Network Working Group | I. Learmonth |
Internet-Draft | HamBSD |
Obsoletes: 1226 (if approved) | May 18, 2020 |
Intended status: Experimental | |
Expires: November 19, 2020 |
Internet Protocol Encapsulation of AX.25 Frames
draft-learmonth-rfc1226-bis-01
This document describes a method for the encapsulation of AX.25 Link Access Protocol for Amateur Packet Radio frames within IP version 4 and version 6 packets. Obsoletes RFC1226.
Comments are solicited and should be addressed to the author(s).
The sources for this draft are at:
https://github.com/irl/draft-rfc1226-bis
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on November 19, 2020.
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document.
This document describes a method for the encapsulation of AX.25 Link Access Protocol for Amateur Packet Radio [AX.25]) frames within IPv4 and IPv6 packets. It obsoletes [RFC1226].
AX.25 is a data link layer protocol originally derived from layer 2 of the X.25 protocol suite and designed for use by amateur radio operators. It is used extensively by amateur packet radio networks worldwide.
In addition to specifying how packets should be encapsulated, it gives recommendations for DiffServ codepoint marking of the encapsulating headers based on the AX.25 frame content and provides security considerations for the use of this encapsulation method.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
Each AX.25 frame is encapsulated in one IP version 4 or version 6 datagram using protocol number 93 as assigned in the Assigned Internet Protocol Numbers registry [protocol-numbers]. For AX.25 version 2.0, the maximum frame size expected is 330 bytes and implementations MUST be prepared to handle frames of this size. Higher frame sizes can be negotiated by AX.25 version 2.2 and so this is a minimum requirement and not a limit.
HDLC framing elements (flags and zero-stuffing) are omitted, as the IP datagram adequately delimits the beginning and end of each AX.25 frame. The CRC-16-CCITT frame check sequence (normally generated by the HDLC transmission hardware) is included trailing the information field. In all other respects, AX.25 frames are encapsulated unaltered.
In normal operation, the DiffServ codepoint field [RFC2474] in the encapsulating IP header SHOULD be set to best effort (BE). The exception to this is "priority frames" as specified for AX.25 version 2.2, including acknowledgement and digipeat frames, which SHOULD have the DiffServ codepoint set to AF21 [RFC2597]. A slot is reserved on the radio channel for the transmission of these frames and the use of this codepoint will permit the frames to arrive promptly at the station for transmission.
For the avoidance of doubt: on decapsulation the AX.25 frame MUST NOT be modified regardless of the DiffServ codepoint on the received encapsulating IP header.
Automatic Packet Reporting System [APRS] is an amateur radio-based system for real time digital communications for local situational awareness. APRS uses AX.25 frames for addressing, and additionally assigns special meaning to some of the reserved bits of an AX.25 frame header.
As a special case, when used with the Automatic Packet Reporting System [APRS], priority frames will not occur. If a tunnel is configured as carrying APRS data, the DiffServ codepoint SHOULD by default be set to AF11 [RFC2597]. Where the "Precedence Bit" [RR-bits] is set (i.e. it is zero) in an APRS packet, the DiffServ codepoint should be set to BE. Where the "Operator Present Bit" [RR-bits] is set (i.e. it is zero), the DiffServ codepoint MAY be set to AF21 [RFC2597].
Again, for the avoidance of doubt: on decapsulation the AX.25 frame MUST NOT be modified regardless of the DiffServ codepoint on the received encapsulating IP header.
Protocol number 93 is assigned in [protocol-numbers] and should be updated to point to this document.
XXX Left the hard part for last, but the basics of it:
The author would like to acknowledge the work of Brian Kantor who authored the original specification [RFC1226] that this document updates.
[AX.25] | Tucson Amateur Packet Radio Corporation, "AX.25 Link Access Protocol for Amateur Packet Radio Version 2.2", July 1998. |
[protocol-numbers] | IANA, "Assigned Internet Protocol Numbers" |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC2474] | Nichols, K., Blake, S., Baker, F. and D. Black, "Definition of the Differentiated Services Field (DS Field) in the IPv4 and IPv6 Headers", RFC 2474, DOI 10.17487/RFC2474, December 1998. |
[RFC2597] | Heinanen, J., Baker, F., Weiss, W. and J. Wroclawski, "Assured Forwarding PHB Group", RFC 2597, DOI 10.17487/RFC2597, June 1999. |
[RR-bits] | Bruninga, B., "APRS Future Use of AX.25 SSID RR Bits", December 2012. |
[APRS] | Wade, I., "APRS Protocol Reference", August 2000. |
[RFC1226] | Kantor, B., "Internet protocol encapsulation of AX.25 frames", RFC 1226, DOI 10.17487/RFC1226, May 1991. |