bit string X = X_1 | ... | X_m, X_1, ... , X_m in V_n.         |
|  Output:                                                          |
|  - block GHASH(X, H) in V_n.                                      | 
|-------------------------------------------------------------------|
|  1. Y_0 = 0^n                                                     |
|  2. For i = 1, ... , m do                                         |
|         Y_i = (Y_{i-1} (xor) X_i) * H                             |
|  3. Return Y_m                                                    |
+-------------------------------------------------------------------+

+-------------------------------------------------------------------+
|  GCTR(N, K, ICB, X)                                               |
|-------------------------------------------------------------------|
|  Input:                                                           |
|  - section size N,                                                |
|  - initial key K,                                                 |
|  - initial counter block ICB,                                     |
|  - X = X_1 | ... | X_b.                                           |
|  Output:                                                          |
|  - Y in V_{|X|}.                                                  |
|-------------------------------------------------------------------|
|  1. If X in V_0 then return Y, where Y in V_0                     |
|  2. GCTR_1 = ICB                                                  |
|  3. For i = 2, ... , b do                                         |
|         GCTR_i = Inc_c(GCTR_{i-1})                                |
|  4. K^1 = K                                                       |
|  5. For j = 2, ... , ceil(|X| / N)                                |
|         K^j = ACPKM(K^{j-1})                                      |
|  6. For i = 1, ... , b do                                         |
|         j = ceil(i * n / N),                                      |
|         G_i = E_{K_j}(GCTR_i)                                     |
|  7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b)                        |
|  8. Return Y                                                      |
+-------------------------------------------------------------------+

+-------------------------------------------------------------------+
|  GCM-ACPKM-Encrypt(N, K, ICN, P, A)                               |
|-------------------------------------------------------------------|
|  Input:                                                           |
|  - section size N,                                                |
|  - initial key K,                                                 |
|  - initial counter nonce ICN in V_{n-c},                          |
|  - plaintext P = P_1 | ... | P_b, |P| <= m_max,                   |
|  - additional authenticated data A.                               |
|  Output:                                                          |
|  - ciphertext C,                                                  |
|  - authentication tag T.                                          |
|-------------------------------------------------------------------|
|  1. H = E_{K}(0^n)                                                |
|  2. ICB_0 = ICN | 0^{c-1} | 1                                     |
|  3. C = GCTR(N, K, Inc_c(ICB_0), P)                               |
|  4. u = n * ceil(|C| / n) - |C|                                   |
|     v = n * ceil(|A| / n) - |A|                                   |
|  5. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                | 
|               | Vec_{n/2}(|C|), H)                                |
|  6. T = MSB_t(E_{K}(ICB_0) (xor) S)                               |
|  7. Return C | T                                                  |
+-------------------------------------------------------------------+

+-------------------------------------------------------------------+
|  GCM-ACPKM-Decrypt(N, K, ICN, A, C, T)                            |
|-------------------------------------------------------------------|
|  Input:                                                           |
|  - section size N,                                                |
|  - initial key K,                                                 |
|  - initial counter block ICN,                                     |
|  - additional authenticated data A,                               |
|  - ciphertext C = C_1 | ... | C_b, |C| <= m_max,                  |
|  - authentication tag T.                                          |
|  Output:                                                          |
|  - plaintext P or FAIL.                                           |
|-------------------------------------------------------------------|
|  1. H = E_{K}(0^n)                                                |
|  2. ICB_0 = ICN | 0^{c-1} | 1                                     |
|  3. P = GCTR(N, K, Inc_c(ICB_0), C)                               |
|  4. u = n * ceil(|C| / n) - |C|                                   |
|     v = n * ceil(|A| / n) - |A|                                   |
|  5. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
|               | Vec_{n/2}(|C|), H)                                |
|  6. T' = MSB_t(E_{K}(ICB_0) (xor) S)                              |
|  7. If T = T' then return P; else return FAIL                     |
+-------------------------------------------------------------------+
                            

The * operation on (pairs of) the 2^n possible blocks corresponds to the multiplication operation for the binary Galois (finite) field of 2^n elements defined by the polynomial f as follows (by analogy with [GCM]):

n = 128:
f = a^128 + a^7 + a^2 + a^1 + 1,
n = 256:
f = a^256 + a^10 + a^5 + a^2 + 1.

The initial vector IV value for each message that is encrypted under the given initial key K must be chosen in a unique manner.

The key for computing values E_{K}(ICB_0) and H is not updated and is equal to the initial key K.

6.3. Constructions that Require Master Key

This section describes the block cipher modes that use the ACPKM-Master re-keying mechanism, which use the initial key K as a master key, so K is never used directly for data processing but is used for key derivation.

6.3.1. ACPKM-Master Key Derivation from the Master Key

This section defines periodical key transformation with a master key, which is called ACPKM-Master re-keying mechanism. This mechanism can be applied to one of the base modes of operation (CTR, GCM, CBC, CFB, OMAC modes) for getting an extension that uses periodical key transformation with a master key. This extension can be considered as a new mode of operation.

Additional parameters that define the functioning of modes of operation that use the ACPKM-Master re-keying mechanism are the section size N, the change frequency T* of the master keys K*_1, K*_2, ... (see Figure 10) and the size d of the section key material. The values of N and T* are measured in bits and are fixed within a specific protocol, based on the requirements of the system capacity and the key lifetime. The section size N MUST be divisible by the block size n. The master key frequency T* MUST be divisible by d and by n.

The main idea behind internal re-keying with a master key is presented in Figure 10:

                                
                                
Master key frequency T*,
section size N,
maximum message size = m_max.
__________________________________________________________________________________

                            ACPKM                   ACPKM
               K*_1 = K--------------> K*_2 ---------...---------> K*_l_max
              ___|___                ___|___                     ___|___
             |       |              |       |                   |       |
             v  ...  v              v  ...  v                   v  ...  v
            K[1]     K[t]        K[t+1]   K[2t]      K[(l_max-1)t+1]   K[l_max*t]
             |       |              |       |                   |       |
             |       |              |       |                   |       |
             v       v              v       v                   v       v
M^{1}||========|...|========||========|...|========||...||========|...|==    : ||
M^{2}||========|...|========||========|...|========||...||========|...|======: ||
 ... ||        |   |        ||        |   |        ||   ||        |   |      : ||
M^{q}||========|...|========||====    |...|        ||...||        |...|      : ||
       section                                                               :
      <-------->                                                             :
         N bit                                                             m_max
__________________________________________________________________________________
|K[i]| = d,
t = T* / d,
l_max = ceil(m_max / (N * t)).  

                   Figure 10: Internal re-keying with a master key

                            

During the processing of the input message M with the length m in some mode of operation that uses ACPKM-Master key transformation with the initial key K and the master key frequency T* the message M is divided into l = ceil(m / N) sections (denoted as M = M_1 | M_2 | ... | M_l, where M_i is in V_N for i in {1, 2, ... , l - 1} and M_l is in V_r, r <= N). The j-th section of each message is processed with the key material K[j], j in {1, ... , l}, |K[j]| = d, that is calculated with the ACPKM-Master algorithm as follows:

Note: the parameters d and l MUST be such that d * l <= n * 2^{n/2-1}.

6.3.2. CTR-ACPKM-Master Encryption Mode

This section defines a CTR-ACPKM-Master encryption mode that uses the ACPKM-Master internal re-keying mechanism for the periodical key transformation.

The CTR-ACPKM-Master encryption mode can be considered as the base encryption mode CTR (see [MODES]) extended by the ACPKM-Master re-keying mechanism.

The CTR-ACPKM-Master encryption mode can be used with the following parameters:

The key material K[j] that is used for one section processing is equal to K^j, |K^j| = k bits.

The CTR-ACPKM-Master mode encryption and decryption procedures are defined as follows:

                               
+----------------------------------------------------------------+
|  CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, P)                    |
|----------------------------------------------------------------|
|  Input:                                                        |
|  - section size N,                                             |
|  - initial key K,                                              |
|  - master key frequency T*,                                    |
|  - initial counter nonce ICN in V_{n-c},                       |
|  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                |
|  Output:                                                       |
|  - ciphertext C.                                               |
|----------------------------------------------------------------|
|  1. CTR_1 = ICN | 0^c                                          |
|  2. For j = 2, 3, ... , b do                                   |
|         CTR_{j} = Inc_c(CTR_{j-1})                             |
|  3. l = ceil(|P| / N)                                          |
|  4. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
|  5. For j = 1, 2, ... , b do                                   |
|         i = ceil(j * n / N),                                   |
|         G_j = E_{K^i}(CTR_j)                                   |
|  6. C = P (xor) MSB_{|P|}(G_1 | ... |G_b)                      |
|  7. Return C                                                   |
|----------------------------------------------------------------+

+----------------------------------------------------------------+
|  CTR-ACPKM-Master-Decrypt(N, K, T*, ICN, C)                    |
|----------------------------------------------------------------|
|  Input:                                                        |
|  - section size N,                                             |
|  - initial key K,                                              |
|  - master key frequency T*,                                    |
|  - initial counter nonce ICN in V_{n-c},                       |
|  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.               |
|  Output:                                                       |
|  - plaintext P.                                                |
|----------------------------------------------------------------|
|  1. P = CTR-ACPKM-Master-Encrypt(N, K, T*, ICN, C)             |
|  1. Return P                                                   |
+----------------------------------------------------------------+
                            

The initial counter nonce ICN value for each message that is encrypted under the given initial key must be chosen in a unique manner.

6.3.3. GCM-ACPKM-Master Authenticated Encryption Mode

This section defines a GCM-ACPKM-Master authenticated encryption mode that uses the ACPKM-Master internal re-keying mechanism for the periodical key transformation.

The GCM-ACPKM-Master authenticated encryption mode can be considered as the base authenticated encryption mode GCM (see [GCM]) extended by the ACPKM-Master re-keying mechanism.

The GCM-ACPKM-Master authenticated encryption mode can be used with the following parameters:

The key material K[j] that is used for the j-th section processing is equal to K^j, |K^j| = k bits.

The GCM-ACPKM-Master mode encryption and decryption procedures are defined as follows:

                                
+-------------------------------------------------------------------+
|  GHASH(X, H)                                                      |
|-------------------------------------------------------------------|
|  Input:                                                           |  
|  - bit string X = X_1 | ... | X_m, X_i in V_n for i in {1, ... ,m}|
|  Output:                                                          |
|  - block GHASH(X, H) in V_n                                       | 
|-------------------------------------------------------------------|
|  1. Y_0 = 0^n                                                     |
|  2. For i = 1, ... , m do                                         |
|         Y_i = (Y_{i-1} (xor) X_i) * H                             |
|  3. Return Y_m                                                    |
+-------------------------------------------------------------------+

+-------------------------------------------------------------------+
|  GCTR(N, K, T*, ICB, X)                                           |
|-------------------------------------------------------------------|
|  Input:                                                           |
|  - section size N,                                                |
|  - initial key K,                                                 |
|  - master key frequency T*,                                       |
|  - initial counter block ICB,                                     |
|  - X = X_1 | ... | X_b.                                           |
|  Output:                                                          |
|  - Y in V_{|X|}.                                                  |
|-------------------------------------------------------------------|
|  1. If X in V_0 then return Y, where Y in V_0                     |
|  2. GCTR_1 = ICB                                                  |
|  3. For i = 2, ... , b do                                         |
|         GCTR_i = Inc_c(GCTR_{i-1})                                |
|  4. l = ceil(|X| / N)                                             |
|  5. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                   |
|  6. For j = 1, ... , b do                                         |
|         i = ceil(j * n / N),                                      |
|         G_j = E_{K^i}(GCTR_j)                                     |
|  7. Y = X (xor) MSB_{|X|}(G_1 | ... | G_b)                        |
|  8. Return Y                                                      |
+-------------------------------------------------------------------+

+-------------------------------------------------------------------+
|  GCM-ACPKM-Master-Encrypt(N, K, T*, ICN, P, A)                    |
|-------------------------------------------------------------------|
|  Input:                                                           |
|  - section size N,                                                |
|  - initial key K,                                                 |
|  - master key frequency T*,                                       |
|  - initial counter nonce ICN in V_{n-c},                          |
|  - plaintext P = P_1 | ... | P_b, |P| <= m_max.                   |
|  - additional authenticated data A.                               |
|  Output:                                                          |
|  - ciphertext C,                                                  |
|  - authentication tag T.                                          |
|-------------------------------------------------------------------|
|  1. K^1 = ACPKM-Master(T*, K, k, 1)                               |
|  2. H = E_{K^1}(0^n)                                              |
|  3. ICB_0 = ICN | 0^{c-1} | 1                                     |
|  4. C = GCTR(N, K, T*, Inc_c(ICB_0), P)                           |
|  5. u = n * ceil(|C| / n) - |C|                                   |
|     v = n * ceil(|A| / n) - |A|                                   |
|  6. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
|               | Vec_{n/2}(|C|), H)                                |
|  7. T = MSB_t(E_{K^1}(ICB_0) (xor) S)                             |
|  8. Return C | T                                                  |
+-------------------------------------------------------------------+

+-------------------------------------------------------------------+
|  GCM-ACPKM-Master-Decrypt(N, K, T*, ICN, A, C, T)                 |
|-------------------------------------------------------------------|
|  Input:                                                           |
|  - section size N,                                                |
|  - initial key K,                                                 |
|  - master key frequency T*,                                       |
|  - initial counter nonce ICN in V_{n-c},                          |
|  - additional authenticated data A.                               |
|  - ciphertext C = C_1 | ... | C_b, |C| <= m_max,                  |
|  - authentication tag T.                                          |
|  Output:                                                          |
|  - plaintext P or FAIL.                                           |
|-------------------------------------------------------------------|
|  1. K^1 = ACPKM-Master(T*, K, k, 1)                               |
|  2. H = E_{K^1}(0^n)                                              |
|  3. ICB_0 = ICN | 0^{c-1} | 1                                     |
|  4. P = GCTR(N, K, T*, Inc_c(ICB_0), C)                           |
|  5. u = n * ceil(|C| / n) - |C|                                   |
|     v = n * ceil(|A| / n) - |A|                                   |
|  6. S = GHASH(A | 0^v | C | 0^u | Vec_{n/2}(|A|) |                |
|               | Vec_{n/2}(|C|), H)                                |
|  7. T' = MSB_t(E_{K^1}(ICB_0) (xor) S)                            |
|  8. IF T = T' then return P; else return FAIL.                    |
+-------------------------------------------------------------------+
                            

The * operation on (pairs of) the 2^n possible blocks corresponds to the multiplication operation for the binary Galois (finite) field of 2^n elements defined by the polynomial f as follows (by analogy with [GCM]):

n = 128:
f = a^128 + a^7 + a^2 + a^1 + 1,
n = 256:
f = a^256 + a^10 + a^5 + a^2 + 1.

The initial vector IV value for each message that is encrypted under the given initial key must be chosen in a unique manner.

6.3.4. CBC-ACPKM-Master Encryption Mode

This section defines a CBC-ACPKM-Master encryption mode that uses the ACPKM-Master internal re-keying mechanism for the periodical key transformation.

The CBC-ACPKM-Master encryption mode can be considered as the base encryption mode CBC (see [MODES]) extended by the ACPKM-Master re-keying mechanism.

The CBC-ACPKM-Master encryption mode can be used with the following parameters:

In the specification of the CBC-ACPKM-Master mode the plaintext and ciphertext must be a sequence of one or more complete data blocks. If the data string to be encrypted does not initially satisfy this property, then it MUST be padded to form complete data blocks. The padding methods are out of the scope of this document. An example of a padding method can be found in Appendix A of [MODES].

The key material K[j] that is used for the j-th section processing is equal to K^j, |K^j| = k bits.

We will denote by D_{K} the decryption function which is a permutation inverse to E_{K}.

The CBC-ACPKM-Master mode encryption and decryption procedures are defined as follows:

                               
+----------------------------------------------------------------+
|  CBC-ACPKM-Master-Encrypt(N, K, T*, IV, P)                     |
|----------------------------------------------------------------|
|  Input:                                                        |
|  - section size N,                                             |
|  - initial key K,                                              |
|  - master key frequency T*,                                    |
|  - initialization vector IV in V_n,                            |
|  - plaintext P = P_1 | ... | P_b, |P_b| = n, |P| <= m_max.     |
|  Output:                                                       |
|  - ciphertext C.                                               |
|----------------------------------------------------------------|
|  1. l = ceil(|P| / N)                                          |
|  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
|  3. C_0 = IV                                                   |
|  4. For j = 1, 2, ... , b do                                   |
|         i = ceil(j * n / N),                                   |
|         C_j = E_{K^i}(P_j (xor) C_{j-1})                       |
|  5. Return C = C_1 | ... | C_b                                 |
|----------------------------------------------------------------+

+----------------------------------------------------------------+
|  CBC-ACPKM-Master-Decrypt(N, K, T*, IV, C)                     |
|----------------------------------------------------------------|
|  Input:                                                        |
|  - section size N,                                             |
|  - initial key K,                                              |
|  - master key frequency T*,                                    |
|  - initialization vector IV in V_n,                            |
|  - ciphertext C = C_1 | ... | C_b, |C_b| = n, |C| <= m_max.    |
|  Output:                                                       |
|  - plaintext P.                                                |
|----------------------------------------------------------------|
|  1. l = ceil(|C| / N)                                          |
|  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)                |
|  3. C_0 = IV                                                   |
|  4. For j = 1, 2, ... , b do                                   |
|         i = ceil(j * n / N)                                    |
|         P_j = D_{K^i}(C_j) (xor) C_{j-1}                       |
|  5. Return P = P_1 | ... | P_b                                 |
+----------------------------------------------------------------+
                            

The initialization vector IV for each message that is encrypted under the given initial key does not need to be secret, but must be unpredictable.

6.3.5. CFB-ACPKM-Master Encryption Mode

This section defines a CFB-ACPKM-Master encryption mode that uses the ACPKM-Master internal re-keying mechanism for the periodical key transformation.

The CFB-ACPKM-Master encryption mode can be considered as the base encryption mode CFB (see [MODES]) extended by the ACPKM-Master re-keying mechanism.

The CFB-ACPKM-Master encryption mode can be used with the following parameters:

The key material K[j] that is used for the j-th section processing is equal to K^j, |K^j| = k bits.

The CFB-ACPKM-Master mode encryption and decryption procedures are defined as follows:

                               
+-------------------------------------------------------------+
|  CFB-ACPKM-Master-Encrypt(N, K, T*, IV, P)                  |
|-------------------------------------------------------------|
|  Input:                                                     |
|  - section size N,                                          |
|  - initial key K,                                           |
|  - master key frequency T*,                                 |
|  - initialization vector IV in V_n,                         |
|  - plaintext P = P_1 | ... | P_b, |P| <= m_max.             |
|  Output:                                                    |
|  - ciphertext C.                                            |
|-------------------------------------------------------------|
|  1. l = ceil(|P| / N)                                       |
|  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)             |
|  3. C_0 = IV                                                |
|  4. For j = 1, 2, ... , b - 1 do                            |
|         i = ceil(j * n / N),                                |
|         C_j = E_{K^i}(C_{j-1}) (xor) P_j                    |
|  5. C_b = MSB_{|P_b|}(E_{K^l}(C_{b-1})) (xor) P_b           |
|  6. Return C = C_1 | ... | C_b                              |
|-------------------------------------------------------------+

+-------------------------------------------------------------+
|  CFB-ACPKM-Master-Decrypt(N, K, T*, IV, C)                  |
|-------------------------------------------------------------|
|  Input:                                                     |
|  - section size N,                                          |
|  - initial key K,                                           |
|  - master key frequency T*,                                 |
|  - initialization vector IV in V_n,                         |
|  - ciphertext C = C_1 | ... | C_b, |C| <= m_max.            |
|  Output:                                                    |
|  - plaintext P.                                             |
|-------------------------------------------------------------|
|  1. l = ceil(|C| / N)                                       |
|  2. K^1 | ... | K^l = ACPKM-Master(T*, K, k, l)             |
|  3. C_0 = IV                                                |
|  4. For j = 1, 2, ... , b - 1 do                            |
|         i = ceil(j * n / N),                                |
|         P_j = E_{K^i}(C_{j-1}) (xor) C_j                    |
|  5. P_b = MSB_{|C_b|}(E_{K^l}(C_{b-1})) (xor) C_b           |
|  6. Return P = P_1 | ... | P_b                              |
+-------------------------------------------------------------+
                            

The initialization vector IV for each message that is encrypted under the given initial key need not to be secret, but must be unpredictable.

6.3.6. OMAC-ACPKM-Master Authentication Mode

This section defines an OMAC-ACPKM-Master message authentication code calculation mode that uses the ACPKM-Master internal re-keying mechanism for the periodical key transformation.

The OMAC-ACPKM-Master mode can be considered as the base message authentication code calculation mode OMAC, which is also known as CMAC (see [RFC4493]), extended by the ACPKM-Master re-keying mechanism.

The OMAC-ACPKM-Master message authentication code calculation mode can be used with the following parameters:

The key material K[j] that is used for one section processing is equal to K^j | K^j_1, where |K^j| = k and |K^j_1| = n.

The following is a specification of the subkey generation process of OMAC:

                               
+-------------------------------------------------------------------+
| Generate_Subkey(K1, r)                                            |
|-------------------------------------------------------------------|
| Input:                                                            |
|  - key K1.                                                        |
|  Output:                                                          |
|  - key SK.                                                        |
|-------------------------------------------------------------------|
|   1. If r = n then return K1                                      |
|   2. If r < n then                                                |
|          if MSB_1(K1) = 0                                         | 
|              return K1 << 1                                       |
|          else                                                     |
|              return (K1 << 1) (xor) R_n                           |
|                                                                   |
+-------------------------------------------------------------------+
                            

Here R_n takes the following values:

The OMAC-ACPKM-Master message authentication code calculation mode is defined as follows:

                               
+----------------------------------------------------------------------+
| OMAC-ACPKM-Master(K, N, T*, M)                                       |
|----------------------------------------------------------------------|
| Input:                                                               |
|  - section size N,                                                   |
|  - initial key K,                                                    |
|  - master key frequency T*,                                          |
|  - plaintext M = M_1 | ... | M_b, |M| <= m_max.                      |
|  Output:                                                             |
|  - message authentication code T.                                    |
|----------------------------------------------------------------------|
| 1. C_0 = 0^n                                                         |
| 2. l = ceil(|M| / N)                                                 |
| 3. K^1 | K^1_1 | ... | K^l | K^l_1 = ACPKM-Master(T*, K, (k + n), l) |
| 4. For j = 1, 2, ... , b - 1 do                                      |
|        i = ceil(j * n / N),                                          |
|        C_j = E_{K^i}(M_j (xor) C_{j-1})                              |
| 5. SK = Generate_Subkey(K^l_1, |M_b|)                                |
| 6. If |M_b| = n then M*_b = M_b                                      |
|                 else M*_b = M_b | 1 | 0^{n - 1 -|M_b|}               |
| 7. T = E_{K^l}(M*_b (xor) C_{b-1} (xor) SK)                          |
| 8. Return T                                                          |
+----------------------------------------------------------------------+
                            

7. Joint Usage of External and Internal Re-keying

Both external re-keying and internal re-keying have their own advantages and disadvantages discussed in Section 1. For instance, using external re-keying can essentially limit the message length, while in the case of internal re-keying the section size, which can be chosen as the maximal possible for operational properties, limits the amount of separate messages. There is no more preferable technique because the choice of technique can depend on protocol features. However, some protocols may have features that require to take advantages provided by both external and internal re-keying mechanisms: for example, the protocol mainly transmits messages of small length, but it must additionally support very long messages processing. In such situations it is necessary to use external and internal re-keying jointly, since these techniques negate each other's disadvantages.

For composition of external and internal re-keying techniques any mechanism described in Section 5 can be used with any mechanism described in Section 6.

For example, consider the GCM-ACPKM mode with external serial re-keying based on a KDF on a Hash function. Denote by a frame size the number of messages in each frame (in the case of implicit approach to the key lifetime control) for external re-keying.

Let L be a key lifetime limitation. The section size N for internal re-keying and the frame size q for external re-keying must be chosen in such a way that q * N must not exceed L.

Suppose that t messages (ICN_i, P_i, A_i), with initial counter nonce ICN_i, plaintext P_i and additional authenticated data A_i, will be processed before renegotiation.

For authenticated encryption of each message (ICN_i, P_i, A_i), i = 1, ..., t, the following algorithm can be applied:

 

1. j = ceil(i / q),
2. K^j = ExtSerialH(K, j),
3. C_i | T_i = GCM-ACPKM-Encrypt(N, K^j, ICN_i, P_i, A_i).
                  
              

Note that nonces ICN_i, that are used under the same frame key, must be unique for each message.

8. Security Considerations

Re-keying should be used to increase "a priori" security properties of ciphers in hostile environments (e.g., with side-channel adversaries). If some efficient attacks are known for a cipher, it must not be used. So re-keying cannot be used as a patch for vulnerable ciphers. Base cipher properties must be well analyzed, because the security of re-keying mechanisms is based on the security of a block cipher as a pseudorandom function.

Re-keying is not intended to solve any post-quantum security issues for symmetric cryptography, since the reduction of security caused by Grover's algorithm is not connected with a size of plaintext transformed by a cipher - only a negligible (sufficient for key uniqueness) material is needed; and the aim of re-keying is to limit a size of plaintext transformed under one initial key.

Re-keying can provide backward security only if previous key material is securely deleted after usage by all parties.

9. References

9.1. Normative References

[CMS] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, September 2009.
[DTLS] Rescorla, E. and N. Modadugu, "Datagram Transport Layer Security Version 1.2", RFC 6347, DOI 10.17487/RFC6347, January 2012.
[ESP] Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/RFC4303, December 2005.
[GCM] Dworkin, M., "Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode (GCM) and GMAC", NIST Special Publication 800-38D http://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf, November 2007.
[MODES] Dworkin, M., "Recommendation for Block Cipher Modes of Operation: Methods and Techniques", NIST Special Publication 800-38A, December 2001.
[NISTSP800-108] National Institute of Standards and Technology, "Recommendation for Key Derivation Using Pseudorandom Functions", NIST Special Publication 800-108, November 2008.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997.
[RFC4493] Song, JH., Poovendran, R., Lee, J. and T. Iwata, "The AES-CMAC Algorithm", RFC 4493, DOI 10.17487/RFC4493, June 2006.
[RFC5869] Krawczyk, H. and P. Eronen, "HMAC-based Extract-and-Expand Key Derivation Function (HKDF)", RFC 5869, DOI 10.17487/RFC5869, May 2010.
[RFC7836] Smyshlyaev, S., Alekseev, E., Oshkin, I., Popov, V., Leontiev, S., Podobaev, V. and D. Belyavsky, "Guidelines on the Cryptographic Algorithms to Accompany the Usage of Standards GOST R 34.10-2012 and GOST R 34.11-2012", RFC 7836, DOI 10.17487/RFC7836, March 2016.
[SSH] Ylonen, T. and C. Lonvick, "The Secure Shell (SSH) Transport Layer Protocol", RFC 4253, DOI 10.17487/RFC4253, January 2006.
[TLS] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008.
[TLSDraft] Rescorla, E., "The Transport Layer Security (TLS) Protocol Version 1.3", 2017.

9.2. Informative References

[AAOS2017] Ahmetzyanova, L., Alekseev, E., Oshkin, I. and S. Smyshlyaev, "Increasing the Lifetime of Symmetric Keys for the GCM Mode by Internal Re-keying", Cryptology ePrint Archive Report 2017/697, 2017.
[AbBell] Michel Abdalla and Mihir Bellare, "Increasing the Lifetime of a Key: A Comparative Analysis of the Security of Re-keying Techniques", ASIACRYPT2000, LNCS 1976, pp. 546–559, 2000.
[FKK2005] Fu, K., Kamara, S. and T. Kohno, "Key Regression: Enabling Efficient Key Distribution for Secure Distributed Storage", November 2005.
[FPS2012] Faust, S., Pietrzak, K. and j. Schipper, "Practical Leakage-Resilient Symmetric Cryptography", CHES2012 LNCS, vol. 7428, pp. 213-232,, 2012.
[FRESHREKEYING] Dziembowski, S., Faust, S., Herold, G., Journault, A., Masny, D. and F. Standaert, "Towards Sound Fresh Re-Keying with Hard (Physical) Learning Problems", Cryptology ePrint Archive Report 2016/573, June 2016.
[GGM] Goldreich, O., Goldwasser, S. and S. Micali, "How to Construct Random Functions", Journal of the Association for Computing Machinery Vol.33, No.4, pp. 792-807, October 1986.
[KMNT2003] Kim, Y., Maino, F., Narasimha, M. and G. Tsudik, "Secure Group Services for Storage Area Networks", IEEE Communication Magazine 41, pp. 92-99, 2003.
[LDC] Howard M. Heys, "A Tutorial on Linear and Differential Cryptanalysis", 2017.
[OWT] Joye, M. and S. Yen, "One-Way Cross-Trees and Their Applications", DOI 10.1007/3-540-45664-3_25, February 2002.
[P3] Peter Alexander, "Dynamic Key Changes on Encrypted Sessions", CFRG mail archive , December 2017.
[Pietrzak2009] Pietrzak, K., "A Leakage-Resilient Mode of Operation", EUROCRYPT2009 LNCS, vol. 5479, pp. 462–482,, 2009.
[SIGNAL] Perrin, T. and M. Marlinspike, "The Double Ratchet Algorithm", November 2016.
[Sweet32] Karthikeyan Bhargavan, Gaëtan Leurent, "On the Practical (In-)Security of 64-bit Block Ciphers: Collision Attacks on HTTP over TLS and OpenVPN", Cryptology ePrint Archive Report 2016/798, 2016.
[TAHA] Taha, M. and P. Schaumont, "Key Updating for Leakage Resiliency With Application to AES Modes of Operation", DOI 10.1109/TIFS.2014.2383359, December 2014.
[TEMPEST] By Craig Ramsay, Jasper Lohuis, "TEMPEST attacks against AES. Covertly stealing keys for 200 euro", 2017.
[U2F] Chang, D., Mishra, S., Sanadhya, S. and A. Singhl, "On Making U2F Protocol Leakage-Resilient via Re-keying.", Cryptology ePrint Archive Report 2017/721, August 2017.

Appendix A. Test Examples

A.1. Test Examples for External Re-keying

A.1.1. External Re-keying with a Parallel Construction

                      
External re-keying with a parallel construction based on AES-256                       
****************************************************************
k = 256 
t = 128

Initial key:
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 
0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00 

K^1:
51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86 
64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1 

K^2:
6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15 
B8 02 92 32 D8 D3 8D 73 FE DC DD C6 C8 36 78 BD 

K^3:
B6 40 24 85 A4 24 BD 35 B4 26 43 13 76 26 70 B6 
5B F3 30 3D 3B 20 EB 14 D1 3B B7 91 74 E3 DB EC 

...

K^126:
2F 3F 15 1B 53 88 23 CD 7D 03 FC 3D FD B3 57 5E 
23 E4 1C 4E 46 FF 6B 33 34 12 27 84 EF 5D 82 23 

K^127:
8E 51 31 FB 0B 64 BB D0 BC D4 C5 7B 1C 66 EF FD 
97 43 75 10 6C AF 5D 5E 41 E0 17 F4 05 63 05 ED 

K^128:
77 4F BF B3 22 60 C5 3B A3 8E FE B1 96 46 76 41 
94 49 AF 84 2D 84 65 A7 F4 F7 2C DC A4 9D 84 F9                 

                    

                      
External re-keying with a parallel construction based on SHA-256                      
****************************************************************
k = 256 
t = 128

label:
SHA2label

Initial key:
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 
0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00 

K^1:
C1 A1 4C A0 30 29 BE 43 9F 35 3C 79 1A 51 48 57 
26 7A CD 5A E8 7D E7 D1 B2 E2 C7 AF A4 29 BD 35 

K^2:
03 68 BB 74 41 2A 98 ED C4 7B 94 CC DF 9C F4 9E 
A9 B8 A9 5F 0E DC 3C 1E 3B D2 59 4D D1 75 82 D4 

K^3:
2F D3 68 D3 A7 8F 91 E6 3B 68 DC 2B 41 1D AC 80 
0A C3 14 1D 80 26 3E 61 C9 0D 24 45 2A BD B1 AE 

...

K^126:
55 AC 2B 25 00 78 3E D4 34 2B 65 0E 75 E5 8B 76 
C8 04 E9 D3 B6 08 7D C0 70 2A 99 A4 B5 85 F1 A1 

K^127:
77 4D 15 88 B0 40 90 E5 8C 6A D7 5D 0F CF 0A 4A 
6C 23 F1 B3 91 B1 EF DF E5 77 64 CD 09 F5 BC AF 

K^128:
E5 81 FF FB 0C 90 88 CD E5 F4 A5 57 B6 AB D2 2E 
94 C3 42 06 41 AB C1 72 66 CC 2F 59 74 9C 86 B3 


                    

A.1.2. External Re-keying with a Serial Construction

                      
External re-keying with a serial construction based on AES-256                       
**************************************************************
AES 256 examples:
k = 256 
t = 128

Initial key:
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 
0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00 

K*_1:
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 
0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00 

K^1:
66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0 
51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86 

K*_2:
64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1 
6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15 

K^2:
66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0 
51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86 

K*_3:
64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1 
6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15 

K^3:
66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0 
51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86 

...

K*_126:
64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1 
6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15 

K^126:
66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0 
51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86 

K*_127:
64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1 
6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15 

K^127:
66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0 
51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86 

K*_128:
64 7D 5C D5 1C 3D 62 98 BC 09 B1 D8 64 EC D9 B1 
6F ED F5 D3 77 57 48 75 35 2B 5F 4D B6 5B E0 15 

K^128:
66 B8 BD E5 90 6C EC DF FA 8A B2 FD 92 84 EB F0 
51 16 8A B6 C8 A8 38 65 54 85 31 A5 D2 BA C3 86 
                

                    

                      
External re-keying with a serial construction based on SHA-256                       
**************************************************************
k = 256 
t = 128

Initial key:
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 
0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00 

label1:
SHA2label1

label2:
SHA2label2

K*_1:
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F 
0F 0E 0D 0C 0B 0A 09 08 07 06 05 04 03 02 01 00 

K^1:
2D A8 D1 37 6C FD 52 7F F7 36 A4 E2 81 C6 0A 9B 
F3 8E 66 97 ED 70 4F B5 FB 10 33 CC EC EE D5 EC 

K*_2:
14 65 5A D1 7C 19 86 24 9B D3 56 DF CC BE 73 6F 
52 62 4A 9D E3 CC 40 6D A9 48 DA 5C D0 68 8A 04 

K^2:
2F EA 8D 57 2B EF B8 89 42 54 1B 8C 1B 3F 8D B1 
84 F9 56 C7 FE 01 11 99 1D FB 98 15 FE 65 85 CF 

K*_3:
18 F0 B5 2A D2 45 E1 93 69 53 40 55 43 70 95 8D 
70 F0 20 8C DF B0 5D 67 CD 1B BF 96 37 D3 E3 EB 

K^3:
53 C7 4E 79 AE BC D1 C8 24 04 BF F6 D7 B1 AC BF 
F9 C0 0E FB A8 B9 48 29 87 37 E1 BA E7 8F F7 92  

...

K*_126:
A3 6D BF 02 AA 0B 42 4A F2 C0 46 52 68 8B C7 E6 
5E F1 62 C3 B3 2F DD EF E4 92 79 5D BB 45 0B CA 

K^126:
6C 4B D6 22 DC 40 48 0F 29 C3 90 B8 E5 D7 A7 34 
23 4D 34 65 2C CE 4A 76 2C FE 2A 42 C8 5B FE 9A 

K*_127:
84 5F 49 3D B8 13 1D 39 36 2B BE D3 74 8F 80 A1 
05 A7 07 37 BA 15 72 E0 73 49 C2 67 5D 0A 28 A1 

K^127:
57 F0 BD 5A B8 2A F3 6B 87 33 CF F7 22 62 B4 D0 
F0 EE EF E1 50 74 E5 BA 13 C1 23 68 87 36 29 A2 

K*_128:
52 F2 0F 56 5C 9C 56 84 AF 69 AD 45 EE B8 DA 4E 
7A A6 04 86 35 16 BA 98 E4 CB 46 D2 E8 9A C1 09 

K^128:
9B DD 24 7D F3 25 4A 75 E0 22 68 25 68 DA 9D D5 
C1 6D 2D 2B 4F 3F 1F 2B 5E 99 82 7F 15 A1 4F A4    
                

                    

A.2. Test Examples for Internal Re-keying

A.2.1. Internal Re-keying Mechanisms that Do Not Require Master Key

                    
CTR-ACPKM mode with AES-256
***************************
k = 256
n = 128
c = 64
N = 256

Initial key K:
00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 
00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 

Plain text P:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 
00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 
00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 
00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 
00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 
00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 
00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44 

ICN:
12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12 
23 34 45 56 67 78 89 90 12 13 14 15 16 17 18 19 

D_1:
00000:   80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F 

D_2:
00000:   90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F 

Section 1

Section key K^1:
00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 
00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 

Input block CTR_1:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00 

Output block G_1:
00000:   FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0 

Input block CTR_2:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01 

Output block G_2:
00000:   19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2 

Section 2

Section key K^2:
00000:   F6 80 D1 21 2F A4 3D F4 EC 3A 91 DE 2A B1 6F 1B 
00010:   36 B0 48 8A 4F C1 2E 09 98 D2 E4 A8 88 E8 4F 3D 

Input block CTR_3:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02 

Output block G_3:
00000:   E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA 

Input block CTR_4:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03 

Output block G_4:
00000:   BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4 

Section 3

Section key K^3:
00000:   8E B9 7E 43 27 1A 42 F1 CA 8E E2 5F 5C C7 C8 3B 
00010:   1A CE 9E 5E D0 6A A5 3B 57 B9 6A CF 36 5D 24 B8 

Input block CTR_5:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04 

Output block G_5:
00000:   68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7 

Input block CTR_6:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05 

Output block G_6:
00000:   C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87 

Section 4

Section key K^4:
00000:   C5 71 6C C9 67 98 BC 2D 4A 17 87 B7 8A DF 94 AC 
00010:   E8 16 F8 0B DB BC AD 7D 60 78 12 9C 0C B4 02 F5 

Block number 7:

Input block CTR_7:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06 

Output block G_7:
00000:   03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D 


The result G = G_1 | G_2 | G_3 | G_4 | G_5 | G_6 | G_7:
00000:   FD 7E F8 9A D9 7E A4 B8 8D B8 B5 1C 1C 9D 6D D0 
00010:   19 98 C5 71 76 37 FB 17 11 E4 48 F0 0C 0D 60 B2 
00020:   E4 88 89 4F B6 02 87 DB 77 5A 07 D9 2C 89 46 EA 
00030:   BC 4F 87 23 DB F0 91 50 DD B4 06 C3 1D A9 7C A4 
00040:   68 6F 22 7D 8F B2 9C BD 05 C8 C3 7D 22 FE 3B B7 
00050:   C0 1B F9 7F 75 6E 12 2F 80 59 55 BD DE 2D 45 87
00060:   03 DE 34 74 AB 9B 65 8A 3B 54 1E F8 BD 2B F4 7D 

The result ciphertext C = P (xor) MSB_{|P|}(G):
00000:   EC 5C CB DE 8C 18 D3 B8 72 56 68 D0 A7 37 F4 58 
00010:   19 89 E7 42 32 62 9D 60 99 7D E2 4B C0 E3 9F B8 
00020:   F5 AA BA 0B E3 64 F0 53 EE F0 BC 15 C2 76 4C EA 
00030:   9E 7C C3 76 BD 87 19 C9 77 0F CA 2D E2 A3 7C B5 
00040:   5B 2B 77 1B F8 3A 05 17 BE 04 2D 82 28 FE 2A 95 
00050:   84 4E 9F 08 FD F7 B8 94 4C B7 AA B7 DE 3C 67 B4 
00060:   56 B8 43 FC 32 31 DE 46 D5 AB 14 F8 AC 09 C7 39 

                  

                    
GCM-ACPKM mode with AES-128
***************************
k = 128
n = 128
c = 32
N = 256

Initilal Key K:
00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Additional data A:
00000:   11 22 33 

Plaintext:
00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00010:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

ICN:
00000:   00 00 00 00 00 00 00 00 00 00 00 00 

Number of sections: 2

Section key K^1:
00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

Section key K^2:
00000:   15 1A 9F B0 B6 AC C5 97 6A FB 50 31 D1 DE C8 41

Encrypted GCTR_1 | GCTR_2 | GCTR_3:
00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78 
00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0 
00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD 

Ciphertext C:
00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78 
00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0 
00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD 

GHASH input:
00000:   11 22 33 00 00 00 00 00 00 00 00 00 00 00 00 00 
00010:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78 
00020:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0 
00030:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD 
00040:   00 00 00 00 00 00 00 18 00 00 00 00 00 00 01 80 

GHASH output S:
00000:   E8 ED E9 94 9A DD 55 30 B0 F4 4E F5 00 FC 3E 3C 

Authentication tag  T:
00000:   B0 0F 15 5A 60 A3 65 51 86 8B 53 A2 A4 1B 7B 66 

The result C | T:
00000:   03 88 DA CE 60 B6 A3 92 F3 28 C2 B9 71 B2 FE 78 
00010:   F7 95 AA AB 49 4B 59 23 F7 FD 89 FF 94 8B C1 E0 
00020:   D6 B3 12 46 E9 CE 9F F1 3A B3 42 7E E8 91 96 AD 
00030:   B0 0F 15 5A 60 A3 65 51 86 8B 53 A2 A4 1B 7B 66 


                  

A.2.2. Internal Re-keying Mechanisms with a Master Key

                    
CTR-ACPKM-Master mode with AES-256
**********************************
k = 256
n = 128
c for CTR-ACPKM mode = 64
c for CTR-ACPKM-Master mode = 64
N = 256
T* = 512

Initial key K:
00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 
00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 

Initial vector ICN:
00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12 

Plaintext P:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 
00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 
00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 
00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 
00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 
00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 
00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44 

K^1 | K^2 | K^3 | K^4:
00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64 
00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60 
00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0 
00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3 
00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4 
00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94 
00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9 
00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12 

Section 1

K^1:
00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64 
00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60 

Input block CTR_1:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 00 

Output block G_1:
00000:   8C A2 B6 82 A7 50 65 3F 8E BF 08 E7 9F 99 4D 5C 

Input block CTR_2:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 01 

Output block G_2:
00000:   F6 A6 A5 BA 58 14 1E ED 23 DC 31 68 D2 35 89 A1 


Section 2

K^2:
00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0 
00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3 

Input block CTR_3:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 02 

Output block G_3:
00000:   4A 07 5F 86 05 87 72 94 1D 8E 7D F8 32 F4 23 71 

Input block CTR_4:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 03 

Output block G_4:
00000:   23 35 66 AF 61 DD FE A7 B1 68 3F BA B0 52 4A D7 


Section 3

K^3:
00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4 
00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94 

Input block CTR_5:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 04 

Output block G_5:
00000:   A8 09 6D BC E8 BB 52 FC DE 6E 03 70 C1 66 95 E8 

Input block CTR_6:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 05 

Output block G_6:
00000:   C6 E3 6E 8E 5B 82 AA C4 A6 6C 14 8D B1 F6 9B EF 


Section 4

K^4:
00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9 
00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12 

Input block CTR_7:
00000:   12 34 56 78 90 AB CE F0 00 00 00 00 00 00 00 06 

Output block G_7:
00000:   82 2B E9 07 96 37 44 95 75 36 3F A7 07 F8 40 22 


The result G = G_1 | G_2 | G_3 | G_4 | G_5 | G_6 | G_7:
00000:   8C A2 B6 82 A7 50 65 3F 8E BF 08 E7 9F 99 4D 5C 
00010:   F6 A6 A5 BA 58 14 1E ED 23 DC 31 68 D2 35 89 A1 
00020:   4A 07 5F 86 05 87 72 94 1D 8E 7D F8 32 F4 23 71 
00030:   23 35 66 AF 61 DD FE A7 B1 68 3F BA B0 52 4A D7 
00040:   A8 09 6D BC E8 BB 52 FC DE 6E 03 70 C1 66 95 E8 
00050:   C6 E3 6E 8E 5B 82 AA C4 A6 6C 14 8D B1 F6 9B EF 
00060:   82 2B E9 07 96 37 44 95 75 36 3F A7 07 F8 40 22 

The result ciphertext C = P (xor) MSB_{|P|}(G):
00000:   9D 80 85 C6 F2 36 12 3F 71 51 D5 2B 24 33 D4 D4 
00010:   F6 B7 87 89 1C 41 78 9A AB 45 9B D3 1E DB 76 AB 
00020:   5B 25 6C C2 50 E1 05 1C 84 24 C6 34 DC 0B 29 71 
00030:   01 06 22 FA 07 AA 76 3E 1B D3 F3 54 4F 58 4A C6 
00040:   9B 4D 38 DA 9F 33 CB 56 65 A2 ED 8F CB 66 84 CA 
00050:   82 B6 08 F9 D3 1B 00 7F 6A 82 EB 87 B1 E7 B9 DC 
00060:   D7 4D 9E 8F 0F 9D FF 59 9B C9 35 A7 16 DA 73 66 


                  

                    
GCM-ACPKM-Master mode with AES-256
**********************************
k = 192
n = 128
c for the CTR-ACPKM mode = 64
c for the GCM-ACPKM-Master mode = 32
T* = 384
N = 256

Initila Key K:
00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00010:   00 00 00 00 00 00 00 00 

Additional data A:
00000:   11 22 33 

Plaintext:
00000:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00010:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00020:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00030:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 
00040:   00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 

ICN:
00000:   00 00 00 00 00 00 00 00 00 00 00 00 

Number of sections: 3

K^1 | K^2 | K^3:
00000:   93 BA AF FB 35 FB E7 39 C1 7C 6A C2 2E EC F1 8F 
00010:   7B 89 F0 BF 8B 18 07 05 96 48 68 9F 36 A7 65 CC 
00020:   CD 5D AC E2 0D 47 D9 18 D7 86 D0 41 A8 3B AB 99 
00030:   F5 F8 B1 06 D2 71 78 B1 B0 08 C9 99 0B 72 E2 87 
00040:   5A 2D 3C BE F1 6E 67 3C 

Encrypted GCTR_1 | ... | GCTR_5
00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52 
00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8 
00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE 
00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14 
00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08 

Ciphertext C:
00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52 
00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8 
00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE 
00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14 
00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08 

GHASH input:
00000:   11 22 33 00 00 00 00 00 00 00 00 00 00 00 00 00 
00010:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52 
00020:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8 
00030:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE 
00040:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14 
00050:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08 
00060:   00 00 00 00 00 00 00 18 00 00 00 00 00 00 02 80 

GHASH output S:
00000:   6E A3 4B D5 6A C5 40 B7 3E 55 D5 86 D1 CC 09 7D 

Authentication tag  T:
00050:   CC 3A BA 11 8C E7 85 FD 77 78 94 D4 B5 20 69 F8 

The result C | T:
00000:   43 FA 71 81 64 B1 E3 D7 1E 7B 65 39 A7 02 1D 52 
00010:   69 9B 9E 1B 43 24 B7 52 95 74 E7 90 F2 BE 60 E8 
00020:   11 62 C9 90 2A 2B 77 7F D9 6A D6 1A 99 E0 C6 DE 
00030:   4B 91 D4 29 E3 1A 8C 11 AF F0 BC 47 F6 80 AF 14 
00040:   40 1C C1 18 14 63 8E 76 24 83 37 75 16 34 70 08 
00050:   CC 3A BA 11 8C E7 85 FD 77 78 94 D4 B5 20 69 F8 


                  

                    
CBC-ACPKM-Master mode with AES-256
**********************************
k = 256
n = 128
c for the CTR-ACPKM mode = 64
N = 256
T* = 512

Initial key K:
00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 
00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 

Initial vector IV:
00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12 

Plaintext P:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 
00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 
00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 
00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 
00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 
00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 
00060:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44 

K^1 | K^2 | K^3 | K^4:
00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64 
00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60 
00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0 
00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3 
00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4 
00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94 
00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9 
00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12 

Section 1

K^1:
00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64 
00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60 

Plaintext block P_1:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 

Input block P_1 (xor) C_0:
00000:   03 16 65 3C C5 CD B9 F0 5E 5C 1E 18 5E 5A 98 9A 

Output block C_1:
00000:   59 CB 5B CA C2 69 2C 60 0D 46 03 A0 C7 40 C9 7C 

Plaintext block P_2:
00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 

Input block P_2 (xor) C_1:
00000:   59 DA 79 F9 86 3C 4A 17 85 DF A9 1B 0B AE 36 76 

Output block C_2:
00000:   80 B6 02 74 54 8B F7 C9 78 1F A1 05 8B F6 8B 42 

Section 2

K^2:
00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0 
00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3 

Plaintext block P_3:
00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 

Input block P_3 (xor) C_2:
00000:   91 94 31 30 01 ED 80 41 E1 B5 1A C9 65 09 81 42 

Output block C_3:
00000:   8C 24 FB CF 68 15 B1 AF 65 FE 47 75 95 B4 97 59 

Plaintext block P_4:
00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 

Input block P_4 (xor) C_3:
00000:   AE 17 BF 9A 0E 62 39 36 CF 45 8B 9B 6A BE 97 48 

Output block C_4:
00000:   19 65 A5 00 58 0D 50 23 72 1B E9 90 E1 83 30 E9 

Section 3

K^3:
00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4 
00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94 

Plaintext block P_5:
00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 

Input block P_5 (xor) C_4:
00000:   2A 21 F0 66 2F 85 C9 89 C9 D7 07 6F EB 83 21 CB 

Output block C_5:
00000:   56 D8 34 F4 6F 0F 4D E6 20 53 A9 5C B5 F6 3C 14 

Plaintext block P_6:
00000:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 

Input block P_6 (xor) C_5:
00000:   12 8D 52 83 E7 96 E7 5D EC BD 56 56 B5 E7 1E 27 

Output block C_6:
00000:   66 68 2B 8B DD 6E B2 7E DE C7 51 D6 2F 45 A5 45 

Section 4

K^4:
00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9 
00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12 

Plaintext block P_7:
00000:   55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 44 

Input block P_7 (xor) C_6:
00000:   33 0E 5C 03 44 C4 09 B2 30 38 5B D6 3E 67 96 01 

Output block C_7:
00000:   7F 4D 87 F9 CA E9 56 09 79 C4 FA FE 34 0B 45 34 

Cipher text C:
00000:   59 CB 5B CA C2 69 2C 60 0D 46 03 A0 C7 40 C9 7C 
00010:   80 B6 02 74 54 8B F7 C9 78 1F A1 05 8B F6 8B 42 
00020:   8C 24 FB CF 68 15 B1 AF 65 FE 47 75 95 B4 97 59 
00030:   19 65 A5 00 58 0D 50 23 72 1B E9 90 E1 83 30 E9 
00040:   56 D8 34 F4 6F 0F 4D E6 20 53 A9 5C B5 F6 3C 14 
00050:   66 68 2B 8B DD 6E B2 7E DE C7 51 D6 2F 45 A5 45 
00060:   7F 4D 87 F9 CA E9 56 09 79 C4 FA FE 34 0B 45 34 


                  

                    
CFB-ACPKM-Master mode with AES-256
**********************************
k = 256
n = 128
c for the CTR-ACPKM mode = 64
N = 256
T* = 512

Initial key K:
00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 
00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 

Initial vector IV:
00000:   12 34 56 78 90 AB CE F0 A1 B2 C3 D4 E5 F0 01 12 

Plaintext P:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 
00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 
00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 
00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 
00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 
00050:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 
00060:   55 66 77 88 99 AA BB CC 

K^1 | K^2 | K^3 | K^4
00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64 
00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60 
00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0 
00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3 
00040:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4 
00050:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94 
00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9 
00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12 

Section 1

K^1:
00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64 
00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60 

Plaintext block P_1:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 

Encrypted block E_{K^1}(C_0):
00000:   1C 39 9D 59 F8 5D 91 91 A9 D2 12 9F 63 15 90 03 

Output block C_1 = E_{K^1}(C_0) (xor) P_1:
00000:   0D 1B AE 1D AD 3B E6 91 56 3C CF 53 D8 BF 09 8B 

Plaintext block P_2:
00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 

Encrypted block E_{K^1}(C_1):
00000:   6B A2 C5 42 52 69 C6 0B 15 14 06 87 90 46 F6 2E 

Output block C_2 = E_{K^1}(C_1) (xor) P_2:
00000:   6B B3 E7 71 16 3C A0 7C 9D 8D AC 3C 5C A8 09 24 

Section 2

K^2:
00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0 
00010:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3 

Plaintext block P_3:
00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 

Encrypted block E_{K^2}(C_2):
00000:   95 45 5F DB C3 9E 0A 13 9F CB 10 F5 BD 79 A3 88 

Output block C_3 = E_{K^2}(C_2) (xor) P_3:
00000:   84 67 6C 9F 96 F8 7D 9B 06 61 AB 39 53 86 A9 88 

Plaintext block P_4:
00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 

Encrypted block E_{K^2}(C_3):
00000:   E0 AA 32 5D 80 A4 47 95 BA 42 BF 63 F8 4A C8 B2 

Output block C_4 = E_{K^2}(C_3) (xor) P_4:
00000:   C2 99 76 08 E6 D3 CF 0C 10 F9 73 8D 07 40 C8 A3 

Section 3

K^3:
00000:   E8 76 2B 30 8B 08 EB CE 3E 93 9A C2 C0 3E 76 D4 
00010:   60 9A AB D9 15 33 13 D3 CF D3 94 E7 75 DF 3A 94 

Plaintext block P_5:
00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 

Encrypted block E_{K^3}(C_4):
00000:   FE 42 8C 70 C2 51 CE 13 36 C1 BF 44 F8 49 66 89 

Output block C_5 = E_{K^3}(C_4) (xor) P_5:
00000:   CD 06 D9 16 B5 D9 57 B9 8D 0D 51 BB F2 49 77 AB 

Plaintext block P_6:
00000:   44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 33 

Encrypted block E_{K^3}(C_5):
00000:   01 24 80 87 86 18 A5 43 11 0A CC B5 0A E5 02 A3 

Output block C_6 = E_{K^3}(C_5) (xor) P_6:
00000:   45 71 E6 F0 0E 81 0F F8 DD E4 33 BF 0A F4 20 90 

Section 4

K^4:
00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9 
00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12 

Plaintext block P_7:
00000:   55 66 77 88 99 AA BB CC 

Encrypted block MSB_{|P_7|}(E_{K^4}(C_6)):
00000:   97 5C 96 37 55 1E 8C 7F 

Output block C_7 = MSB_{|P_7|}(E_{K^4}(C_6)) (xor) P_7
00000:   C2 3A E1 BF CC B4 37 B3 

Cipher text C:
00000:   0D 1B AE 1D AD 3B E6 91 56 3C CF 53 D8 BF 09 8B 
00010:   6B B3 E7 71 16 3C A0 7C 9D 8D AC 3C 5C A8 09 24 
00020:   84 67 6C 9F 96 F8 7D 9B 06 61 AB 39 53 86 A9 88 
00030:   C2 99 76 08 E6 D3 CF 0C 10 F9 73 8D 07 40 C8 A3 
00040:   CD 06 D9 16 B5 D9 57 B9 8D 0D 51 BB F2 49 77 AB 
00050:   45 71 E6 F0 0E 81 0F F8 DD E4 33 BF 0A F4 20 90 
00060:   C2 3A E1 BF CC B4 37 B3 


                  

                    
OMAC-ACPKM-Master mode with AES-256
***********************************
k = 256
n = 128
c for the CTR-ACPKM mode = 64
N = 256
T* = 768

Initial key K:
00000:   88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 
00010:   FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 

Plaintext M:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 
00010:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 
00020:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 
00030:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 
00040:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 

K^1 | K^1_1 | K^2 | K^2_1 | K^3 | K^3_1:
00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64 
00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60 
00020:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0 
00030:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3 
00040:   9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67 
00050:   BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48 
00060:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9 
00070:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12 
00080:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07 

Section 1

K^1:
00000:   9F 10 BB F1 3A 79 FB BD 4A 4C A8 64 C4 90 74 64 
00010:   39 FE 50 6D 4B 86 9B 21 03 A3 B6 A4 79 28 3C 60 

K^1_1:
00000:   77 91 17 50 E0 D1 77 E5 9A 13 78 2B F1 89 08 D0 

Plaintext block M_1:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 

Input block M_1 (xor) C_0:
00000:   11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 

Output block C_1:
00000:   0B A5 89 BF 55 C1 15 42 53 08 89 76 A0 FE 24 3E 

Plaintext block M_2:
00000:   00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 

Input block M_2 (xor) C_1:
00000:   0B B4 AB 8C 11 94 73 35 DB 91 23 CD 6C 10 DB 34 

Output block C_2:
00000:   1C 53 DD A3 6D DC E1 17 ED 1F 14 09 D8 6A F3 2C 

Section 2

K^2:
00000:   AB 6B 59 EE 92 49 05 B3 AB C7 A4 E3 69 65 76 C3 
00010:   9D CC 66 42 0D FF 45 5B 21 F3 93 F0 D4 D6 6E 67 

K^2_1:
00000:   BB 1B 06 0B 87 66 6D 08 7A 9D A7 49 55 C3 5B 48 

Plaintext block M_3:
00000:   11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 

Input block M_3 (xor) C_2:
00000:   0D 71 EE E7 38 BA 96 9F 74 B5 AF C5 36 95 F9 2C 

Output block C_3:
00000:   4E D4 BC A6 CE 6D 6D 16 F8 63 85 13 E0 48 59 75 

Plaintext block M_4:
00000:   22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 

Input block M_4 (xor) C_3:
00000:   6C E7 F8 F3 A8 1A E5 8F 52 D8 49 FD 1F 42 59 64 

Output block C_4:
00000:   B6 83 E3 96 FD 30 CD 46 79 C1 8B 24 03 82 1D 81 

Section 3

K^3:
00000:   F2 EE 91 45 6B DC 3D E4 91 2C 87 C3 29 CF 31 A9 
00010:   2F 20 2E 5A C4 9A 2A 65 31 33 D6 74 8C 4F F9 12 

K^3_1:
00000:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07 

MSB1(K1) == 0 -> K2 = K1 << 1

K1:
00000:   78 21 C7 C7 6C BD 79 63 56 AC F8 8E 69 6A 00 07 

K2:
00000:   F0 43 8F 8E D9 7A F2 C6 AD 59 F1 1C D2 D4 00 0E 

Plaintext M_5:
00000:   33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 22 

Using K1, padding is not required

Input block M_5 (xor) C_4:
00000:   FD E6 71 37 E6 05 2D 8F 94 A1 9D 55 60 E8 0C A4 

Output block C_5:
00000:   B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8 

Message authentication code T:
00000:   B3 AD B8 92 18 32 05 4C 09 21 E7 B8 08 CF A0 B8 


                  

Appendix B. Contributors

Appendix C. Acknowledgments

We thank Mihir Bellare, Scott Fluhrer, Dorothy Cooley, Yoav Nir, Jim Schaad, Paul Hoffman and Dmitry Belyavsky for their useful comments.

Author's Address

Stanislav Smyshlyaev (editor) CryptoPro 18, Suschevsky val Moscow, 127018 Russian Federation Phone: +7 (495) 995-48-20 EMail: svs@cryptopro.ru