TOC |
|
This memo presents a programming interface to standardize the way software programs manage cryptographic modules and use cryptographic services offered by modules. Although a number of interfaces for commercial environments have been standardized and are in use, this is the first generic cryptographic interface to be developed that supports cryptographic modules separating two security domains and is thus ideal for the high assurance environment. The interface has been designed to also allow less demanding environments to take advantage of its features.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as “work in progress.”
This Internet-Draft will expire on July 12, 2011.
Copyright (c) 2011 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
1.
Introduction
1.1.
Requirements Language
1.2.
Definition Language
1.3.
IDL Language Mapping Conventions
1.4.
Endianness
1.5.
Blocking and Non-blocking Calls
1.6.
Assumptions
1.7.
Specification Organization
2.
Fundamental Definitions
2.1.
Namespace CICM
2.2.
Fundamental Types
2.3.
Fundamental Interfaces
3.
Module Management
4.
Key Management
5.
Channel Management
6.
Conformance
6.1.
Implementation Conformance Statement Contents
6.2.
Implementation Data Specification Contents
6.3.
Generating Unique Identifiers
6.4.
Conformance Verification
7.
Extensions
7.1.
Extending an Interface
7.2.
Extending Codes
8.
IANA Considerations
9.
Security Considerations
9.1.
Unauthorized Usage
9.2.
Inappropriate Usage
10.
Acknowledgments
11.
References
11.1.
Normative References
11.2.
Informative References
Appendix A.
Status Codes
Appendix B.
IDL Definitions
§
Authors' Addresses
TOC |
This document defines the high-level entities of a programming interface for high assurance cryptographic modules called Common Interface to Cryptographic Modules (CICM) based on the logical model outlined in [CICM‑LM] (Lanz, D. and L. Novikov, “Common Interface to Cryptographic Modules (CICM) Logical Model [RFC Editor: Please update the RFC reference and date prior to publication.],” January 2011.).
TOC |
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119] (Bradner, S., “Key words for use in RFCs to Indicate Requirement Levels,” March 1997.).
TOC |
CICM is defined using Interface Definition Language (IDL) [IDL] (International Standards Organization, “Information technology — Open Distributed Processing — Interface Definition Language,” March 1999.), a specification language that describes a software interface in a language-neutral way. IDL compilers can generate a functionally equivalent CICM interface binding for common programming languages. The use of IDL in CICM is not intended to either prescribe or preclude a particular communications protocol such as General Inter-ORB Protocol (GIOP) [CORBA] (Object Management Group, “Common Object Request Broker Architecture (CORBA) Specification, Version 3.1,” January 2008.) between programs in different address spaces or on different devices.
Additionally, CICM does not use the IDL exception mechanism to report errors. See Extensions (Extensions) for more information.
TOC |
Memory responsibilities and calling conventions MUST follow the appropriate IDL language mapping conventions.
TOC |
Endianness is the byte ordering used to represent data stored in a computer or transmitted between computers. A big-endian ordering of bytes is REQUIRED by CICM.
TOC |
All CICM methods block (wait for the operation defined by the method) to complete before returning, unless they are explicitly defined as non-blocking. For example, the CICM::Encrypt::Stream::encrypt method (defined in [CICM‑CM] (Lanz, D. and L. Novikov, “Common Interface to Cryptographic Modules (CICM) Channel Management [RFC Editor: Please update the RFC reference and date prior to publication.],” January 2011.)) blocks when sending data on a stream to be encrypted, while its sibling CICM::Encrypt::Stream::encrypt_non_blocking is identified not only in its name as non-blocking, but also clearly within the documentation for the method.
TOC |
The following assumptions were made in the development of CICM:
TOC |
The CICM specification is composed of five documents.
The informative material is for informational purposes; it assists the reader in the understanding and use of the specification but does not contain provisions required for conformance.
The namespaces, interfaces, datatypes, methods, and attributes that comprise the specification are presented in a prescriptive manner. For each category, each namespace is described followed by the interfaces contained within it. The datatype, method, and attribute definitions then follow each interface definition.
TOC |
TOC |
Namespace CICM
module CICM
CICM is the top-level namespace for all CICM interfaces and sub-namespaces.
TOC |
TOC |
Type CICM::UInt32
typedef unsigned long UInt32;
Unsigned 32-bit integer.
Type CICM::Bool
typedef boolean Bool;
Boolean value.
Type CICM::CharString
typedef string CharString;
Sequence of characters.
Type CICM::Buffer
typedef sequence<octet> Buffer;
Byte sequence, encapsulating the sequence of bytes, the length of the sequence, and the amount of allocated space.
TOC |
Type CICM::ModuleId
typedef CICM::CharString ModuleId;
Unique cryptographic module identifier.
Type CICM::TransId
typedef CICM::UInt32 TransId;
Unique transaction identifier for read/write operations.
TOC |
Type CICM::Status
typedef CICM::UInt32 Status;
Status of an executed method.
See also:
Appendix A (Status Codes) for a full list of status codes.
TOC |
Type CICM::Classification
typedef CICM::UInt32 Classification;
Classification levels.
Constant CICM::C_LEVEL_UNCLASSIFIED
const CICM::Classification C_LEVEL_UNCLASSIFIED = 0x0000602F;
Value indicating unclassified classification level.
Constant CICM::C_LEVEL_CONFIDENTIAL
const CICM::Classification C_LEVEL_CONFIDENTIAL = 0x00006029;
Value indicating confidential classification level.
Constant CICM::C_LEVEL_SECRET
const CICM::Classification C_LEVEL_SECRET = 0x0000602A;
Value indicating secret classification level.
Constant CICM::C_LEVEL_TOP_SECRET
const CICM::Classification C_LEVEL_TOP_SECRET = 0x0000602C;
Value indicating top secret classification level.
TOC |
Type CICM::RemotePort
typedef CICM::UInt32 RemotePort;
Remote module port.
Constant CICM::IMPLICIT_REMOTE_PORT
const CICM::RemotePort IMPLICIT_REMOTE_PORT = 0xFFFFFF99;
Value that indicates that the remote port value is implicit.
Type CICM::LocalPort
typedef CICM::UInt32 LocalPort;
Local module port.
Constant CICM::IMPLICIT_LOCAL_PORT
const CICM::LocalPort IMPLICIT_LOCAL_PORT = 0xFFFFFFBB;
Value that indicates that the local port value is implicit.
Constant CICM::FILL_INTERFACE_PORT
const CICM::LocalPort FILL_INTERFACE_PORT = 0xFFFFFFEE;
Value that represents the port on which keys are filled or exported.
TOC |
TOC |
Interface CICM::CICMRoot
interface CICMRoot
CICMRoot serves as the entry point to the CICM API and enables a specific cryptographic module of potentially many modules available to a host to be selected.
TOC |
Method CICM::CICMRoot::get_module_by_id()
CICM::Status get_module_by_id( in CICM::ModuleId id, out CICM::CryptoModule crypto_module_ref );
Returns a reference to the module with the given module unique identifier.
Parameters:
[in] id Unique identifier for the module.
[out] crypto_module_ref Module associated with the given identifier.
Returns:
S_OK, S_GENERAL_ERROR, S_NON_FUNCTIONAL, S_OPERATION_FAILED, S_HOST_RESOURCES, S_INVALID_STATE, S_ALARM_STATE, S_MODULE_NOT_AVAILABLE, S_TIMEOUT, S_MODULE_DOES_NOT_EXIST
Example (C++):
CICM::Status sCode; CICM::CryptoModule device; // Instantiate the root object. CICM::CICMRoot cicm = new CICM::CICMRoot(); // Retrieve a reference to the module // corresponding to the specified module identifier. const string MODULE_ID = "CM10293495867"; // If found, [device] refers to the specified crypto module. sCode = cicm.get_module_by_id(MODULE_ID, &device);
TOC |
Interface CICM::CryptoModule
interface CryptoModule
CICM::CryptoModule contains attributes that provide access to module-specific information and attributes that enable access to module managers, through which nearly all interface functionality is accessed.
CryptoModule | |-> SymKeyManager |-> AsymKeyManager |-> KeyDatabase ChannelManager <-| |-> EventManager LoginManager <-| UserManager <-| TokenManager <-| |-> PackageManager |-> TestManager |-> LogManager
Figure 1. Interface Relationship Diagram for CryptoModule
TOC |
Attribute CICM::CryptoModule::module_id
readonly attribute CICM::ModuleId module_id;
Unique identifier for this module.
Attribute CICM::CryptoModule::manufacturer
readonly attribute CICM::CharString manufacturer;
Name of cryptographic module manufacturer.
Attribute CICM::CryptoModule::model
readonly attribute CICM::CharString model;
Model of cryptographic module.
Attribute CICM::CryptoModule::serial_number
readonly attribute CICM::CharString serial_number;
Serial number of cryptographic module.
Attribute CICM::CryptoModule::module_version
readonly attribute CICM::CharString module_version;
Hardware version of cryptographic module.
Attribute CICM::CryptoModule::software_version
readonly attribute CICM::CharString software_version;
Currently executing software/firmware version number.
Attribute CICM::CryptoModule::driver_version
readonly attribute CICM::CharString driver_version;
CICM module-specific abstraction layer version number.
Attribute CICM::CryptoModule::library_version
readonly attribute CICM::CharString library_version;
CICM library version number.
Attribute CICM::CryptoModule::role
readonly attribute CICM::RoleId role;
Current security role in which module is operating.
Attribute CICM::CryptoModule::date_time
attribute CICM::CharString date_time;
Current date/time. Intended for use only with module services that require coarse-grained time (e.g., timestamp on a log), not for time-of-day encryption.
Attribute CICM::CryptoModule::sym_key_manager
readonly attribute CICM::SymKeyManager sym_key_manager;
Reference to CICM::SymKeyManager.
Attribute CICM::CryptoModule::asym_key_manager
readonly attribute CICM::AsymKeyManager asym_key_manager;
Reference to CICM::AsymKeyManager.
Attribute CICM::CryptoModule::key_database
readonly attribute CICM::KeyDatabase key_database;
Reference to CICM::KeyDatabase.
Attribute CICM::CryptoModule::channel_manager
readonly attribute CICM::ChannelManager channel_manager;
Reference to CICM::ChannelManager.
Attribute CICM::CryptoModule::event_manager
readonly attribute CICM::ModuleEventManager event_manager;
Reference to CICM::ModuleEventManager.
Attribute CICM::CryptoModule::package_manager
readonly attribute CICM::PackageManager package_manager;
Reference to CICM::PackageManager.
Attribute CICM::CryptoModule::token_manager
readonly attribute CICM::TokenManager token_manager;
Reference to CICM::TokenManager.
Attribute CICM::CryptoModule::user_manager
readonly attribute CICM::UserManager user_manager;
Reference to CICM::UserManager.
Attribute CICM::CryptoModule::login_manager
readonly attribute CICM::LoginManager login_manager;
Reference to CICM::LoginManager.
Attribute CICM::CryptoModule::test_manager
readonly attribute CICM::TestManager test_manager;
Reference to CICM::TestManager.
Attribute CICM::CryptoModule::log_manager
readonly attribute CICM::LogManager log_manager;
Reference to CICM::LogManager.
TOC |
Method CICM::CryptoModule::configure_fill_interface()
CICM::Status configure_fill_interface( in CICM::Buffer interface_parameters, in CICM::LocalPort fill_port );
Configure a module key fill interface.
Remarks:
This method accepts an opaque buffer containing a module-specific data structure specifying fill port configuration parameters.
The format of the interface parameters value is not defined by CICM. The Implementation Conformance Statement (see Section 6 (Conformance)) MUST reference a standard format or define a module developer-specific format implemented by the module for this datatype.
Parameters:
[in] interface_parameters Opaque buffer containing the fill interface configuration parameters.
[in] fill_port Fill port to configure.
Returns:
S_OK, S_GENERAL_ERROR, S_NON_FUNCTIONAL, S_OPERATION_FAILED, S_POLICY_VIOLATION, S_MODULE_RESOURCES, S_HOST_RESOURCES, S_INVALID_STATE, S_ALARM_STATE, S_MODULE_NOT_AVAILABLE, S_TIMEOUT, S_NOT_AUTHENTICATED, S_NOT_AUTHORIZED, S_INVALID_DATA_BUFFER, S_KEY_FILL_DEVICE_NOT_CONNECTED, S_LOCAL_PORT_INVALID, S_LOCAL_PORT_INCOMPATIBLE, S_LOCAL_PORT_IN_USE, S_TOKEN_NOT_PRESENT, S_TOKEN_ADMIN_NOT_PRESENT
Method CICM::CryptoModule::reset()
CICM::Status reset();
Perform a software-initiated reset on the module.
Remarks:
This method attempts to restart a module in the event of a module failure or in the event a module has entered an alarm state. A CICM::S_OK status denotes that the command was accepted by the module or runtime system, not that any specific action has been initiated as a result of the reset request.
Returns:
S_OK, S_GENERAL_ERROR, S_NON_FUNCTIONAL, S_OPERATION_FAILED, S_POLICY_VIOLATION, S_MODULE_RESOURCES, S_HOST_RESOURCES, S_INVALID_STATE, S_ALARM_STATE, S_MODULE_NOT_AVAILABLE, S_TIMEOUT, S_NOT_AUTHENTICATED, S_NOT_AUTHORIZED, S_TOKEN_NOT_PRESENT, S_TOKEN_ADMIN_NOT_PRESENT
TOC |
Interface CICM::Iterator
interface Iterator
Interface from which other iterators are inherited.
Remarks:
The specification does not define any specific order in which iterated elements are returned.
TOC |
Type CICM::Iterator::Status
typedef CICM::UInt32 Status;
Indicates whether or not there are more items over which to iterate.
Constant CICM::Iterator::C_ITERATOR_HAS_NEXT
const CICM::Iterator::Status C_ITERATOR_HAS_NEXT = 0x00006031;
There are more items in the list.
Constant CICM::Iterator::C_ITERATOR_NO_MORE
const CICM::Iterator::Status C_ITERATOR_NO_MORE = 0x00006032;
There are no more items in the list.
TOC |
Method CICM::Iterator::has_next()
CICM::Status has_next( out CICM::Iterator::Status has_next );
Used with get_next() to determine if one or more additional elements are available to be retrieved.
Remarks:
For elements that have not already been processed, changes in the state of the list/database over which the iterator is being run during the lifetime of the iterator will be reflected in the results from calls to retrieve iterator elements.
Parameters:
[out] has_next Indicates whether more elements are available to be retrieved.
Returns:
S_OK, S_GENERAL_ERROR, S_NON_FUNCTIONAL, S_OPERATION_FAILED, S_POLICY_VIOLATION, S_MODULE_RESOURCES, S_HOST_RESOURCES, S_INVALID_STATE, S_ALARM_STATE, S_MODULE_NOT_AVAILABLE, S_TIMEOUT, S_NOT_AUTHENTICATED, S_NOT_AUTHORIZED, S_TOKEN_NOT_PRESENT, S_TOKEN_ADMIN_NOT_PRESENT
TOC |
Module management capabilities are defined in [CICM‑MM] (Lanz, D. and L. Novikov, “Common Interface to Cryptographic Modules (CICM) Module Management [RFC Editor: Please update the RFC reference and date prior to publication.],” January 2011.).
TOC |
Key management capabilities are defined in [CICM‑KM] (Lanz, D. and L. Novikov, “Common Interface to Cryptographic Modules (CICM) Key Management [RFC Editor: Please update the RFC reference and date prior to publication.],” January 2011.).
TOC |
Channel management capabilities are defined in [CICM‑CM] (Lanz, D. and L. Novikov, “Common Interface to Cryptographic Modules (CICM) Channel Management [RFC Editor: Please update the RFC reference and date prior to publication.],” January 2011.).
TOC |
Many modules will not require the implementation of the full specification to support a module's capabilities. Thus, the CICM conformance model was developed to be flexible. This model does not normatively prescribe the implementation of specific functional subsets of the specification. Instead, CICM outlines a normative Implementation Conformance Statement (ICS) and associated documentation that MUST be supplied with any conformant implementation.
The ICS guides the developer of a library for a specific module to record the implementation state and presence of extensions for each section of the specification. The gradations of the implementation state are relatively coarse: "implemented," "partially implemented," or "not implemented." Extensions are identified as interface extensions or status code extensions, and are recorded as "existing" or "not-existing." An analysis of the resulting matrix enables a software developer using the API or an architect designing a system integrating with a specific cryptographic module to quickly determine if a developer's library will meet user requirements. Those specification sections marked "partially implemented" or for which extensions are indicated may require additional analysis to determine what elements have been extended or are not implemented, and the resulting repercussions on the system utilizing the library.
CICM interfaces are organized into three major sections: module management, channel management, and key management. Each section is partitioned differently into logical subsections in the ICS. The module management section is partitioned into subsections by individual module managers. The channel management section is partitioned into subsections by channel type. The key management section is partitioned into subsections by the type of key and class of operation performed on the key.
An Implementation Data Specification (IDS) based on the ICS also is required. For each implemented interface containing an opaque data parameter (module-specific or infrastructure-specific parameter not described in detail in the specification), the IDS requires a detailed specification of the data structure for each parameter.
An implementation conforms to the specification if it meets the following conditions:
TOC |
A library implementation conforming to the CICM specification MUST be accompanied by an ICS. The ICS is generated by the module developer or implementer of a CICM-conformant library for a specific cryptographic module configuration (including any associated hardware/firmware/software) and MUST contain the following information:
The following represents a sample CICM ICS.
Date of claim: January 1, 2011 ExampleCorp CICMv1 Implementation Conformance Statement 1. Product Claiming Conformance ExampleCorp ABC-XYZ, Version 1.2.3 2. Capability Support Matrix 2.1 Module Management Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- EventManager | I | N | N -----------------------------------------|--------|--------|-------- TokenManager | P | N | N -----------------------------------------|--------|--------|-------- LoginManager | I | N | N -----------------------------------------|--------|--------|-------- UserManager | P | I | I -----------------------------------------|--------|--------|-------- TestManager | N | N | N -----------------------------------------|--------|--------|-------- LogManager | N | N | N -----------------------------------------|--------|--------|-------- PackageManager | P | N | N 2.2 Key Management Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- AsymKeyManager | N | N | N -----------------------------------------|--------|--------|-------- SymKeyManager | P | N | N -----------------------------------------|--------|--------|-------- KeyDatabase | N | N | N -----------------------------------------|--------|--------|-------- KeyProtocol | N | N | N 2.3 Channel Management Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- EventManager | N | N | N -----------------------------------------|--------|--------|-------- Groups | N | N | N 2.3.1 Encrypt Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- Encrypt::Stream | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::Controller | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::NegotiatedController | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::Conduit | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::NegotiatedConduit | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::WithMACConduit | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::WithMACNegotiatedConduit | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::WithSignConduit | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::WithSignNegotiatedConduit | N | N | N -----------------------------------------|--------|--------|-------- Encrypt::KeyWrapConduit | N | N | N 2.3.2 Encrypt with Selective Bypass Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- EncryptBypass::Stream | N | N | N -----------------------------------------|--------|--------|-------- EncryptBypass::Controller | N | N | N -----------------------------------------|--------|--------|-------- EncryptBypass::NegotiatedController | N | N | N -----------------------------------------|--------|--------|-------- EncryptBypass::Conduit | N | N | N -----------------------------------------|--------|--------|-------- EncryptBypass::NegotiatedConduit | N | N | N 2.3.3 Decrypt Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- Decrypt::Stream | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::Controller | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::NegotiatedController | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::Conduit | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::NegotiatedConduit | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::WithMACConduit | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::WithMACNegotiatedConduit | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::WithVerifyConduit | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::WithVerifyNegotiatedConduit | N | N | N -----------------------------------------|--------|--------|-------- Decrypt::KeyUnwrapConduit | N | N | N 2.3.4 Decrypt with Selective Bypass Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- DecryptBypass::Stream | N | N | N -----------------------------------------|--------|--------|-------- DecryptBypass::Controller | N | N | N -----------------------------------------|--------|--------|-------- DecryptBypass::NegotiatedController | N | N | N -----------------------------------------|--------|--------|-------- DecryptBypass::Conduit | N | N | N -----------------------------------------|--------|--------|-------- DecryptBypass::NegotiatedConduit | N | N | N 2.3.5 Duplex Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- Duplex::Stream | N | N | N -----------------------------------------|--------|--------|-------- Duplex::Controller | N | N | N -----------------------------------------|--------|--------|-------- Duplex::NegotiatedController | N | N | N -----------------------------------------|--------|--------|-------- Duplex::Conduit | N | N | N -----------------------------------------|--------|--------|-------- Duplex::NegotiatedConduit | N | N | N 2.3.6 Full Bypass (Write) Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- BypassWrite::Stream | N | N | N -----------------------------------------|--------|--------|-------- BypassWrite::Controller | N | N | N -----------------------------------------|--------|--------|-------- BypassWrite::Conduit | N | N | N 2.3.7 Full Bypass (Read) Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- BypassRead::Stream | N | N | N -----------------------------------------|--------|--------|-------- BypassRead::Controller | N | N | N -----------------------------------------|--------|--------|-------- BypassRead::Conduit | N | N | N 2.3.8 Emit Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- Emit::RandomController | N | N | N -----------------------------------------|--------|--------|-------- Emit::RandomConduit | N | N | N -----------------------------------------|--------|--------|-------- Emit::PseudorandomController | N | N | N -----------------------------------------|--------|--------|-------- Emit::PseudorandomConduit | N | N | N -----------------------------------------|--------|--------|-------- Emit::KeyStreamGenController | N | N | N -----------------------------------------|--------|--------|-------- Emit::KeyStreamGenConduit | N | N | N 2.3.9 Integrity Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- Answer::HashConduit | N | N | N -----------------------------------------|--------|--------|-------- Answer::MACConduit | N | N | N -----------------------------------------|--------|--------|-------- Answer::MACVerifyConduit | N | N | N -----------------------------------------|--------|--------|-------- Answer::SignConduit | N | N | N -----------------------------------------|--------|--------|-------- Answer::VerifyHashConduit | N | N | N 2.3.10 Single-Domain Columns 1: Implementation State 2: Interface Extensions | Impl | Iface | Codes 3: Status Code Extensions | State | Exts | Exts -----------------------------------------|--------|--------|-------- Coprocessor::EncryptConduit | N | N | N -----------------------------------------|--------|--------|-------- Coprocessor::EncryptWithMACConduit | N | N | N -----------------------------------------|--------|--------|-------- Coprocessor::EncryptWithSignConduit | N | N | N -----------------------------------------|--------|--------|-------- Coprocessor::DecryptConduit | N | N | N -----------------------------------------|--------|--------|-------- Coprocessor::DecryptWithMACConduit | N | N | N -----------------------------------------|--------|--------|-------- Coprocessor::DecryptWithVerifyConduit | N | N | N 3. Extensions 3.1. Interface Extensions CICM::UserManager::enable() CICM::UserManager::disable() 3.2 Status Code Extensions CICM::S_USER_ALREADY_ENABLED CICM::S_USER_ALREADY_DISABLED 3.3 Module / Channel Event Listener Extensions None 3.4 Constant Extensions None 4. Supported Algorithms AES128-CBC 3DES-OFB
TOC |
The IDS serves as the detailed supporting documentation for the ICS. Conformance with the CICM specification requires that:
Examples of interfaces requiring an IDS entry to be conformant include:
Note that the event listener callbacks (CICM::ModuleEventListener::event_occurred and CICM::ChannelEventListener::event_occurred) require that the event_data parameter be described for each event type implemented.
TOC |
CICM does not provide a list of algorithms with their corresponding normative unique identifiers. Instead, normative guidance is provided for generating the identifiers for the different classes of algorithms defined in the specification and for key agreement protocols. These identifiers are used by software developers when specifying algorithms or protocols as parameters to CICM methods. This identifier generation guidance is intended to promote interoperability, and encourage the use of the same identifier for algorithms among vendors.
Three major components may be combined to form a unique algorithm identifier: an algorithm (ALGO), that may be precisely specified as an encryption algorithm (ENCRALGO), signature algorithm (SIGALGO), MAC algorithm (MACALGO), or hash algorithm (HASHALGO); a mode (MODE); and an encoding scheme (SCHEME), that may be precisely specified as an encryption scheme (ENCRSCHEME) or a signature scheme (SIGSCHEME). Note that some components above may not apply to certain algorithms. In addition, applicable modes and components need not always be specified. For encryption and signature algorithms, if a length is required, the length SHALL be appended to the algorithm without a dash ("-") delimiter. Otherwise, components are concatenated with a dash ("-").
Alternatively, an identifier can consist of a simple personality designation (PERSONALITY). The personality consists of a combination of parameters that comprise a logically complete crypto, and specifies a specific equipment type or configuration for which algorithm, mode, and any other parameters are implicit. The designation may contain dashes.
Certain algorithms may be appropriate for and thus listed under more than one algorithm class. Below are the classes of algorithms and format of the identifiers for each class:
Asymmetric encryption algorithm identifiers (AsymEncrAlgorithmId)
Format: ENCRALGO [ "-" ENCRSCHEME ] | PERSONALITY
Examples: "RSA1024-OAEP"
Asymmetric signature algorithm identifiers (AsymSigAlgorithmId)
Format: SIGALGO [ "-" HASHALGO [ "-" SIGSCHEME ]] | PERSONALITY
Examples: "DSA-SHA1" or "RSA1024-SHA256-PKCS1V1_5"
Symmetric encryption algorithm identifiers (SymEncrAlgorithmId)
Format: ENCRALGO | PERSONALITY
Examples: "AES128" or "3DES"
Symmetric MAC algorithm identifiers (SymMacAlgorithmId)
Format: MACALGO [ - HASHALGO ] | PERSONALITY
Examples: "HMAC-SHA1" or "UMAC"
Hash algorithm identifiers (HashAlgorithmId)
Format: HASHALGO | PERSONALITY
Examples: "MD5" or "SHA1"
Key wrap algorithm identifiers (KeyWrapAlgorithmId)
Format: ENCRALGO | PERSONALITY
Examples: AESKW
Two major components may be combined to form a key agreement protocol identifier: the key agreement protocol including its version number (KEYAGREEPROTO) and the protocol's associated algorithm suite including its version number (ALGOSUITE). The following is the format for key agreement protocol identifiers.
Key agreement protocol identifier (ProtocolId)
Format: KEYAGREEPROTO "-" ALGOSUITE
Examples: "IKE2.0-FIREFLY"
Note that the resulting identifiers may not be compatible with those identifiers defined for other module developers' implementations. A client program utilizing an identifier corresponding to one algorithm for a specific module may be required to modify the identifier for the same algorithm for a different type of module. Discrepancies may be discovered through a brief review of the ICS "Supported Algorithms" section.
TOC |
In the future, test assertions may be made available to allow results from different organizations to be compared, and to provide proof of conformance to the specification.
TOC |
An extension is a mechanism to define functionality beyond what is defined in the official specification. In the interest of promoting interoperability, extensions to the specification are discouraged except where necessary. Extensions to the specification enable module developers to add functionality unanticipated by the specification developers and to support proprietary features.
TOC |
Developers may augment CICM interfaces by extending CICM IDL by adding new methods/attributes to existing interfaces or by deriving off existing CICM interfaces. Extensions SHALL be documented in the ICS.
TOC |
CICM codes are constants that share a single 32-bit space. A number of datatypes for different purposes correspond to ranges in this space. The "CICM" codes are normatively defined in the specification; the "extended" codes are module developer-defined extensions. The codes, with their corresponding ranges and uses, are as follows:
CICM status codes
0x00000000 - 0x00001000
Extended status codes
0x00001001 - 0x00002000
CICM module event codes
0x00002001 - 0x00003000
Extended module event codes
0x00003001 - 0x00004000
CICM channel event codes
0x00004001 - 0x00005000
Extended channel event codes
0x00005001 - 0x00006000
CICM generic constants
0x00006001 - 0x00007000
Extended generic constants
0x00007001 - 0x00008000
RESERVED
0x00008001 - 0x7FFFFFFF
Normatively-defined CICM codes SHOULD be used whenever possible. If any of the extended codes above are defined, they MUST be documented as specified below.
TOC |
The return value from CICM methods informs the caller of the status of the call. CICM does not use the IDL exception mechanism to report errors.
The specification normatively defines a set of error codes in the range of 0x00000000 - 0x00001000, which may not be modified or extended. A block of codes in the range of 0x00001001 - 0x00002000 are reserved for module developer-defined status codes. Any codes defined in this range MUST be documented in the ICS.
TOC |
The specification supports registering and unregistering user-defined channel event listeners for specific module and channel events. Module events in the range of 0x00003001 - 0x00004000 and channel events in the range of 0x00004001 - 0x00005000 are normatively defined and may not be modified or extended. A block of module events in the range 0x00003001 - 0x00004000 and channel events in the range of 0x00005001 - 0x00006000 are reserved for module developer-defined events. Any codes defined in this range MUST be documented in the ICS.
TOC |
A number of constants are normatively defined for specification use in the range of 0x00006001 - 0x00007000. Module developer-defined constants may be specified in the range of 0x00007001 - 0x00008000. Any constants defined in this range MUST be documented in the ICS.
TOC |
[RFC Editor: Please remove this section prior to publication.]
This document has no IANA actions.
TOC |
This document defines basic aspects of the CICM specification and the normative rules for conformance and extensions. Other aspects of CICM contain important security considerations.
TOC |
CICM provides several interfaces related to mitigating unauthorized usage in [CICM‑MM] (Lanz, D. and L. Novikov, “Common Interface to Cryptographic Modules (CICM) Module Management [RFC Editor: Please update the RFC reference and date prior to publication.],” January 2011.). Furthermore, [CICM‑KM] (Lanz, D. and L. Novikov, “Common Interface to Cryptographic Modules (CICM) Key Management [RFC Editor: Please update the RFC reference and date prior to publication.],” January 2011.) discusses aspects of how authorization can be indirectly controlled via key white lists and black lists.
TOC |
CICM defines several status codes related to inappropriate usage. For example, attempting to use an invalid key (S_KEY_INVALID) or specifying an inappropriate algorithm (S_ALGO_INVALID). The wide range of status codes relate to the anticipated mechanisms in which using the interface may fail. Additionally, module developers can extend the set of status codes to accommodate their own needs and prevent inappropriate usage.
TOC |
Many individuals participated in the development and review of the CICM specification. The CICM development team consists of Ronald Albuquerque, Samuel Cardman, Greg Carrier, James Cottrell, Shirley Kawamoto, Daniel Lanz, Brent Midwood, Lev Novikov, Brian O'Hanlon, Rick Page, Adam Pennington, and Nguyen Thai. The document production team consists of Mark Dwyer, Amanda Lind, and Brian Parrish.
The CICM team wishes to thank the following individuals for participating in a review of the specification:
Bill Beckwith, Objective Interface Systems
Dennis Bourget, Viasat
Thom Brooke, Linquest Corporation
Randy Culver, RT Logic
John Davis, ITT Corporation
Eric Dube, The MITRE Corporation
Jan Duffy, Rockwell Collins
H.J. Eckles, General Dynamics
Mark Flinchbaugh, Harris Corporation
Carolyn Francisco, The MITRE Corporation
James Howard, L-3 Communications
Kent Kofstad, The MITRE Corporation
Hema Krishnamurthy, ITT Corporation
Prithvi Kumar, The MITRE Corporation
Chip McGrogan, L-3 Communications
Hank Morris, Concurrent Technologies Corporation
Jeff Picciotto, The MITRE Corporation
Tom Plachecki, General Dynamics
Ray Purvis, The MITRE Corporation
Mike Ridge, The MITRE Corporation
Harry Shaffer, The MITRE Corporation
Patrick Smith, Linquest Corporation
Wayne Staats, Rockwell Collins
James Steinwachs, Harris Corporation
Porter Taylor, The MITRE Corporation
Otaway Thomas, Arkham Technology
Bob Walcott, The MITRE Corporation
Blane Yamamoto, SafeNet Mykotronx
TOC |
TOC |
TOC |
[CICM-LM] | Lanz, D. and L. Novikov, “Common Interface to Cryptographic Modules (CICM) Logical Model [RFC Editor: Please update the RFC reference and date prior to publication.],” January 2011. |
[CORBA] | Object Management Group, “Common Object Request Broker Architecture (CORBA) Specification, Version 3.1,” January 2008. |
[RFC3552] | Rescorla, E. and B. Korver, “Guidelines for Writing RFC Text on Security Considerations,” BCP 72, RFC 3552, July 2003 (TXT). |
TOC |
Each method defined in CICM returns a status value to inform the caller as to the outcome of the call. The documentation for each individual method lists the status codes that may be returned in the event a call to the method results in failure.
The status value CICM::S_OK is returned if a method completes successfully. The output parameters of any methods that return a status other than CICM::S_OK are invalid and MUST NOT be referenced or used.
CICM methods can fail for a variety of reasons, including:
For additional information concerning extending status codes, see Extensions (Extensions).
CICM status codes are defined below.
S_OK = 0x00000000
No error.
S_GENERAL_ERROR = 0x00000003
Unrecoverable error occurred, potentially leaving module in an inconsistent state.
S_NON_FUNCTIONAL = 0x00000005
Tamper event or other condition has rendered module non-functional.
S_OPERATION_FAILED = 0x00000006
Method encountered a general failure, but detailed information about the failure is not available.
S_POLICY_VIOLATION = 0x00000009
Module policy does not permit the requested action.
S_MODULE_RESOURCES = 0x0000000A
Module resources necessary to perform the requested operation are not available.
S_HOST_RESOURCES = 0x0000000C
Host resources necessary to perform the requested operation are not available.
S_INVALID_STATE = 0x0000000F
Module is in a state that does not allow this operation to be performed.
S_ALARM_STATE = 0x00000011
Module has entered an alarm state.
S_MODULE_NOT_AVAILABLE = 0x00000012
Module has been powered down, disconnected, or is otherwise unavailable..
S_TIMEOUT = 0x00000014
Time to receive response from call exceeded threshold.
S_NOT_AUTHENTICATED = 0x00000017
User has not authenticated to module.
S_NOT_AUTHORIZED = 0x00000018
User is not authorized to call method.
S_MODULE_DOES_NOT_EXIST = 0x0000001B
No module with the specified unique identifier exists.
S_MODULE_IN_USE = 0x0000001D
Module test initiated when channels or other module resources are in use.
S_NOT_AVAILABLE = 0x0000001E
Information is not available or cannot be found.
S_INVALID_VECTOR = 0x00000021
Invalid vector provided; this may be because the length or format of the vector is inappropriate for the algorithm or system with which the vector is being used.
S_INVALID_DATA_BUFFER = 0x00000022
Data in user-specified buffer parameter is invalid.
S_KEY_USED_INVALID = 0x00000024
Key specified as parameter to method is invalid; this could denote that the key has been zeroized, a failed parity check, or other conditions that prevent the use of the key.
S_KEY_USED_EXPIRED = 0x00000027
Key specified as parameter to method has expired and may not be used.
S_KEY_USED_CLASSIFICATION = 0x00000028
Key specified as parameter to method at wrong classification level.
S_KEY_USED_WRAPPED = 0x0000002B
Key specified as parameter to method may not be used in the context until it has been unwrapped.
S_KEY_USED_CONTEXT = 0x0000002D
Attempt to use key in an illegal context as defined by the module; e.g., a key is specified for use on a channel but, due to module architecture, the key is unavailable to that channel.
S_KEY_USED_COMPONENT_NOT_AVAIL = 0x0000002E
Asymmetric key specified as parameter to method contains only a public key (possibly in a certificate) or only a private key, when the other component is needed by the called method.
S_KEY_INVALID = 0x00000030
Key is invalid; this could denote that the key has been zeroized, a failed parity check, or other conditions that prevent the use of the key.
S_KEY_EXPIRED = 0x00000033
Key has expired and may not be used.
S_KEY_INCOMPATIBLE = 0x00000035
Key type (e.g., TEK, KEK) incompatible with intended usage.
S_KEY_CLASSIFICATION = 0x00000036
Key at wrong classification level.
S_KEY_WRAPPED = 0x00000039
Key may not be used in this context until it has been unwrapped.
S_KEY_NOT_WRAPPED = 0x0000003A
Key is not wrapped.
S_KEY_NOT_WRAPPABLE = 0x0000003C
Module is not able to wrap key.
S_KEY_NOT_EXPORTABLE = 0x0000003F
Key is not exportable, potentially because it has not been wrapped or other policy disallows it.
S_KEY_WRAPPED_EXISTS = 0x00000041
Wrapped key already exists.
S_KEY_UNWRAPPED_EXISTS = 0x00000042
Unwrapped key already exists.
S_KEY_UPDATE_MAX = 0x00000044
Maximum number of updates for this key has been exceeded.
S_KEY_INVALID_ID = 0x00000047
Invalid key identifier specified.
S_KEY_PHYSICAL_LOC = 0x00000048
Invalid key physical location specified.
S_KEY_ILLEGAL_CONVERSION = 0x0000004B
Target algorithm is incompatible with algorithm associated with specified key.
S_KEY_MALFORMED = 0x0000004D
Key material supplied is malformed.
S_KEY_METADATA_MALFORMED = 0x0000004E
Key metadata supplied is malformed.
S_KEY_NO_NEXT = 0x00000050
No next key available for rollover.
S_KEY_WRONG_TYPE = 0x00000053
Illegal attempt to process a symmetric key with an asymmetric method or an asymmetric key with a symmetric method.
S_KEY_FILL_DEVICE_NOT_CONNECTED = 0x00000055
Key fill device not connected.
S_KEY_FILL_NOT_INITIATED = 0x00000056
Manual key fill device interaction not initiated within system-defined time limit.
S_KEY_TRUST_ANCHOR = 0x00000059
Trust anchor required but is unavailable.
S_LOCAL_PORT_INVALID = 0x0000005A
Local port specified is invalid.
S_LOCAL_PORT_INCOMPATIBLE = 0x0000005C
Local port specified cannot be used in intended manner.
S_LOCAL_PORT_IN_USE = 0x0000005F
Local port specified is currently in use.
S_REMOTE_PORT_INVALID = 0x00000060
Remote port specified is invalid.
S_REMOTE_PORT_IN_USE = 0x00000063
Remote port specified is currently in use.
S_ALGO_INVALID = 0x00000065
Malformed string or unsupported/invalid algorithm specified.
S_ALGO_INCOMPATIBLE = 0x00000066
Algorithm incompatible with intended usage (e.g., encryption, signature, hashing).
S_TOKEN_NOT_PRESENT = 0x00000069
Token must be inserted to perform the requested operation and no token is available to the module.
S_TOKEN_ADMIN_NOT_PRESENT = 0x0000006A
Administrator token must be inserted to perform the requested operation and either no token is present or the inserted token is not an administrator token.
S_TOKEN_ACCESS = 0x0000006C
Token I/O error.
S_TOKEN_RESOURCES = 0x0000006F
Token resources necessary to perform the requested operation are not available.
S_TOKEN_ASSOC_EXISTS = 0x00000071
Association between module and token already exists.
S_TOKEN_ASSOC_AT_MODULE = 0x00000072
Association failed because module will allow no new associations.
S_TOKEN_ASSOC_AT_TOKEN = 0x00000074
Association failed because token will allow no new associations.
S_TOKEN_ASSOC_NOT_EXIST = 0x00000077
Association between module and token does not exist at the module, at the token, or both.
S_TOKEN_ASSOC_GENERAL = 0x00000078
Unspecified token association error occurred.
S_TOKEN_DISASSOC_GENERAL = 0x0000007B
Unspecified token disassociation error occurred.
S_TOKEN_REC_NOT_FOUND = 0x0000007D
Specified record not found.
S_TOKEN_TIMEOUT = 0x0000007E
Timeout for insertion of token has been exceeded.
S_TOKEN_LAST_ASSOCIATED = 0x00000081
Cannot disassociate the last associated token from this module.
S_PACKAGE_NOT_ACTIVATABLE = 0x00000082
Specified package is not executable.
S_PACKAGE_ACTIVATED = 0x00000084
Specified package is currently running.
S_PACKAGE_NOT_ACTIVE = 0x00000087
Specified package is not currently running.
S_PACKAGE_INVALID = 0x00000088
Specified package is invalid.
S_PACKAGE_TYPE_INVALID = 0x0000008B
Specified package type is invalid.
S_PACKAGE_KEY_NOT_AVAILABLE = 0x0000008D
Package is encrypted and the key specified for use to decrypt package is not available on the module.
S_PACKAGE_KEY_NOT_SPECIFIED = 0x0000008E
Package is encrypted but no key is specified to decrypt it.
S_LOG_ENTRY_INVALID = 0x00000090
Log entry is invalid.
S_EVENT_REGISTERED = 0x00000093
An event has already been registered by this process for this event type.
S_EVENT_NOT_REGISTERED = 0x00000095
An event has not been registered by this process for this event type.
S_EVENT_NOT_SUPPORTED = 0x00000096
Event is not supported in this implementation.
S_TRUSTED_DISPLAY = 0x00000099
Peer information is available at trusted display.
S_NEGOTIATION_ABORTED = 0x0000009A
Negotiation was aborted.
S_NEGOTIATION_FAILURE = 0x0000009C
Negotiation failed.
S_NEGOTIATION_IN_PROGRESS = 0x0000009F
Negotiation is already in progress.
S_NEGOTIATION_NOT_IN_PROGRESS = 0x000000A0
No negotiation has been initiated.
S_NEGOTIATION_TIMEOUT = 0x000000A3
Negotiation timed out.
S_CERT_LOCAL_INVALID = 0x000000A5
Local certificate used in a key negotiation is invalid; the certificate may be corrupted or does not verify.
S_CERT_LOCAL_EXPIRED = 0x000000A6
Local certificate used in a key negotiation has expired.
S_CERT_REMOTE_INVALID = 0x000000A9
Remote certificate used in a key negotiation is invalid; the certificate may be corrupted or does not verify.
S_CERT_REMOTE_EXPIRED = 0x000000AA
Remote certificate used in a key negotiation has expired.
S_CERT_REMOTE_PATH = 0x000000AC
Certificates to enable verification of remote certificate's certification path are not available.
S_PROTO_INVALID = 0x000000AF
Malformed string or unsupported/invalid protocol specified.
S_PROTO_INCOMPATIBLE = 0x000000B1
Protocol specified is incompatible with intended usage.
S_PROTO_UNDETERMINED = 0x000000B2
An "implicit" protocol has been specified, but the protocol message does not indicate the protocol.
S_CHANNEL_ERROR = 0x000000B4
Generic conduit/controller error encountered.
S_CHANNEL_PEER_RESET = 0x000000B7
Peer crypto reset conduit/controller or conduit/controller ceased operation.
S_CHANNEL_MAX = 0x000000B8
Limit on total number of conduits/controllers has been reached.
S_CHANNEL_NOT_FOUND = 0x000000BB
Conduit/controller not found.
S_CHANNEL_IO_ERROR = 0x000000BD
Conduit/controller I/O error.
S_CHANNEL_DATA_INVALID = 0x000000BE
Input data to cryptographic operation is invalid (e.g., plaintext for encryption or ciphertext for decryption).
S_CHANNEL_DATA_INVALID_LEN = 0x000000C0
Plaintext (for encryption) or ciphertext (for decryption) input data to cryptographic operation has an inappropriate length; this could denote that the data is too short, too long, or is not a multiple of some particular block size.
S_CHANNEL_BUFFER_LEN = 0x000000C3
Output of function is too large for supplied buffer.
S_CHANNEL_IN_GROUP = 0x000000C5
Conduit/controller already exists as part of group.
S_CHANNEL_CLASSIFICATION = 0x000000C6
Conduits/controllers are not of the same classification.
S_BYPASS_DATARATE_EXCEEDED = 0x000000C9
Bypass data rate exceeded.
S_BYPASS_DATALIMIT_EXCEEDED = 0x000000CA
Bypass data limit exceeded.
S_INTEGRITY = 0x000000CC
In those cases where an encryption algorithm supplies both confidentiality and integrity (an integrity value is transmitted with the ciphertext), the final decrypt may fail with this integrity error if the integrity check fails.
S_AUTHENTICATION_FAILED = 0x000000CF
Authentication to the module failed; this could denote that a password is incorrect or that additional authentication data supplied is invalid.
S_USER_AUTHENTICATED = 0x000000D1
Specified user has already authenticated to module.
S_USERNAME_INVALID = 0x000000D2
Username is invalid.
S_USER_EXISTS = 0x000000D4
User already exists.
S_USER_INVALID = 0x000000D7
User does not exist.
S_ROLE_INVALID = 0x000000D8
Role does not exist.
S_ROLE_ASSOCIATED = 0x000000DB
User already associated with this role.
S_ROLE_NOT_ASSOCIATED = 0x000000DD
User not associated with this role.
S_ROLE_MAX = 0x000000DE
Maximum number of roles already associated with this user.
S_PASSWORD_INVALID = 0x000000E1
Specified password does not meet module policy.
S_PASSWORD_INVALID_CHAR = 0x000000E2
Specified password has invalid characters in it.
S_PASSWORD_INVALID_LEN = 0x000000E4
Length of specified password is either too long or too short.
S_SALT_INVALID = 0x000000E7
Invalid salt specified.
S_ITERATION_COUNT_INVALID = 0x000000E8
Invalid iteration count specified.
S_INSUFFICIENT_ENTROPY = 0x000000EB
Insufficient entropy available.
TOC |
module CICM { typedef unsigned long UInt32; typedef string CharString; typedef sequence<octet> Buffer; typedef CICM::UInt32 LocalPort; typedef CICM::UInt32 RemotePort; const CICM::LocalPort FILL_INTERFACE_PORT = 0xFFFFFFEE; const CICM::LocalPort IMPLICIT_LOCAL_PORT = 0xFFFFFFBB; const CICM::RemotePort IMPLICIT_REMOTE_PORT = 0xFFFFFF99; typedef CICM::UInt32 Classification; const CICM::Classification C_LEVEL_CONFIDENTIAL = 0x00006029; const CICM::Classification C_LEVEL_SECRET = 0x0000602A; const CICM::Classification C_LEVEL_TOP_SECRET = 0x0000602C; const CICM::Classification C_LEVEL_UNCLASSIFIED = 0x0000602F; typedef CICM::UInt32 Status; const CICM::Status S_OK = 0x00000000; const CICM::Status S_GENERAL_ERROR = 0x00000003; const CICM::Status S_NON_FUNCTIONAL = 0x00000005; const CICM::Status S_OPERATION_FAILED = 0x00000006; const CICM::Status S_POLICY_VIOLATION = 0x00000009; const CICM::Status S_MODULE_RESOURCES = 0x0000000A; const CICM::Status S_HOST_RESOURCES = 0x0000000C; const CICM::Status S_INVALID_STATE = 0x0000000F; const CICM::Status S_ALARM_STATE = 0x00000011; const CICM::Status S_MODULE_NOT_AVAILABLE = 0x00000012; const CICM::Status S_TIMEOUT = 0x00000014; const CICM::Status S_NOT_AUTHENTICATED = 0x00000017; const CICM::Status S_NOT_AUTHORIZED = 0x00000018; const CICM::Status S_MODULE_DOES_NOT_EXIST = 0x0000001B; const CICM::Status S_MODULE_IN_USE = 0x0000001D; const CICM::Status S_NOT_AVAILABLE = 0x0000001E; const CICM::Status S_INVALID_VECTOR = 0x00000021; const CICM::Status S_INVALID_DATA_BUFFER = 0x00000022; const CICM::Status S_KEY_USED_INVALID = 0x00000024; const CICM::Status S_KEY_USED_EXPIRED = 0x00000027; const CICM::Status S_KEY_USED_CLASSIFICATION = 0x00000028; const CICM::Status S_KEY_USED_WRAPPED = 0x0000002B; const CICM::Status S_KEY_USED_CONTEXT = 0x0000002D; const CICM::Status S_KEY_USED_COMPONENT_NOT_AVAIL = 0x0000002E; const CICM::Status S_KEY_INVALID = 0x00000030; const CICM::Status S_KEY_EXPIRED = 0x00000033; const CICM::Status S_KEY_INCOMPATIBLE = 0x00000035; const CICM::Status S_KEY_CLASSIFICATION = 0x00000036; const CICM::Status S_KEY_WRAPPED = 0x00000039; const CICM::Status S_KEY_NOT_WRAPPED = 0x0000003A; const CICM::Status S_KEY_NOT_WRAPPABLE = 0x0000003C; const CICM::Status S_KEY_NOT_EXPORTABLE = 0x0000003F; const CICM::Status S_KEY_WRAPPED_EXISTS = 0x00000041; const CICM::Status S_KEY_UNWRAPPED_EXISTS = 0x00000042; const CICM::Status S_KEY_UPDATE_MAX = 0x00000044; const CICM::Status S_KEY_INVALID_ID = 0x00000047; const CICM::Status S_KEY_PHYSICAL_LOC = 0x00000048; const CICM::Status S_KEY_ILLEGAL_CONVERSION = 0x0000004B; const CICM::Status S_KEY_MALFORMED = 0x0000004D; const CICM::Status S_KEY_METADATA_MALFORMED = 0x0000004E; const CICM::Status S_KEY_NO_NEXT = 0x00000050; const CICM::Status S_KEY_WRONG_TYPE = 0x00000053; const CICM::Status S_KEY_FILL_DEVICE_NOT_CONNECTED = 0x00000055; const CICM::Status S_KEY_FILL_NOT_INITIATED = 0x00000056; const CICM::Status S_KEY_TRUST_ANCHOR = 0x00000059; const CICM::Status S_LOCAL_PORT_INVALID = 0x0000005A; const CICM::Status S_LOCAL_PORT_INCOMPATIBLE = 0x0000005C; const CICM::Status S_LOCAL_PORT_IN_USE = 0x0000005F; const CICM::Status S_REMOTE_PORT_INVALID = 0x00000060; const CICM::Status S_REMOTE_PORT_IN_USE = 0x00000063; const CICM::Status S_ALGO_INVALID = 0x00000065; const CICM::Status S_ALGO_INCOMPATIBLE = 0x00000066; const CICM::Status S_TOKEN_NOT_PRESENT = 0x00000069; const CICM::Status S_TOKEN_ADMIN_NOT_PRESENT = 0x0000006A; const CICM::Status S_TOKEN_ACCESS = 0x0000006C; const CICM::Status S_TOKEN_RESOURCES = 0x0000006F; const CICM::Status S_TOKEN_ASSOC_EXISTS = 0x00000071; const CICM::Status S_TOKEN_ASSOC_AT_MODULE = 0x00000072; const CICM::Status S_TOKEN_ASSOC_AT_TOKEN = 0x00000074; const CICM::Status S_TOKEN_ASSOC_NOT_EXIST = 0x00000077; const CICM::Status S_TOKEN_ASSOC_GENERAL = 0x00000078; const CICM::Status S_TOKEN_DISASSOC_GENERAL = 0x0000007B; const CICM::Status S_TOKEN_REC_NOT_FOUND = 0x0000007D; const CICM::Status S_TOKEN_TIMEOUT = 0x0000007E; const CICM::Status S_TOKEN_LAST_ASSOCIATED = 0x00000081; const CICM::Status S_PACKAGE_NOT_ACTIVATABLE = 0x00000082; const CICM::Status S_PACKAGE_ACTIVATED = 0x00000084; const CICM::Status S_PACKAGE_NOT_ACTIVE = 0x00000087; const CICM::Status S_PACKAGE_INVALID = 0x00000088; const CICM::Status S_PACKAGE_TYPE_INVALID = 0x0000008B; const CICM::Status S_PACKAGE_KEY_NOT_AVAILABLE = 0x0000008D; const CICM::Status S_PACKAGE_KEY_NOT_SPECIFIED = 0x0000008E; const CICM::Status S_LOG_ENTRY_INVALID = 0x00000090; const CICM::Status S_EVENT_REGISTERED = 0x00000093; const CICM::Status S_EVENT_NOT_REGISTERED = 0x00000095; const CICM::Status S_EVENT_NOT_SUPPORTED = 0x00000096; const CICM::Status S_TRUSTED_DISPLAY = 0x00000099; const CICM::Status S_NEGOTIATION_ABORTED = 0x0000009A; const CICM::Status S_NEGOTIATION_FAILURE = 0x0000009C; const CICM::Status S_NEGOTIATION_IN_PROGRESS = 0x0000009F; const CICM::Status S_NEGOTIATION_NOT_IN_PROGRESS = 0x000000A0; const CICM::Status S_NEGOTIATION_TIMEOUT = 0x000000A3; const CICM::Status S_CERT_LOCAL_INVALID = 0x000000A5; const CICM::Status S_CERT_LOCAL_EXPIRED = 0x000000A6; const CICM::Status S_CERT_REMOTE_INVALID = 0x000000A9; const CICM::Status S_CERT_REMOTE_EXPIRED = 0x000000AA; const CICM::Status S_CERT_REMOTE_PATH = 0x000000AC; const CICM::Status S_PROTO_INVALID = 0x000000AF; const CICM::Status S_PROTO_INCOMPATIBLE = 0x000000B1; const CICM::Status S_PROTO_UNDETERMINED = 0x000000B2; const CICM::Status S_CHANNEL_ERROR = 0x000000B4; const CICM::Status S_CHANNEL_PEER_RESET = 0x000000B7; const CICM::Status S_CHANNEL_MAX = 0x000000B8; const CICM::Status S_CHANNEL_NOT_FOUND = 0x000000BB; const CICM::Status S_CHANNEL_IO_ERROR = 0x000000BD; const CICM::Status S_CHANNEL_DATA_INVALID = 0x000000BE; const CICM::Status S_CHANNEL_DATA_INVALID_LEN = 0x000000C0; const CICM::Status S_CHANNEL_BUFFER_LEN = 0x000000C3; const CICM::Status S_CHANNEL_IN_GROUP = 0x000000C5; const CICM::Status S_CHANNEL_CLASSIFICATION = 0x000000C6; const CICM::Status S_BYPASS_DATARATE_EXCEEDED = 0x000000C9; const CICM::Status S_BYPASS_DATALIMIT_EXCEEDED = 0x000000CA; const CICM::Status S_INTEGRITY = 0x000000CC; const CICM::Status S_AUTHENTICATION_FAILED = 0x000000CF; const CICM::Status S_USER_AUTHENTICATED = 0x000000D1; const CICM::Status S_USERNAME_INVALID = 0x000000D2; const CICM::Status S_USER_EXISTS = 0x000000D4; const CICM::Status S_USER_INVALID = 0x000000D7; const CICM::Status S_ROLE_INVALID = 0x000000D8; const CICM::Status S_ROLE_ASSOCIATED = 0x000000DB; const CICM::Status S_ROLE_NOT_ASSOCIATED = 0x000000DD; const CICM::Status S_ROLE_MAX = 0x000000DE; const CICM::Status S_PASSWORD_INVALID = 0x000000E1; const CICM::Status S_PASSWORD_INVALID_CHAR = 0x000000E2; const CICM::Status S_PASSWORD_INVALID_LEN = 0x000000E4; const CICM::Status S_SALT_INVALID = 0x000000E7; const CICM::Status S_ITERATION_COUNT_INVALID = 0x000000E8; const CICM::Status S_INSUFFICIENT_ENTROPY = 0x000000EB; interface Iterator { typedef CICM::UInt32 Status; const CICM::Iterator::Status C_ITERATOR_HAS_NEXT = 0x00006031; const CICM::Iterator::Status C_ITERATOR_NO_MORE = 0x00006032; CICM::Status has_next( out CICM::Iterator::Status has_next ); }; typedef CICM::CharString ModuleId; interface CryptoModule { readonly attribute CICM::ModuleId module_id; readonly attribute CICM::CharString manufacturer; readonly attribute CICM::CharString model; readonly attribute CICM::CharString serial_number; readonly attribute CICM::CharString module_version; readonly attribute CICM::CharString software_version; readonly attribute CICM::CharString driver_version; readonly attribute CICM::CharString library_version; readonly attribute CICM::RoleId role; attribute CICM::CharString date_time; readonly attribute CICM::SymKeyManager sym_key_manager; readonly attribute CICM::AsymKeyManager asym_key_manager; readonly attribute CICM::KeyDatabase key_database; readonly attribute CICM::ChannelManager channel_manager; readonly attribute CICM::ModuleEventManager event_manager; readonly attribute CICM::PackageManager package_manager; readonly attribute CICM::TokenManager token_manager; readonly attribute CICM::UserManager user_manager; readonly attribute CICM::LoginManager login_manager; readonly attribute CICM::TestManager test_manager; readonly attribute CICM::LogManager log_manager; CICM::Status configure_fill_interface( in CICM::Buffer interface_parameters, in CICM::LocalPort fill_port ); CICM::Status reset(); }; interface CICMRoot { CICM::Status get_module_by_id( in CICM::ModuleId id, out CICM::CryptoModule crypto_module_ref ); }; };
TOC |
Daniel J. Lanz | |
The MITRE Corporation | |
Email: | dlanz@mitre.org |
Lev Novikov | |
The MITRE Corporation | |
Email: | lnovikov@mitre.org |