Network Working Group K. Moriarty, Ed.
Internet-Draft EMC Corporation
Obsoletes: 3447 (if approved) B. Kaliski
Intended status: Informational Verisign
Expires: March 9, 2017 J. Jonsson
Subset AB
A. Rusch
RSA
September 5, 2016

PKCS #1 Version 2.2: RSA Cryptography Specifications
draft-moriarty-pkcs1-03

Abstract

This document represents a republication of PKCS #1 v2.2 from RSA Laboratories' Public-Key Cryptography Standards (PKCS) series. By publishing this RFC, change control is transferred to the IETF.

This document also obsoletes RFC 3447.

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.

Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on March 9, 2017.

Copyright Notice

Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.


Table of Contents

1. Introduction

This document provides recommendations for the implementation of public-key cryptography based on the RSA algorithm [RSA], covering the following aspects:

The recommendations are intended for general application within computer and communications systems, and as such include a fair amount of flexibility. It is expected that application standards based on these specifications may include additional constraints. The recommendations are intended to be compatible with the standards IEEE 1363-2000 [IEEE1363], IEEE 1363a-2004 [IEEE1363A], and ANSI X9.44-2007 [ANSIX944].

This document supersedes PKCS #1 version 2.1 [PKCS1_21] but includes compatible techniques.

The organization of this document is as follows:

1.1. Requirements Language

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].

2. Notation

The notation in this document includes:

   c              ciphertext representative, an integer between 0 and
                  n-1

   C              ciphertext, an octet string

   d              RSA private exponent

   d_i            additional factor r_i's CRT exponent, a positive
                  integer such that

                    e * d_i == 1 (mod (r_i-1)), i = 3, ..., u

   dP             p's CRT exponent, a positive integer such that

                    e * dP == 1 (mod (p-1))

   dQ             q's CRT exponent, a positive integer such that

                    e * dQ == 1 (mod (q-1))

   e              RSA public exponent

   EM             encoded message, an octet string

   emBits         (intended) length in bits of an encoded message EM

   emLen          (intended) length in octets of an encoded message 
                  EM

   GCD(. , .)     greatest common divisor of two nonnegative integers

   Hash           hash function

   hLen           output length in octets of hash function Hash

   k              length in octets of the RSA modulus n

   K              RSA private key

   L              optional RSAES-OAEP label, an octet string

   LCM(., ..., .) least common multiple of a list of nonnegative
                  integers

   m              message representative, an integer between 0 and 
                  n-1

   M              message, an octet string

   mask           MGF output, an octet string

   maskLen        (intended) length of the octet string mask

   MGF            mask generation function

   mgfSeed        seed from which mask is generated, an octet string

   mLen           length in octets of a message M

   n              RSA modulus, n = r_1 * r_2 * ... * r_u , u >= 2

   (n, e)         RSA public key

   p, q           first two prime factors of the RSA modulus n

   qInv           CRT coefficient, a positive integer less than 
                  p such that q * qInv == 1 (mod p)

   r_i            prime factors of the RSA modulus n, including 
                  r_1 = p, r_2 = q, and additional factors if any

   s              signature representative, an integer between 0 and 
                  n-1

   S              signature, an octet string

   sLen           length in octets of the EMSA-PSS salt

   t_i            additional prime factor r_i's CRT coefficient, a
                  positive integer less than r_i such that

                    r_1 * r_2 * ... * r_(i-1) * t_i == 1 (mod r_i) ,

                  i = 3, ... , u

   u              number of prime factors of the RSA modulus, u >= 2

   x              a nonnegative integer

   X              an octet string corresponding to x

   xLen           (intended) length of the octet string X

   0x             indicator of hexadecimal representation of an octet
                  or an octet string; "0x48" denotes the octet with
                  hexadecimal value 48; "(0x)48 09 0e" denotes the
                  string of three consecutive octets with hexadecimal
                  value 48, 09, and 0e, respectively

   \lambda(n)     LCM(r_1-1, r_2-1, ... , r_u-1)

   \xor           bit-wise exclusive-or of two octet strings

   \ceil(.)       ceiling function; \ceil(x) is the smallest integer
                  larger than or equal to the real number x

   ||             concatenation operator

   ==             congruence symbol; a == b (mod n) means that the
                  integer n divides the integer a - b

   

Note. The CRT can be applied in a non-recursive as well as a recursive way. In this document a recursive approach following Garner's algorithm [GARNER] is used. See also Note 1 in Section 3.2.

3. Key types

Two key types are employed in the primitives and schemes defined in this document: RSA public key and RSA private key. Together, an RSA public key and an RSA private key form an RSA key pair.

This specification supports so-called "multi-prime" RSA where the modulus may have more than two prime factors. The benefit of multi-prime RSA is lower computational cost for the decryption and signature primitives, provided that the CRT (Chinese Remainder Theorem) is used. Better performance can be achieved on single processor platforms, but to a greater extent on multiprocessor platforms, where the modular exponentiations involved can be done in parallel.

For a discussion on how multi-prime affects the security of the RSA cryptosystem, the reader is referred to [SILVERMAN].

3.1. RSA public key

For the purposes of this document, an RSA public key consists of two components:

      n        the RSA modulus, a positive integer
      e        the RSA public exponent, a positive integer

In a valid RSA public key, the RSA modulus n is a product of u distinct odd primes r_i, i = 1, 2, ..., u, where u >= 2, and the RSA public exponent e is an integer between 3 and n - 1 satisfying GCD(e, \lambda(n)) = 1, where \lambda(n) = LCM(r_1 - 1, ..., r_u - 1). By convention, the first two primes r_1 and r_2 may also be denoted p and q respectively.

A recommended syntax for interchanging RSA public keys between implementations is given in Appendix A.1.1; an implementation's internal representation may differ.

3.2. RSA private key

For the purposes of this document, an RSA private key may have either of two representations.

         n        the RSA modulus, a positive integer
         d        the RSA private exponent, a positive integer

         p        the first factor, a positive integer
         q        the second factor, a positive integer
         dP       the first factor's CRT exponent, a positive integer
         dQ       the second factor's CRT exponent, a positive integer
         qInv     the (first) CRT coefficient, a positive integer
         r_i      the i-th factor, a positive integer
         d_i      the i-th factor's CRT exponent, a positive integer
         t_i      the i-th factor's CRT coefficient, a positive integer

In a valid RSA private key with the first representation, the RSA modulus n is the same as in the corresponding RSA public key and is the product of u distinct odd primes r_i, i = 1, 2, ..., u, where u >= 2. The RSA private exponent d is a positive integer less than n satisfying

where e is the corresponding RSA public exponent and \lambda(n) is defined as in Section 3.1.

In a valid RSA private key with the second representation, the two factors p and q are the first two prime factors of the RSA modulus n (i.e., r_1 and r_2), the CRT exponents dP and dQ are positive integers less than p and q respectively satisfying

and the CRT coefficient qInv is a positive integer less than p satisfying

If u > 2, the representation will include one or more triplets (r_i, d_i, t_i), i = 3, ..., u. The factors r_i are the additional prime factors of the RSA modulus n. Each CRT exponent d_i (i = 3, ..., u) satisfies

Each CRT coefficient t_i (i = 3, ..., u) is a positive integer less than r_i satisfying

where R_i = r_1 * r_2 * ... * r_(i-1).

A recommended syntax for interchanging RSA private keys between implementations, which includes components from both representations, is given in Appendix A.1.2; an implementation's internal representation may differ.

Notes.

  1. The definition of the CRT coefficients here and the formulas that use them in the primitives in Section 5 generally follow Garner's algorithm [GARNER] (see also Algorithm 14.71 in [HANDBOOK]). However, for compatibility with the representations of RSA private keys in PKCS #1 v2.0 and previous versions, the roles of p and q are reversed compared to the rest of the primes. Thus, the first CRT coefficient, qInv, is defined as the inverse of q mod p, rather than as the inverse of R_1 mod r_2, i.e., of p mod q.
  2. Quisquater and Couvreur [FASTDEC] observed the benefit of applying the Chinese Remainder Theorem to RSA operations.

4. Data conversion primitives

Two data conversion primitives are employed in the schemes defined in this document:

For the purposes of this document, and consistent with ASN.1 syntax, an octet string is an ordered sequence of octets (eight-bit bytes). The sequence is indexed from first (conventionally, leftmost) to last (rightmost). For purposes of conversion to and from integers, the first octet is considered the most significant in the following conversion primitives.

4.1. I2OSP

I2OSP converts a nonnegative integer to an octet string of a specified length.

I2OSP (x, xLen)

Input:
x
nonnegative integer to be converted
xLen
intended length of the resulting octet string

Output:

Error:
"integer too large"
Steps:
  1. If x >= 256^xLen, output "integer too large" and stop.
  2. Write the integer x in its unique xLen-digit representation in base 256:
    • x = x_(xLen-1) 256^(xLen-1) + x_(xLen-2) 256^(xLen-2) + ... + x_1 256 + x_0,

    where 0 <= x_i < 256 (note that one or more leading digits will be zero if x is less than 256^(xLen-1)).

  3. Let the octet X_i have the integer value x_(xLen-i) for 1 <= i <= xLen. Output the octet string
    • X = X_1 X_2 ... X_xLen.

4.2. OS2IP

OS2IP converts an octet string to a nonnegative integer.

OS2IP (X)

Input:
X octet string to be converted
Output:
x corresponding nonnegative integer
Steps:
  1. Let X_1 X_2 ... X_xLen be the octets of X from first to last, and let x_(xLen-i) be the integer value of the octet X_i for 1 <= i <= xLen.
  2. Let x = x_(xLen-1) 256^(xLen-1) + x_(xLen-2) 256^(xLen-2) + ... + x_1 256 + x_0.
  3. Output x.

5. Cryptographic primitives

Cryptographic primitives are basic mathematical operations on which cryptographic schemes can be built. They are intended for implementation in hardware or as software modules, and are not intended to provide security apart from a scheme.

Four types of primitive are specified in this document, organized in pairs: encryption and decryption; and signature and verification.

The specifications of the primitives assume that certain conditions are met by the inputs, in particular that RSA public and private keys are valid.

5.1. Encryption and decryption primitives

An encryption primitive produces a ciphertext representative from a message representative under the control of a public key, and a decryption primitive recovers the message representative from the ciphertext representative under the control of the corresponding private key.

One pair of encryption and decryption primitives is employed in the encryption schemes defined in this document and is specified here: RSAEP/RSADP. RSAEP and RSADP involve the same mathematical operation, with different keys as input. The primitives defined here are the same as IFEP-RSA/IFDP-RSA in IEEE 1363-2000 [IEEE1363] (except that support for multi-prime RSA has been added) and are compatible with PKCS #1 v1.5.

The main mathematical operation in each primitive is exponentiation.

5.1.1. RSAEP

RSAEP ((n, e), m)

Input:

Output:
c ciphertext representative, an integer between 0 and n - 1
Error:
"message representative out of range"
Assumption:
RSA public key (n, e) is valid
Steps:
  1. If the message representative m is not between 0 and n - 1, output "message representative out of range" and stop.
  2. Let c = m^e mod n.
  3. Output c.

5.1.2. RSADP

RSADP (K, c)

Input:
K RSA private key, where K has one of the following forms:
  • a pair (n, d)
  • a quintuple (p, q, dP, dQ, qInv) and a possibly empty sequence of triplets (r_i, d_i, t_i), i = 3, ..., u

c ciphertext representative, an integer between 0 and n - 1

Output:
m message representative, an integer between 0 and n - 1
Error:
"ciphertext representative out of range"
Assumption:
RSA private key K is valid
Steps:
  1. If the ciphertext representative c is not between 0 and n - 1, output "ciphertext representative out of range" and stop.
  2. The message representative m is computed as follows.
    1. If the first form (n, d) of K is used, let m = c^d mod n.
    2. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i) of K is used, proceed as follows:
      • i. Let m_1 = c^dP mod p and m_2 = c^dQ mod q.
      • ii. If u > 2, let m_i = c^(d_i) mod r_i, i = 3, ..., u.
      • iii. Let h = (m_1 - m_2) * qInv mod p.
      • iv. Let m = m_2 + q * h.
      • v. If u > 2, let R = r_1 and for i = 3 to u do
        1. Let R = R * r_(i-1).
        2. Let h = (m_i - m) * t_i mod r_i.
        3. Let m = m + R * h.

  3. Output m.

Note. Step 2.b can be rewritten as a single loop, provided that one reverses the order of p and q. For consistency with PKCS #1 v2.0, however, the first two primes p and q are treated separately from the additional primes.

5.2. Signature and verification primitives

A signature primitive produces a signature representative from a message representative under the control of a private key, and a verification primitive recovers the message representative from the signature representative under the control of the corresponding public key. One pair of signature and verification primitives is employed in the signature schemes defined in this document and is specified here: RSASP1/RSAVP1.

The primitives defined here are the same as IFSP-RSA1/IFVP-RSA1 in IEEE 1363-2000 [IEEE1363] (except that support for multi-prime RSA has been added) and are compatible with PKCS #1 v1.5.

The main mathematical operation in each primitive is exponentiation, as in the encryption and decryption primitives of Section 5.1. RSASP1 and RSAVP1 are the same as RSADP and RSAEP except for the names of their input and output arguments; they are distinguished as they are intended for different purposes.

5.2.1. RSASP1

     
   K        RSA private key, where K has one of the following forms:
            - a pair (n, d)
            - a quintuple (p, q, dP, dQ, qInv) and a (possibly empty)
              sequence of triplets (r_i, d_i, t_i), i = 3, ..., u
   m        message representative, an integer between 0 and n - 1

                  
   s        signature representative, an integer between 0 and n - 1

RSASP1 (K, m)

Input:
Output:
Error:
"message representative out of range"
Assumption:
RSA private key K is valid
Steps:
  1. If the message representative m is not between 0 and n - 1, output "message representative out of range" and stop.
  2. The signature representative s is computed as follows.
    1. If the first form (n, d) of K is used, let s = m^d mod n.
    2. If the second form (p, q, dP, dQ, qInv) and (r_i, d_i, t_i) of K is used, proceed as follows:
      1. Let s_1 = m^dP mod p and s_2 = m^dQ mod q.
      2. If u > 2, let s_i = m^(d_i) mod r_i, i = 3, ..., u.
      3. Let h = (s_1 - s_2) * qInv mod p.
      4. Let s = s_2 + q * h.
      5. If u > 2, let R = r_1 and for i = 3 to u do
        1. Let R = R * r_(i-1).
        2. Let h = (s_i - s) * t_i mod r_i.
        3. Let s = s + R * h.

  3. Output s.

Note. Step 2.b can be rewritten as a single loop, provided that one reverses the order of p and q. For consistency with PKCS #1 v2.0, however, the first two primes p and q are treated separately from the additional primes.

5.2.2. RSAVP1

RSAVP1 ((n, e), s)

Input:

Output:

Error:
"signature representative out of range"
Assumption:
RSA public key (n, e) is valid
Steps:
  1. If the signature representative s is not between 0 and n - 1, output "signature representative out of range" and stop.
  2. Let m = s^e mod n.
  3. Output m.

6. Overview of schemes

A scheme combines cryptographic primitives and other techniques to achieve a particular security goal. Two types of scheme are specified in this document: encryption schemes and signature schemes with appendix.

The schemes specified in this document are limited in scope in that their operations consist only of steps to process data with an RSA public or private key, and do not include steps for obtaining or validating the key. Thus, in addition to the scheme operations, an application will typically include key management operations by which parties may select RSA public and private keys for a scheme operation. The specific additional operations and other details are outside the scope of this document.

As was the case for the cryptographic primitives (Section 5), the specifications of scheme operations assume that certain conditions are met by the inputs, in particular that RSA public and private keys are valid. The behavior of an implementation is thus unspecified when a key is invalid. The impact of such unspecified behavior depends on the application. Possible means of addressing key validation include explicit key validation by the application; key validation within the public-key infrastructure; and assignment of liability for operations performed with an invalid key to the party who generated the key.

A generally good cryptographic practice is to employ a given RSA key pair in only one scheme. This avoids the risk that vulnerability in one scheme may compromise the security of the other, and may be essential to maintain provable security. While RSAES-PKCS1-v1_5 (Section 7.2) and RSASSA-PKCS1-v1_5 (Section 8.2) have traditionally been employed together without any known bad interactions (indeed, this is the model introduced by PKCS #1 v1.5), such a combined use of an RSA key pair is NOT RECOMMENDED for new applications.

To illustrate the risks related to the employment of an RSA key pair in more than one scheme, suppose an RSA key pair is employed in both RSAES-OAEP (Section 7.1) and RSAES-PKCS1-v1_5. Although RSAES-OAEP by itself would resist attack, an opponent might be able to exploit a weakness in the implementation of RSAES-PKCS1-v1_5 to recover messages encrypted with either scheme. As another example, suppose an RSA key pair is employed in both RSASSA-PSS (Section 8.1) and RSASSA-PKCS1-v1_5. Then the security proof for RSASSA-PSS would no longer be sufficient since the proof does not account for the possibility that signatures might be generated with a second scheme. Similar considerations may apply if an RSA key pair is employed in one of the schemes defined here and in a variant defined elsewhere.

7. Encryption schemes

For the purposes of this document, an encryption scheme consists of an encryption operation and a decryption operation, where the encryption operation produces a ciphertext from a message with a recipient's RSA public key, and the decryption operation recovers the message from the ciphertext with the recipient's corresponding RSA private key.

An encryption scheme can be employed in a variety of applications. A typical application is a key establishment protocol, where the message contains key material to be delivered confidentially from one party to another. For instance, PKCS #7 [RFC2315] employs such a protocol to deliver a content-encryption key from a sender to a recipient; the encryption schemes defined here would be suitable key-encryption algorithms in that context.

Two encryption schemes are specified in this document: RSAES-OAEP and RSAES-PKCS1-v1_5. RSAES-OAEP is REQUIRED to be supported for new applications; RSAES-PKCS1-v1_5 is included only for compatibility with existing applications.

The encryption schemes given here follow a general model similar to that employed in IEEE 1363-2000 [IEEE1363], combining encryption and decryption primitives with an encoding method for encryption. The encryption operations apply a message encoding operation to a message to produce an encoded message, which is then converted to an integer message representative. An encryption primitive is applied to the message representative to produce the ciphertext. Reversing this, the decryption operations apply a decryption primitive to the ciphertext to recover a message representative, which is then converted to an octet string encoded message. A message decoding operation is applied to the encoded message to recover the message and verify the correctness of the decryption.

To avoid implementation weaknesses related to the way errors are handled within the decoding operation (see [BLEICHENBACHER] and [MANGER]), the encoding and decoding operations for RSAES-OAEP and RSAES-PKCS1-v1_5 are embedded in the specifications of the respective encryption schemes rather than defined in separate specifications. Both encryption schemes are compatible with the corresponding schemes in PKCS #1 v2.1.

7.1. RSAES-OAEP

RSAES-OAEP combines the RSAEP and RSADP primitives (Sections 5.1.1 and 5.1.2) with the EME-OAEP encoding method (step 2 in Section 7.1.1 and step 3 in Section 7.1.2). EME-OAEP is based on Bellare and Rogaway's Optimal Asymmetric Encryption scheme [OAEP]. (OAEP stands for "Optimal Asymmetric Encryption Padding"). It is compatible with the IFES scheme defined in IEEE 1363-2000 [IEEE1363], where the encryption and decryption primitives are IFEP-RSA and IFDP-RSA and the message encoding method is EME-OAEP. RSAES-OAEP can operate on messages of length up to k - 2hLen -2 octets, where hLen is the length of the output from the underlying hash function and k is the length in octets of the recipient's RSA modulus.

Assuming that computing e-th roots modulo n is infeasible and the mask generation function in RSAES-OAEP has appropriate properties, RSAES-OAEP is semantically secure against adaptive chosen-ciphertext attacks. This assurance is provable in the sense that the difficulty of breaking RSAES-OAEP can be directly related to the difficulty of inverting the RSA function, provided that the mask generation function is viewed as a black box or random oracle; see [FOPS] and the note below for further discussion.

Both the encryption and the decryption operations of RSAES-OAEP take the value of a label L as input. In this version of PKCS #1, L is the empty string; other uses of the label are outside the scope of this document. See Appendix A.2.1 for the relevant ASN.1 syntax.

RSAES-OAEP is parameterized by the choice of hash function and mask generation function. This choice should be fixed for a given RSA key. Suggested hash and mask generation functions are given in Appendix B.

Note. Past results have helpfully clarified the security properties of the OAEP encoding method [OAEP] (roughly the procedure described in step 2 in Section 7.1.1). The background is as follows. In 1994, Bellare and Rogaway [OAEP] introduced a security concept that they denoted plaintext awareness (PA94). They proved that if a deterministic public-key encryption primitive (e.g., RSAEP) is hard to invert without the private key, then the corresponding OAEP-based encryption scheme is plaintext-aware (in the random oracle model), meaning roughly that an adversary cannot produce a valid ciphertext without actually "knowing"the underlying plaintext. Plaintext awareness of an encryption scheme is closely related to the resistance of the scheme against chosen-ciphertext attacks. In such attacks, an adversary is given the opportunity to send queries to an oracle simulating the decryption primitive. Using the results of these queries, the adversary attempts to decrypt a challenge ciphertext.

However, there are two flavors of chosen-ciphertext attacks, and PA94 implies security against only one of them. The difference relies on what the adversary is allowed to do after she is given the challenge ciphertext. The indifferent attack scenario (denoted CCA1) does not admit any queries to the decryption oracle after the adversary is given the challenge ciphertext, whereas the adaptive scenario (denoted CCA2) does (except that the decryption oracle refuses to decrypt the challenge ciphertext once it is published). In 1998, Bellare and Rogaway, together with Desai and Pointcheval [PA98], came up with a new, stronger notion of plaintext awareness (PA98) that does imply security against CCA2.

To summarize, there have been two potential sources for misconception: that PA94 and PA98 are equivalent concepts; or that CCA1 and CCA2 are equivalent concepts. Either assumption leads to the conclusion that the Bellare-Rogaway paper implies security of OAEP against CCA2, which it does not.

(Footnote: It might be fair to mention that PKCS #1 v2.0 cites [OAEP] and claims that "a chosen ciphertext attack is ineffective against a plaintext-aware encryption scheme such as RSAES-OAEP" without specifying the kind of plaintext awareness or chosen ciphertext attack considered.)

OAEP has never been proven secure against CCA2; in fact, Victor Shoup [SHOUP] has demonstrated that such a proof does not exist in the general case. Put briefly, Shoup showed that an adversary in the CCA2 scenario who knows how to partially invert the encryption primitive but does not know how to invert it completely may well be able to break the scheme. For example, one may imagine an attacker who is able to break RSAES-OAEP if she knows how to recover all but the first 20 bytes of a random integer encrypted with RSAEP. Such an attacker does not need to be able to fully invert RSAEP, because she does not use the first 20 octets in her attack.

Still, RSAES-OAEP is secure against CCA2, which was proved by Fujisaki, Okamoto, Pointcheval, and Stern [FOPS] shortly after the announcement of Shoup's result. Using clever lattice reduction techniques, they managed to show how to invert RSAEP completely given a sufficiently large part of the pre-image. This observation, combined with a proof that OAEP is secure against CCA2 if the underlying encryption primitive is hard to partially invert, fills the gap between what Bellare and Rogaway proved about RSAES-OAEP and what some may have believed that they proved. Somewhat paradoxically, we are hence saved by an ostensible weakness in RSAEP (i.e., the whole inverse can be deduced from parts of it).

Unfortunately however, the security reduction is not efficient for concrete parameters. While the proof successfully relates an adversary A against the CCA2 security of RSAES-OAEP to an algorithm I inverting RSA, the probability of success for I is only approximately \epsilon^2 / 2^18, where \epsilon is the probability of success for A.

(Footnote: In [FOPS] the probability of success for the inverter was \epsilon^2 / 4. The additional factor 1 / 2^16 is due to the eight fixed zero bits at the beginning of the encoded message EM, which are not present in the variant of OAEP considered in [FOPS] (I must apply A twice to invert RSA, and each application corresponds to a factor 1 / 2^8).)

In addition, the running time for I is approximately t^2, where t is the running time of the adversary. The consequence is that we cannot exclude the possibility that attacking RSAES-OAEP is considerably easier than inverting RSA for concrete parameters. Still, the existence of a security proof provides some assurance that the RSAES-OAEP construction is sounder than ad hoc constructions such as RSAES-PKCS1-v1_5.

Hybrid encryption schemes based on the RSA-KEM key encapsulation paradigm offer tight proofs of security directly applicable to concrete parameters; see [ISO18033] for discussion. Future versions of PKCS #1 may specify schemes based on this paradigm.

7.1.1. Encryption operation

   Hash     hash function (hLen denotes the length in octets of the hash
            function output)
   MGF      mask generation function
   (n, e)   recipient's RSA public key (k denotes the length in octets
            of the RSA modulus n)
   M        message to be encrypted, an octet string of length mLen,
            where mLen <= k - 2hLen - 2
   L        optional label to be associated with the message; the
            default value for L, if L is not provided, is the empty
            string
   C        ciphertext, an octet string of length k

RSAES-OAEP-ENCRYPT ((n, e), M, L)

Options:
Input:
Output:
Errors:
"message too long"; "label too long"
Assumption:
RSA public key (n, e) is valid
Steps:
  1. Length checking:
    1. If the length of L is greater than the input limitation for the hash function (2^61 - 1 octets for SHA-1), output "label too long" and stop.
    2. If mLen > k - 2hLen - 2, output "message too long" and stop.

  2. EME-OAEP encoding (see Figure 1 below):
    1. If the label L is not provided, let L be the empty string. Let lHash = Hash(L), an octet string of length hLen (see the note below).
    2. Generate an octet string PS consisting of k - mLen - 2hLen - 2 zero octets. The length of PS may be zero.
    3. Concatenate lHash, PS, a single octet with hexadecimal value 0x01, and the message M to form a data block DB of length k - hLen - 1 octets as
      • DB = lHash || PS || 0x01 || M.

    4. Generate a random octet string seed of length hLen.
    5. Let dbMask = MGF(seed, k - hLen - 1).
    6. Let maskedDB = DB \xor dbMask.
    7. Let seedMask = MGF(maskedDB, hLen).
    8. Let maskedSeed = seed \xor seedMask.
    9. Concatenate a single octet with hexadecimal value 0x00, maskedSeed, and maskedDB to form an encoded message EM of length k octets as
      • EM = 0x00 || maskedSeed || maskedDB.

  3. RSA encryption:
    1. Convert the encoded message EM to an integer message representative m (see Section 4.2):
      • m = OS2IP (EM).

    2. Apply the RSAEP encryption primitive (Section 5.1.1) to the RSA public key (n, e) and the message representative m to produce an integer ciphertext representative c:
      • c = RSAEP ((n, e), m).

    3. Convert the ciphertext representative c to a ciphertext C of length k octets (see Section 4.1):
      • C = I2OSP (c, k).

  4. Output the ciphertext C.

   _________________________________________________________________

                             +----------+------+--+-------+
                        DB = |  lHash   |  PS  |01|   M   |
                             +----------+------+--+-------+
                                            |
                  +----------+              |
                  |   seed   |              |
                  +----------+              |
                        |                   |
                        |-------> MGF ---> xor
                        |                   |
               +--+     V                   |
               |00|    xor <----- MGF <-----|
               +--+     |                   |
                 |      |                   |
                 V      V                   V
               +--+----------+----------------------------+
         EM =  |00|maskedSeed|          maskedDB          |
               +--+----------+----------------------------+
   _________________________________________________________________

Figure 1: EME-OAEP encoding operation. lHash is the hash of the optional label L. Decoding operation follows reverse steps to recover M and verify lHash and PS.

Note. If L is the empty string, the corresponding hash value lHash has the following hexadecimal representation for different choices of Hash:

   SHA-1:   (0x)da39a3ee 5e6b4b0d 3255bfef 95601890 afd80709
   SHA-256: (0x)e3b0c442 98fc1c14 9afbf4c8 996fb924 27ae41e4 649b934c
                a495991b 7852b855
   SHA-384: (0x)38b060a7 51ac9638 4cd9327e b1b1e36a 21fdb711 14be0743
                4c0cc7bf 63f6e1da 274edebf e76f65fb d51ad2f1 4898b95b
   SHA-512: (0x)cf83e135 7eefb8bd f1542850 d66d8007 d620e405 0b5715dc
                83f4a921 d36ce9ce 47d0d13c 5d85f2b0 ff8318d2 877eec2f
                63b931bd 47417a81 a538327a f927da3e

7.1.2. Decryption operation

   Hash     hash function (hLen denotes the length in octets of the hash
            function output)
   MGF      mask generation function
   K        recipient's RSA private key (k denotes the length in octets
            of the RSA modulus n)
   C        ciphertext to be decrypted, an octet string of length k,
            where k = 2hLen + 2
   L        optional label whose association with the message is to be
            verified; the default value for L, if L is not provided, is
            the empty string
   M        message, an octet string of length mLen, where mLen <= k -
            2hLen - 2

RSAES-OAEP-DECRYPT (K, C, L)

Options:
Input:
Output:
Error:
"decryption error"
Steps:
  1. Length checking:
    1. If the length of L is greater than the input limitation for the hash function (2^61 - 1 octets for SHA-1), output "decryption error" and stop.
    2. If the length of the ciphertext C is not k octets, output "decryption error" and stop.
    3. If k < 2hLen + 2, output "decryption error" and stop.

  2. RSA decryption:
    1. Convert the ciphertext C to an integer ciphertext representative c (see Section 4.2):
      • c = OS2IP (C).

    2. Apply the RSADP decryption primitive (Section 5.1.2) to the RSA private key K and the ciphertext representative c to produce an integer message representative m:
      • m = RSADP (K, c).

      If RSADP outputs "ciphertext representative out of range" (meaning that c >= n), output "decryption error" and stop.

    3. Convert the message representative m to an encoded message EM of length k octets (see Section 4.1):
      • EM = I2OSP (m, k).

  3. EME-OAEP decoding:
    1. If the label L is not provided, let L be the empty string. Let lHash = Hash(L), an octet string of length hLen (see the note in Section 7.1.1).
    2. Separate the encoded message EM into a single octet Y, an octet string maskedSeed of length hLen, and an octet string maskedDB of length k - hLen - 1 as
      • EM = Y || maskedSeed || maskedDB.

    3. Let seedMask = MGF(maskedDB, hLen).
    4. Let seed = maskedSeed \xor seedMask.
    5. Let dbMask = MGF(seed, k - hLen - 1).
    6. Let DB = maskedDB \xor dbMask.
    7. Separate DB into an octet string lHash' of length hLen, a (possibly empty) padding string PS consisting of octets with hexadecimal value 0x00, and a message M as
      • DB = lHash' || PS || 0x01 || M.

      If there is no octet with hexadecimal value 0x01 to separate PS from M, if lHash does not equal lHash', or if Y is nonzero, output "decryption error" and stop. (See the note below.)

  4. Output the message M.

Note. Care must be taken to ensure that an opponent cannot distinguish the different error conditions in Step 3.g, whether by error message or timing, or, more generally, learn partial information about the encoded message EM. Otherwise an opponent may be able to obtain useful information about the decryption of the ciphertext C, leading to a chosen-ciphertext attack such as the one observed by Manger

[MANGER].

7.2. RSAES-PKCS1-v1_5

RSAES-PKCS1-v1_5 combines the RSAEP and RSADP primitives (Sections 5.1.1 and 5.1.2) with the EME-PKCS1-v1_5 encoding method (step 1 in Section 7.2.1 and step 3 in Section 7.2.2). It is mathematically equivalent to the encryption scheme in PKCS #1 v1.5. RSAES-PKCS1- v1_5 can operate on messages of length up to k - 11 octets (k is the octet length of the RSA modulus), although care should be taken to avoid certain attacks on low-exponent RSA due to Coppersmith, Franklin, Patarin, and Reiter when long messages are encrypted (see the third bullet in the notes below and [LOWEXP]; [NEWATTACK] contains an improved attack). As a general rule, the use of this scheme for encrypting an arbitrary message, as opposed to a randomly generated key, is NOT RECOMMENDED.

It is possible to generate valid RSAES-PKCS1-v1_5 ciphertexts without knowing the corresponding plaintexts, with a reasonable probability of success. This ability can be exploited in a chosen- ciphertext attack as shown in [BLEICHENBACHER]. Therefore, if RSAES-PKCS1-v1_5 is to be used, certain easily implemented countermeasures should be taken to thwart the attack found in [BLEICHENBACHER]. Typical examples include the addition of structure to the data to be encoded, rigorous checking of PKCS #1 v1.5 conformance (and other redundancy) in decrypted messages, and the consolidation of error messages in a client-server protocol based on PKCS #1 v1.5. These can all be effective countermeasures and do not involve changes to a PKCS #1 v1.5-based protocol. See [BKS] for a further discussion of these and other countermeasures. It has recently been shown that the security of the SSL/TLS handshake protocol [RFC5246], which uses RSAES-PKCS1-v1_5 and certain countermeasures, can be related to a variant of the RSA problem; see [RSATLS] for discussion.

Note. The following passages describe some security recommendations pertaining to the use of RSAES-PKCS1-v1_5. Recommendations from version 1.5 of this document are included as well as new recommendations motivated by cryptanalytic advances made in the intervening years.

7.2.1. Encryption operation

   (n, e)   recipient's RSA public key (k denotes the length in octets
            of the modulus n)
   M        message to be encrypted, an octet string of length mLen,
            where mLen <= k - 11
   C        ciphertext, an octet string of length k

RSAES-PKCS1-V1_5-ENCRYPT ((n, e), M)

Input:
Output:
Error:
"message too long"
Steps:
  1. Length checking: If mLen > k - 11, output "message too long" and stop.
  2. EME-PKCS1-v1_5 encoding:
    1. Generate an octet string PS of length k - mLen - 3 consisting of pseudo-randomly generated nonzero octets. The length of PS will be at least eight octets.
    2. Concatenate PS, the message M, and other padding to form an encoded message EM of length k octets as
      • EM = 0x00 || 0x02 || PS || 0x00 || M.

  3. RSA encryption:
    1. Convert the encoded message EM to an integer message representative m (see Section 4.2):
      • m = OS2IP (EM).

    2. Apply the RSAEP encryption primitive (Section 5.1.1) to the RSA public key (n, e) and the message representative m to produce an integer ciphertext representative c:
      • c = RSAEP ((n, e), m).

    3. Convert the ciphertext representative c to a ciphertext C of length k octets (see Section 4.1):
      • C = I2OSP (c, k).

  4. Output the ciphertext C.

7.2.2. Decryption Operation

   K        recipient's RSA private key
   C        ciphertext to be decrypted, an octet string of length k,
            where k is the length in octets of the RSA modulus n
   M        message, an octet string of length at most k - 11

RSAES-PKCS1-V1_5-DECRYPT (K, C)

Input:
Output:
Error:
"decryption error"
Steps:
  1. Length checking: If the length of the ciphertext C is not k octets (or if k < 11), output "decryption error" and stop.
  2. RSA decryption:
    1. Convert the ciphertext C to an integer ciphertext representative c (see Section 4.2):
      • c = OS2IP (C).

    2. Apply the RSADP decryption primitive (Section 5.1.2) to the RSA private key (n, d) and the ciphertext representative c to produce an integer message representative m:
      • m = RSADP ((n, d), c).

      If RSADP outputs "ciphertext representative out of range" (meaning that c >= n), output "decryption error" and stop.

    3. Convert the message representative m to an encoded message EM of length k octets (see Section 4.1):
      • EM = I2OSP (m, k).

  3. EME-PKCS1-v1_5 decoding: Separate the encoded message EM into an octet string PS consisting of nonzero octets and a message M as
    • EM = 0x00 || 0x02 || PS || 0x00 || M.

    If the first octet of EM does not have hexadecimal value 0x00, if the second octet of EM does not have hexadecimal value 0x02, if there is no octet with hexadecimal value 0x00 to separate PS from M, or if the length of PS is less than 8 octets, output "decryption error" and stop. (See the note below.)

  4. Output M.

Note. Care shall be taken to ensure that an opponent cannot distinguish the different error conditions in Step 3, whether by error message or timing. Otherwise an opponent may be able to obtain useful information about the decryption of the ciphertext C, leading to a strengthened version of Bleichenbacher's attack

[BLEICHENBACHER]; compare to Manger's attack [MANGER].

8. Signature scheme with appendix

For the purposes of this document, a signature scheme with appendix consists of a signature generation operation and a signature verification operation, where the signature generation operation produces a signature from a message with a signer's RSA private key, and the signature verification operation verifies the signature on the message with the signer's corresponding RSA public key. To verify a signature constructed with this type of scheme it is necessary to have the message itself. In this way, signature schemes with appendix are distinguished from signature schemes with message recovery, which are not supported in this document.

A signature scheme with appendix can be employed in a variety of applications. For instance, the signature schemes with appendix defined here would be suitable signature algorithms for X.509 certificates [ISO9594]. Related signature schemes could be employed in PKCS #7 [RFC2315], although for technical reasons the current version of PKCS #7 separates a hash function from a signature scheme, which is different than what is done here; see the note in Appendix A.2.3 for more discussion.

Two signature schemes with appendix are specified in this document: RSASSA-PSS and RSASSA-PKCS1-v1_5. Although no attacks are known against RSASSA-PKCS1-v1_5, in the interest of increased robustness, RSASSA-PSS is REQUIRED in new applications. RSASSA-PKCS1-v1_5 is included only for compatibility with existing applications.

The signature schemes with appendix given here follow a general model similar to that employed in IEEE 1363-2000 [IEEE1363], combining signature and verification primitives with an encoding method for signatures. The signature generation operations apply a message encoding operation to a message to produce an encoded message, which is then converted to an integer message representative. A signature primitive is applied to the message representative to produce the signature. Reversing this, the signature verification operations apply a signature verification primitive to the signature to recover a message representative, which is then converted to an octet string encoded message. A verification operation is applied to the message and the encoded message to determine whether they are consistent.

If the encoding method is deterministic (e.g., EMSA-PKCS1-v1_5), the verification operation may apply the message encoding operation to the message and compare the resulting encoded message to the previously derived encoded message. If there is a match, the signature is considered valid. If the method is randomized (e.g., EMSA-PSS), the verification operation is typically more complicated. For example, the verification operation in EMSA-PSS extracts the random salt and a hash output from the encoded message and checks whether the hash output, the salt, and the message are consistent; the hash output is a deterministic function in terms of the message and the salt. For both signature schemes with appendix defined in this document, the signature generation and signature verification operations are readily implemented as "single-pass" operations if the signature is placed after the message. See PKCS #7 [RFC2315] for an example format in the case of RSASSA-PKCS1-v1_5.

8.1. RSASSA-PSS

RSASSA-PSS combines the RSASP1 and RSAVP1 primitives with the EMSA-PSS encoding method. It is compatible with the IFSSA scheme as amended in the IEEE 1363a-2004 [IEEE1363A], where the signature and verification primitives are IFSP-RSA1 and IFVP-RSA1 as defined in IEEE 1363-2000 [IEEE1363] and the message encoding method is EMSA4. EMSA4 is slightly more general than EMSA-PSS as it acts on bit strings rather than on octet strings. EMSA-PSS is equivalent to EMSA4 restricted to the case that the operands as well as the hash and salt values are octet strings.

The length of messages on which RSASSA-PSS can operate is either unrestricted or constrained by a very large number, depending on the hash function underlying the EMSA-PSS encoding method.

Assuming that computing e-th roots modulo n is infeasible and the hash and mask generation functions in EMSA-PSS have appropriate properties, RSASSA-PSS provides secure signatures. This assurance is provable in the sense that the difficulty of forging signatures can be directly related to the difficulty of inverting the RSA function, provided that the hash and mask generation functions are viewed as black boxes or random oracles. The bounds in the security proof are essentially "tight", meaning that the success probability and running time for the best forger against RSASSA-PSS are very close to the corresponding parameters for the best RSA inversion algorithm; see [RSARABIN][PSSPROOF][JONSSON] for further discussion.

In contrast to the RSASSA-PKCS1-v1_5 signature scheme, a hash function identifier is not embedded in the EMSA-PSS encoded message, so in theory it is possible for an adversary to substitute a different (and potentially weaker) hash function than the one selected by the signer. Therefore, it is RECOMMENDED that the EMSA-PSS mask generation function be based on the same hash function. In this manner the entire encoded message will be dependent on the hash function and it will be difficult for an opponent to substitute a different hash function than the one intended by the signer. This matching of hash functions is only for the purpose of preventing hash function substitution, and is not necessary if hash function substitution is addressed by other means (e.g., the verifier accepts only a designated hash function). See [HASHID] for further discussion of these points. The provable security of RSASSA-PSS does not rely on the hash function in the mask generation function being the same as the hash function applied to the message.

RSASSA-PSS is different from other RSA-based signature schemes in that it is probabilistic rather than deterministic, incorporating a randomly generated salt value. The salt value enhances the security of the scheme by affording a "tighter" security proof than deterministic alternatives such as Full Domain Hashing (FDH); see [RSARABIN] for discussion. However, the randomness is not critical to security. In situations where random generation is not possible, a fixed value or a sequence number could be employed instead, with the resulting provable security similar to that of FDH [FDH].

8.1.1. Signature generation operation

   K        signer's RSA private key
   M        message to be signed, an octet string
   S        signature, an octet string of length k, where k is the
            length in octets of the RSA modulus n

RSASSA-PSS-SIGN (K, M)

Input:
Output:
Errors:
"message too long;" "encoding error"
Steps:
  1. EMSA-PSS encoding: Apply the EMSA-PSS encoding operation (Section 9.1.1) to the message M to produce an encoded message EM of length \ceil ((modBits - 1)/8) octets such that the bit length of the integer OS2IP (EM) (see Section 4.2) is at most modBits - 1, where modBits is the length in bits of the RSA modulus n:
    • EM = EMSA-PSS-ENCODE (M, modBits - 1).

    Note that the octet length of EM will be one less than k if modBits - 1 is divisible by 8 and equal to k otherwise. If the encoding operation outputs "message too long," output "message too long" and stop. If the encoding operation outputs "encoding error," output "encoding error" and stop.

  2. RSA signature:
    1. Convert the encoded message EM to an integer message representative m (see Section 4.2):
      • m = OS2IP (EM).

    2. Apply the RSASP1 signature primitive (Section 5.2.1) to the RSA private key K and the message representative m to produce an integer signature representative s:
      • s = RSASP1 (K, m).

    3. Convert the signature representative s to a signature S of length k octets (see Section 4.1):
      • S = I2OSP (s, k).

  3. Output the signature S.

8.1.2. Signature verification operation

   (n, e)   signer's RSA public key
   M        message whose signature is to be verified, an octet string
   S        signature to be verified, an octet string of length k, where
            k is the length in octets of the RSA modulus n

RSASSA-PSS-VERIFY ((n, e), M, S)

Input:
Output:
"valid signature" or "invalid signature"
Steps:
  1. Length checking: If the length of the signature S is not k octets, output "invalid signature" and stop.
  2. RSA verification:
    1. Convert the signature S to an integer signature representative s (see Section 4.2):
      • s = OS2IP (S).

    2. Apply the RSAVP1 verification primitive (Section 5.2.2) to the RSA public key (n, e) and the signature representative s to produce an integer message representative m:
      • m = RSAVP1 ((n, e), s).

      If RSAVP1 output "signature representative out of range," output "invalid signature" and stop.

    3. Convert the message representative m to an encoded message EM of length emLen = \ceil ((modBits - 1)/8) octets, where modBits is the length in bits of the RSA modulus n (see Section 4.1):
      • EM = I2OSP (m, emLen).

      Note that emLen will be one less than k if modBits - 1 is divisible by 8 and equal to k otherwise. If I2OSP outputs "integer too large," output "invalid signature" and stop.

  3. EMSA-PSS verification: Apply the EMSA-PSS verification operation (Section 9.1.2) to the message M and the encoded message EM to determine whether they are consistent:
    • Result = EMSA-PSS-VERIFY (M, EM, modBits - 1).

  4. If Result = "consistent," output "valid signature." Otherwise, output "invalid signature."

8.2. RSASSA-PKCS1-v1_5

RSASSA-PKCS1-v1_5 combines the RSASP1 and RSAVP1 primitives with the EMSA-PKCS1-v1_5 encoding method. It is compatible with the IFSSA scheme defined in IEEE 1363-2000 [IEEE1363], where the signature and verification primitives are IFSP-RSA1 and IFVP-RSA1 and the message encoding method is EMSA-PKCS1-v1_5 (which is not defined in IEEE 1363-2000, but is in the IEEE 1363a-2004 [IEEE1363A]).

The length of messages on which RSASSA-PKCS1-v1_5 can operate is either unrestricted or constrained by a very large number, depending on the hash function underlying the EMSA-PKCS1-v1_5 method.

Assuming that computing e-th roots modulo n is infeasible and the hash function in EMSA-PKCS1-v1_5 has appropriate properties, RSASSA-PKCS1-v1_5 is conjectured to provide secure signatures. More precisely, forging signatures without knowing the RSA private key is conjectured to be computationally infeasible. Also, in the encoding method EMSA-PKCS1-v1_5, a hash function identifier is embedded in the encoding. Because of this feature, an adversary trying to find a message with the same signature as a previously signed message must find collisions of the particular hash function being used; attacking a different hash function than the one selected by the signer is not useful to the adversary. See [HASHID] for further discussion.

Note: As noted in PKCS #1 v1.5, the EMSA-PKCS1-v1_5 encoding method has the property that the encoded message, converted to an integer message representative, is guaranteed to be large and at least somewhat "random". This prevents attacks of the kind proposed by Desmedt and Odlyzko [CHOSEN] where multiplicative relationships between message representatives are developed by factoring the message representatives into a set of small values (e.g., a set of small primes). Coron, Naccache, and Stern [PADDING] showed that a stronger form of this type of attack could be quite effective against some instances of the ISO/IEC 9796-2 signature scheme. They also analyzed the complexity of this type of attack against the EMSA-PKCS1-v1_5 encoding method and concluded that an attack would be impractical, requiring more operations than a collision search on the underlying hash function (i.e., more than 2^80 operations). Coppersmith, Halevi, and Jutla [FORGERY] subsequently extended Coron et al.'s attack to break the ISO/IEC 9796-1 signature scheme with message recovery. The various attacks illustrate the importance of carefully constructing the input to the RSA signature primitive, particularly in a signature scheme with message recovery. Accordingly, the EMSA-PKCS-v1_5 encoding method explicitly includes a hash operation and is not intended for signature schemes with message recovery. Moreover, while no attack is known against the EMSA-PKCS-v1_5 encoding method, a gradual transition to EMSA-PSS is recommended as a precaution against future developments.

8.2.1. Signature generation operation

   K        signer's RSA private key
   M        message to be signed, an octet string
   S        signature, an octet string of length k, where k is the
            length in octets of the RSA modulus n

RSASSA-PKCS1-V1_5-SIGN (K, M)

Input:
Output:
Errors:
"message too long"; "RSA modulus too short"
Steps:
  1. EMSA-PKCS1-v1_5 encoding: Apply the EMSA-PKCS1-v1_5 encoding operation (Section 9.2) to the message M to produce an encoded message EM of length k octets:
    • EM = EMSA-PKCS1-V1_5-ENCODE (M, k).

    If the encoding operation outputs "message too long," output "message too long" and stop. If the encoding operation outputs "intended encoded message length too short," output "RSA modulus too short" and stop.

  2. RSA signature:
    1. Convert the encoded message EM to an integer message representative m (see Section 4.2):
      • m = OS2IP (EM).

    2. Apply the RSASP1 signature primitive (Section 5.2.1) to the RSA private key K and the message representative m to produce an integer signature representative s:
      • s = RSASP1 (K, m).

    3. Convert the signature representative s to a signature S of length k octets (see Section 4.1):
      • S = I2OSP (s, k).

  3. Output the signature S.

8.2.2. Signature verification operation

   (n, e)   signer's RSA public key
   M        message whose signature is to be verified, an octet string
   S        signature to be verified, an octet string of length k, where
            k is the length in octets of the RSA modulus n

RSASSA-PKCS1-V1_5-VERIFY ((n, e), M, S)

Input:
Output
"valid signature" or "invalid signature"
Errors:
"message too long"; "RSA modulus too short"
Steps:
  1. Length checking: If the length of the signature S is not k octets, output "invalid signature" and stop.
  2. RSA verification:
    1. Convert the signature S to an integer signature representative s (see Section 4.2):
      • s = OS2IP (S).

    2. Apply the RSAVP1 verification primitive (Section 5.2.2) to the RSA public key (n, e) and the signature representative s to produce an integer message representative m:
      • m = RSAVP1 ((n, e), s).

      If RSAVP1 outputs "signature representative out of range," output "invalid signature" and stop.

    3. Convert the message representative m to an encoded message EM of length k octets (see Section 4.1):
      • EM' = I2OSP (m, k).

      If I2OSP outputs "integer too large," output "invalid signature" and stop.

  3. EMSA-PKCS1-v1_5 encoding: Apply the EMSA-PKCS1-v1_5 encoding operation (Section 9.2) to the message M to produce a second encoded message EM' of length k octets:
    • EM' = EMSA-PKCS1-V1_5-ENCODE (M, k).

    If the encoding operation outputs "message too long," output "message too long" and stop. If the encoding operation outputs "intended encoded message length too short," output "RSA modulus too short" and stop.

  4. Compare the encoded message EM and the second encoded message EM'. If they are the same, output "valid signature"; otherwise, output "invalid signature."

Note. Another way to implement the signature verification operation is to apply a "decoding" operation (not specified in this document) to the encoded message to recover the underlying hash value, and then to compare it to a newly computed hash value. This has the advantage that it requires less intermediate storage (two hash values rather than two encoded messages), but the disadvantage that it requires additional code.

9. Encoding methods for signatures with appendix

Encoding methods consist of operations that map between octet string messages and octet string encoded messages, which are converted to and from integer message representatives in the schemes. The integer message representatives are processed via the primitives. The encoding methods thus provide the connection between the schemes, which process messages, and the primitives.

An encoding method for signatures with appendix, for the purposes of this document, consists of an encoding operation and optionally a verification operation. An encoding operation maps a message M to an encoded message EM of a specified length. A verification operation determines whether a message M and an encoded message EM are consistent, i.e., whether the encoded message EM is a valid encoding of the message M.

The encoding operation may introduce some randomness, so that different applications of the encoding operation to the same message will produce different encoded messages, which has benefits for provable security. For such an encoding method, both an encoding and a verification operation are needed unless the verifier can reproduce the randomness (e.g., by obtaining the salt value from the signer). For a deterministic encoding method only an encoding operation is needed.

Two encoding methods for signatures with appendix are employed in the signature schemes and are specified here: EMSA-PSS and EMSA-PKCS1-v1_5.

9.1. EMSA-PSS

This encoding method is parameterized by the choice of hash function, mask generation function, and salt length. These options should be fixed for a given RSA key, except that the salt length can be variable (see [JONSSON] for discussion). Suggested hash and mask generation functions are given in Appendix B. The encoding method is based on Bellare and Rogaway's Probabilistic Signature Scheme (PSS) [RSARABIN][PSS]. It is randomized and has an encoding operation and a verification operation.

Figure 2 illustrates the encoding operation.

   __________________________________________________________________

                                  +-----------+
                                  |     M     |
                                  +-----------+
                                        |
                                        V
                                      Hash
                                        |
                                        V
                          +--------+----------+----------+
                     M' = |Padding1|  mHash   |   salt   |
                          +--------+----------+----------+
                                         |
               +--------+----------+     V
         DB =  |Padding2|   salt   |   Hash
               +--------+----------+     |
                         |               |
                         V               |
                        xor <--- MGF <---|
                         |               |
                         |               |
                         V               V
               +-------------------+----------+--+
         EM =  |    maskedDB       |     H    |bc|
               +-------------------+----------+--+
   __________________________________________________________________

Figure 2: EMSA-PSS encoding operation. Verification operation follows reverse steps to recover salt, then forward steps to recompute and compare H.

Notes.

  1. The encoding method defined here differs from the one in Bellare and Rogaway's submission to IEEE 1363a-2004 [PSS] in three respects:

  2. Assuming that the mask generation function is based on a hash function, it is RECOMMENDED that the hash function be the same as the one that is applied to the message; see Section 8.1 for further discussion.
  3. Without compromising the security proof for RSASSA-PSS, one may perform steps 1 and 2 of EMSA-PSS-ENCODE and EMSA-PSS-VERIFY (the application of the hash function to the message) outside the module that computes the rest of the signature operation, so that mHash rather than the message M itself is input to the module. In other words, the security proof for RSASSA-PSS still holds even if an opponent can control the value of mHash. This is convenient if the module has limited I/O bandwidth, e.g., a smart card. Note that previous versions of PSS [RSARABIN][PSS] did not have this property. Of course, it may be desirable for other security reasons to have the module process the full message. For instance, the module may need to "see" what it is signing if it does not trust the component that computes the hash value.
  4. Typical salt lengths in octets are hLen (the length of the output of the hash function Hash) and 0. In both cases the security of RSASSA-PSS can be closely related to the hardness of inverting RSAVP1. Bellare and Rogaway [RSARABIN] give a tight lower bound for the security of the original RSA-PSS scheme, which corresponds roughly to the former case, while Coron [FDH] gives a lower bound for the related Full Domain Hashing scheme, which corresponds roughly to the latter case. In [PSSPROOF] Coron provides a general treatment with various salt lengths ranging from 0 to hLen; see [IEEE1363A] for discussion. See also [JONSSON], which adapts the security proofs in [RSARABIN][PSSPROOF] to address the differences between the original and the present version of RSA-PSS as listed in Note 1 above.
  5. As noted in IEEE 1363a-2004 [IEEE1363A], the use of randomization in signature schemes -- such as the salt value in EMSA-PSS -- may provide a "covert channel" for transmitting information other than the message being signed. For more on covert channels, see [SIMMONS].

9.1.1. Encoding operation

   Hash     hash function (hLen denotes the length in octets of the hash
            function output)
   MGF      mask generation function
   sLen     intended length in octets of the salt
   M        message to be encoded, an octet string
   emBits   maximal bit length of the integer OS2IP (EM) (see Section
            4.2), at least 8hLen + 8sLen + 9
   EM       encoded message, an octet string of length emLen = \ceil
            (emBits/8)
        

EMSA-PSS-ENCODE (M, emBits)

Options:
Input:
Output:
Errors:
"Encoding error"; "message too long"
Steps:
  1. If the length of M is greater than the input limitation for the hash function (2^61 - 1 octets for SHA-1), output "message too long" and stop.
  2. Let mHash = Hash(M), an octet string of length hLen.
  3. If emLen < hLen + sLen + 2, output "encoding error" and stop.
  4. Generate a random octet string salt of length sLen; if sLen = 0, then salt is the empty string.
  5. Let
    • M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt;

    M' is an octet string of length 8 + hLen + sLen with eight initial zero octets.

  6. Let H = Hash(M'), an octet string of length hLen.
  7. Generate an octet string PS consisting of emLen - sLen - hLen - 2 zero octets. The length of PS may be 0.
  8. Let DB = PS || 0x01 || salt; DB is an octet string of length emLen - hLen - 1.
  9. Let dbMask = MGF(H, emLen - hLen - 1).
  10. Let maskedDB = DB \xor dbMask.
  11. Set the leftmost 8emLen - emBits bits of the leftmost octet in maskedDB to zero.
  12. Let EM = maskedDB || H || 0xbc.
  13. Output EM.

9.1.2. Verification operation

   Hash     hash function (hLen denotes the length in octets of the hash
            function output)
   MGF      mask generation function
   sLen     intended length in octets of the salt
        
   M        message to be verified, an octet string
   EM       encoded message, an octet string of length emLen = \ceil
            (emBits/8)
   emBits   maximal bit length of the integer OS2IP (EM) (see Section
            4.2), at least 8hLen + 8sLen + 9
      

EMSA-PSS-VERIFY (M, EM, emBits)

Options:
Input:
Output:
"consistent" or "inconsistent"
Steps:
  1. If the length of M is greater than the input limitation for the hash function (2^61 - 1 octets for SHA-1), output "inconsistent" and stop.
  2. Let mHash = Hash(M), an octet string of length hLen.
  3. If emLen < hLen + sLen + 2, output "inconsistent" and stop.
  4. If the rightmost octet of EM does not have hexadecimal value 0xbc, output "inconsistent" and stop.
  5. Let maskedDB be the leftmost emLen - hLen - 1 octets of EM, and let H be the next hLen octets.
  6. If the leftmost 8emLen - emBits bits of the leftmost octet in maskedDB are not all equal to zero, output "inconsistent" and stop.
  7. Let dbMask = MGF(H, emLen - hLen - 1).
  8. Let DB = maskedDB \xor dbMask.
  9. Set the leftmost 8emLen - emBits bits of the leftmost octet in DB to zero.
  10. If the emLen - hLen - sLen - 2 leftmost octets of DB are not zero or if the octet at position emLen - hLen - sLen - 1 (the leftmost position is "position 1") does not have hexadecimal value 0x01, output "inconsistent" and stop.
  11. Let salt be the last sLen octets of DB.
  12. Let
    • M' = (0x)00 00 00 00 00 00 00 00 || mHash || salt ;

    M' is an octet string of length 8 + hLen + sLen with eight initial zero octets.

  13. Let H' = Hash(M'), an octet string of length hLen.
  14. If H = H', output "consistent." Otherwise, output "inconsistent."

9.2. EMSA-PKCS1-v1_5

This encoding method is deterministic and only has an encoding operation.

   Hash     hash function (hLen denotes the length in octets of the hash
            function output)
   M        message to be encoded
   emLen    intended length in octets of the encoded message, at least
            tLen + 11, where tLen is the octet length of the DER
            encoding T of a certain value computed during the encoding
            operation
   EM       encoded message, an octet string of length emLen
            DigestInfo ::= SEQUENCE {
                digestAlgorithm AlgorithmIdentifier,
                digest OCTET STRING
            }
        
      MD2:     (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 02 05 00 04
                   10 || H.
      MD5:     (0x)30 20 30 0c 06 08 2a 86 48 86 f7 0d 02 05 05 00 04
                   10 || H.
      SHA-1:   (0x)30 21 30 09 06 05 2b 0e 03 02 1a 05 00 04 14 || H.
      SHA-256: (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 01 05 00
                   04 20 || H.
      SHA-384: (0x)30 41 30 0d 06 09 60 86 48 01 65 03 04 02 02 05 00
                   04 30 || H.
      SHA-512: (0x)30 51 30 0d 06 09 60 86 48 01 65 03 04 02 03 05 00
                   04 40 || H.
      SHA-512/224:  (0x)30 2d 30 0d 06 09 60 86 48 01 65 03 04 02 05
                        05 00 04 1c || H.
      SHA-512/256:  (0x)30 31 30 0d 06 09 60 86 48 01 65 03 04 02 06
                        05 00 04 20 || H.

EMSA-PKCS1-v1_5-ENCODE (M, emLen)

Option:
Input:
Output:
Errors:
"message too long"; "intended encoded message length too short"
Steps:
  1. Apply the hash function to the message M to produce a hash value H:
    • H = Hash(M).

    If the hash function outputs "message too long," output "message too long" and stop.

  2. Encode the algorithm ID for the hash function and the hash value into an ASN.1 value of type DigestInfo (see Appendix A.2.4) with the Distinguished Encoding Rules (DER), where the type DigestInfo has the syntax
  3. If emLen < tLen + 11, output "intended encoded message length too short" and stop.
  4. Generate an octet string PS consisting of emLen - tLen - 3 octets with hexadecimal value 0xff. The length of PS will be at least 8 octets.
  5. Concatenate PS, the DER encoding T, and other padding to form the encoded message EM as
    • EM = 0x00 || 0x01 || PS || 0x00 || T.

  6. Output EM.

Notes.

  1. For the six hash functions mentioned in Appendix B.1, the DER encoding T of the DigestInfo value is equal to the following:
  2. In version 1.5 of this document, T was defined as the BER encoding, rather than the DER encoding, of the DigestInfo value. In particular, it is possible - at least in theory - that the verification operation defined in this document (as well as in version 2.0) rejects a signature that is valid with respect to the specification given in PKCS #1 v1.5. This occurs if other rules than DER are applied to DigestInfo (e.g., an indefinite length encoding of the underlying SEQUENCE type). While this is unlikely to be a concern in practice, a cautious implementer may choose to employ a verification operation based on a BER decoding operation as specified in PKCS #1 v1.5. In this manner, compatibility with any valid implementation based on PKCS #1 v1.5 is obtained. Such a verification operation should indicate whether the underlying BER encoding is a DER encoding and hence whether the signature is valid with respect to the specification given in this document.

10. IANA Considerations

This memo includes no request to IANA.

11. Security Considerations

Security considerations are discussed throughout this memo.

12. References

12.1. Normative References

[GARNER] Garner, H., "The Residue Number System", IRE Transactions on Electronic Computers EC-8 (6), pp. 140-147, June 1959.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997.
[RSA] Rivest, R., Shamir, A. and L. Adleman, "A Method for Obtaining Digital Signatures and Public-Key Cryptosystems", Communications of the ACM 21 (2), pp. 120-126, February 1978.

12.2. Informative References

[ANSIX944] ANSI, "ANSI X9.44-2007: Key Extablishment Using Integer Factorization Cryptography", March 2002.
[BKS] Bleichenbacher, D., Kaliski, B. and J. Staddon, "Recent Results on PKCS #1: RSA Encryption Standard", RSA Laboratories' Bulletin No. 7, June 1998.
[BLEICHENBACHER] Bleichenbacher, D., "Chosen Ciphertext Attacks Against Protocols Based on the RSA Encryption Standard PKCS #1", Lecture Notes in Computer Science Volume 1462, pp. 1-12, 1998.
[CHOSEN] Desmedt, Y. and A. Odlyzko, "A Chosen Text Attack on the RSA Cryptosystem and Some Discrete Logarithm schemes", Lecture Notes in Computer Science Volume 218, pp. 516-522, 1986.
[COCHRAN] Cochran, M., "Notes on the Wang et al. 2^63 SHA-1 Differential Path", August 2008.
[FASTDEC] Quisquater, J. and C. Couvreur, "Fast Decipherment Algorithm for RSA Public-Key Cryptosystem", Electronics Letters 18 (21), pp 905-907, October 1982.
[FDH] Coron, J., "On the Exact Security of Full Domain Hashing", Lecture Notes in Computer Science Volume 1880, pp. 229-235, 2000.
[FOPS] Fujisaki, E., Okamoto, T., Pointcheval, D. and J. Stern, "RSA-OAEP is Secure under the RSA Assumption", Lecture Notes in Computer Science Volume 2139, pp. 260-274, 2001.
[FORGERY] Coppersmith, D., Halevi, S. and C. Jutla, "ISO 9796-1 and the New Forgery Strategy", August 1999.
[GRELL] Grell, M., "Re: Encoding Methods PSS/PSS-R", June 1999.
[HAASTAD] Haastad, J., "Solving Simultaneous Modular Equations of Low Degree", SIAM Journal of Computing Volume 17, pp. 336-341, 1998.
[HANDBOOK] Menezes, A., van Oorschot, P. and S. Vanstone, "Handbook of Applied Cryptography", 1996.
[HASHID] Kaliski, B., "On Hash Function Identification in Signature Schemes", Lecture Notes in Computer Science Volume 2271, pp. 1-16, 2002.
[IEEE1363] IEEE, "IEEE Std 1363-2000: Standard Specifications for Public Key Cryptography", August 2000.
[IEEE1363A] IEEE, "IEEE Std P1363a-2004: Standard Specifications for Public Key Cryptography: Additional Techniques", September 2004.
[ISO18033] ISO/IEC, "ISO/IEC 18033-2:2006: Information Technology - Security Techniques - Encryption Algorithms - Part 2: Asymmetric Ciphers", 2006.
[ISO9594] ISO/IEC, "ISO/IEC 9594-8:2008: Information technology - Open Systems Interconnection - The Directory: Authentication Framework", 2008.
[ISO9796] ISO/IEC, "ISO/IEC 9796-2:2010: Information technology - Security Techniques - Digital Signature Schemes Giving Message Recovery - Part 2: Integer Factorization Based Mechanisms", 2010.
[JONSSON] Jonsson, J., "Security Proofs for the RSA-PSS Signature Scheme and Its Variants", March 2002.
[LOWEXP] Coppersmith, D., Franklin, M., Patarin, J. and M. Reiter, "Low-Exponent RSA with Related Messages", Lecture Notes in Computer Science Volume 1070, pp. 1-9, 1996.
[MANGER] Manger, J., "A Chosen Ciphertext Attack on RSA Optimal Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 v2.0", Lecture Notes in Computer Science Volume 2139, pp. 260-274, 2001.
[MD4] Dobbertin, H., "Cryptanalysis of MD4", Lecture Notes in Computer Science Volume 1039, pp. 55-72, 1996.
[MD4FIRST] Dobbertin, H., "The First Two Rounds of MD4 are Not One-Way", Lecture Notes in Computer Science Volume 1372, pp. 284-292, 1998.
[MD4LAST] den Boer, B. and A. Bosselaers, "An Attack on the Last Two Rounds of MD4", Lecture Notes in Computer Science Volume 576, pp. 194-203, 1992.
[NEWATTACK] Coron, J., Joye, M., Naccache, D. and P. Paillier, "New Attacks on PKCS #1 v1.5 Encryption", Lecture Notes in Computer Science Volume 1807, pp. 369-379, 2000.
[OAEP] Bellare, M. and P. Rogaway, "Optimal Asymmetric Encryption - How to Encrypt with RSA", Lecture Notes in Computer Science Volume 950, pp. 92-111, 1996.
[PA98] Bellare, M., Desai, A., Pointcheval, D. and P. Rogaway, "Relations Among Notions of Security for Public-Key Encryption Schemes", Lecture Notes in Computer Science Volume 1462, pp. 26-45, 1998.
[PADDING] Coron, J., Naccache, D. and J. Stern, "On the Security of RSA Padding", Lecture Notes in Computer Science Volume 1666, pp. 1-18, 1999.
[PKCS1_21] RSA Laboratories, "PKCS #1v2.1: RSA Encryption Standard", June 2002.
[PREFIX] Stevens, M., Lenstra, A. and B. de Weger, "Chosen-prefix collisions for MD5 and applications", International Journal of Applied Cryptography Vol. 2, No. 4, pp. 322-359, July 2012.
[PSS] Bellare, M. and P. Rogaway, "PSS: Provably Secure Encoding Method for Digital Signatures", August 1998.
[PSSPROOF] Coron, J., "Optimal Security Proofs for PSS and Other Signature Schemes", Lecture Notes in Computer Science Volume 2332, pp. 272-287, 2002.
[RFC1319] Kaliski, B., "The MD2 Message-Digest Algorithm", RFC 1319, DOI 10.17487/RFC1319, April 1992.
[RFC1321] Rivest, R., "The MD5 Message-Digest Algorithm", RFC 1321, DOI 10.17487/RFC1321, April 1992.
[RFC2315] Kaliski, B., "PKCS #7: Cryptographic Message Syntax Version 1.5", RFC 2315, DOI 10.17487/RFC2315, March 1998.
[RFC2437] Kaliski, B. and J. Staddon, "PKCS #1: RSA Cryptography Specifications Version 2.0", RFC 2437, DOI 10.17487/RFC2437, October 1998.
[RFC5208] Kaliski, B., "Public-Key Cryptography Standards (PKCS) #8: Private-Key Information Syntax Specification Version 1.2", RFC 5208, DOI 10.17487/RFC5208, May 2008.
[RFC5246] Dierks, T. and E. Rescorla, "The Transport Layer Security (TLS) Protocol Version 1.2", RFC 5246, DOI 10.17487/RFC5246, August 2008.
[RFC5652] Housley, R., "Cryptographic Message Syntax (CMS)", STD 70, RFC 5652, DOI 10.17487/RFC5652, September 2009.
[RFC7292] Moriarty, K., Nystrom, M., Parkinson, S., Rusch, A. and M. Scott, "PKCS #12: Personal Information Exchange Syntax v1.1", RFC 7292, DOI 10.17487/RFC7292, July 2014.
[RSARABIN] Bellare, M. and P. Rogaway, "The Exact Security of Digital Signatures - How to Sign with RSA and Rabin", Lecture Notes in Computer Science Volume 1070, pp. 399-416, 1996.
[RSATLS] Jonsson, J. and B. Kaliski, "On the Security of RSA Encryption in TLS", Lecture Notes in Computer Science Volume 2442, pp. 127-142, 2002.
[SHA1CRYPT] Wang, X., Yao, A. and F. Yao, "Cryptanalysis on SHA-1", Lecture Notes in Computer Science Volume 2442, pp. 127-142, February 2005.
[SHOUP] Shoup, V., "OAEP Reconsidered", Lecture Notes in Computer Science Volume 2139, pp. 239-259, 2001.
[SHS] National Institute of Standards and Technology (NIST), "FIPS Publication 180-4: Secure hash Standard", March 2012.
[SILVERMAN] Silverman, R., "A Cost-Based Security Analysis of Symmetric and Asymmetric Key Lengths", RSA Laboratories Bulletin No. 13, 2000.
[SIMMONS] Simmons, G., "Subliminal Communication is Easy Using the DSA", Lecture Notes in Computer Science Volume 765, pp. 218-232, 1993.

Appendix A. ASN.1 syntax

A.1. RSA key representation

This section defines ASN.1 object identifiers for RSA public and private keys, and defines the types RSAPublicKey and RSAPrivateKey. The intended application of these definitions includes X.509 certificates, PKCS #8 [RFC5208], and PKCS #12 [RFC7292].

The object identifier rsaEncryption identifies RSA public and private keys as defined in Appendices A.1.1 and A.1.2. The parameters field associated with this OID in a value of type AlgorithmIdentifier SHALL have a value of type NULL.

   rsaEncryption    OBJECT IDENTIFIER ::= { pkcs-1 1 }

The definitions in this section have been extended to support multi- prime RSA, but are backward compatible with previous versions.

A.1.1. RSA public key syntax

An RSA public key should be represented with the ASN.1 type RSAPublicKey:

      RSAPublicKey ::= SEQUENCE {
          modulus           INTEGER,  -- n
          publicExponent    INTEGER   -- e
      }

The fields of type RSAPublicKey have the following meanings:

A.1.2. RSA private key syntax

An RSA private key should be represented with the ASN.1 type RSAPrivateKey:

      RSAPrivateKey ::= SEQUENCE {
          version           Version,
          modulus           INTEGER,  -- n
          publicExponent    INTEGER,  -- e
          privateExponent   INTEGER,  -- d
          prime1            INTEGER,  -- p
          prime2            INTEGER,  -- q
          exponent1         INTEGER,  -- d mod (p-1)
          exponent2         INTEGER,  -- d mod (q-1)
          coefficient       INTEGER,  -- (inverse of q) mod p
          otherPrimeInfos   OtherPrimeInfos OPTIONAL
      }

The fields of type RSAPrivateKey have the following meanings:

            Version ::= INTEGER { two-prime(0), multi(1) }
               (CONSTRAINED BY
               {-- version must be multi if otherPrimeInfos present --})

         OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo

         OtherPrimeInfo ::= SEQUENCE {
             prime             INTEGER,  -- ri
             exponent          INTEGER,  -- di
             coefficient       INTEGER   -- ti
         }

The fields of type OtherPrimeInfo have the following meanings:

Note. It is important to protect the RSA private key against both disclosure and modification. Techniques for such protection are outside the scope of this document. Methods for storing and distributing private keys and other cryptographic data are described in PKCS #12 and #15.

A.2. Scheme identification

This section defines object identifiers for the encryption and signature schemes. The schemes compatible with PKCS #1 v1.5 have the same definitions as in PKCS #1 v1.5. The intended application of these definitions includes X.509 certificates and PKCS #7.

Here are type identifier definitions for the PKCS #1 OIDs:

PKCS1Algorithms    ALGORITHM-IDENTIFIER ::= {
    { OID rsaEncryption                PARAMETERS NULL } |
    { OID md2WithRSAEncryption         PARAMETERS NULL } |
    { OID md5WithRSAEncryption         PARAMETERS NULL } |
    { OID sha1WithRSAEncryption        PARAMETERS NULL } |
    { OID sha224WithRSAEncryption      PARAMETERS NULL } |
    { OID sha256WithRSAEncryption      PARAMETERS NULL } |
    { OID sha384WithRSAEncryption      PARAMETERS NULL } |
    { OID sha512WithRSAEncryption      PARAMETERS NULL } |
    { OID sha512-224WithRSAEncryption  PARAMETERS NULL } |
    { OID sha512-256WithRSAEncryption  PARAMETERS NULL } |
    { OID id-RSAES-OAEP   PARAMETERS RSAES-OAEP-params } |
    PKCS1PSourceAlgorithms                               |
    { OID id-RSASSA-PSS   PARAMETERS RSASSA-PSS-params },
    ...  -- Allows for future expansion --
}

A.2.1. RSAES-OAEP

The object identifier id-RSAES-OAEP identifies the RSAES-OAEP encryption scheme.

    id-RSAES-OAEP    OBJECT IDENTIFIER ::= { pkcs-1 7 }

The parameters field associated with this OID in a value of type AlgorithmIdentifier SHALL have a value of type RSAES-OAEP-params:

    RSAES-OAEP-params ::= SEQUENCE {
        hashAlgorithm      [0] HashAlgorithm     DEFAULT sha1, 
        maskGenAlgorithm   [1] MaskGenAlgorithm  DEFAULT mgf1SHA1, 
        pSourceAlgorithm   [2] PSourceAlgorithm  DEFAULT pSpecifiedEmpty 
    }

The fields of type RSAES-OAEP-params have the following meanings:

    HashAlgorithm ::= AlgorithmIdentifier {
       {OAEP-PSSDigestAlgorithms} 
    }

    OAEP-PSSDigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
        { OID id-sha1       PARAMETERS NULL }|
        { OID id-sha224     PARAMETERS NULL }|
        { OID id-sha256     PARAMETERS NULL }|
        { OID id-sha384     PARAMETERS NULL }|
        { OID id-sha512     PARAMETERS NULL }|
        { OID id-sha512-224 PARAMETERS NULL }|
        { OID id-sha512-256 PARAMETERS NULL },
        ...  -- Allows for future expansion --
    }

The default hash function is SHA-1:

    sha1    HashAlgorithm ::= {
        algorithm   id-sha1, 
        parameters  SHA1Parameters : NULL
    }

    SHA1Parameters ::= NULL

    MaskGenAlgorithm ::= AlgorithmIdentifier { {PKCS1MGFAlgorithms} }

    PKCS1MGFAlgorithms    ALGORITHM-IDENTIFIER ::= {
        { OID id-mgf1 PARAMETERS HashAlgorithm }, 
        ...  -- Allows for future expansion --
    }

    mgf1SHA1    MaskGenAlgorithm ::= {
        algorithm   id-mgf1, 
        parameters  HashAlgorithm : sha1
    }
    PSourceAlgorithm ::= AlgorithmIdentifier {
       {PKCS1PSourceAlgorithms} 
    }

    PKCS1PSourceAlgorithms    ALGORITHM-IDENTIFIER ::= {
        { OID id-pSpecified PARAMETERS EncodingParameters }, 
        ...  -- Allows for future expansion --
    }

    id-pSpecified    OBJECT IDENTIFIER ::= { pkcs-1 9 }

    EncodingParameters ::= OCTET STRING(SIZE(0..MAX))
    pSpecifiedEmpty    PSourceAlgorithm ::= {
        algorithm   id-pSpecified, 
        parameters  EncodingParameters : emptyString
    }

    emptyString    EncodingParameters ::= ''H 

If all of the default values of the fields in RSAES-OAEP-params are used, then the algorithm identifier will have the following value:

    rSAES-OAEP-Default-Identifier    RSAES-AlgorithmIdentifier ::= {
        algorithm   id-RSAES-OAEP,
        parameters  RSAES-OAEP-params : {
            hashAlgorithm       sha1,
            maskGenAlgorithm    mgf1SHA1,
            pSourceAlgorithm    pSpecifiedEmpty
        }
    }

    RSAES-AlgorithmIdentifier ::= AlgorithmIdentifier  {
        {PKCS1Algorithms}
    }

A.2.2. RSAES-PKCS-v1_5

The object identifier rsaEncryption (see Appendix A.1) identifies the RSAES-PKCS1-v1_5 encryption scheme. The parameters field associated with this OID in a value of type AlgorithmIdentifier SHALL have a value of type NULL. This is the same as in PKCS #1 v1.5.

    rsaEncryption    OBJECT IDENTIFIER ::= { pkcs-1 1 }

A.2.3. RSASSA-PSS

The object identifier id-RSASSA-PSS identifies the RSASSA-PSS encryption scheme.

    id-RSASSA-PSS    OBJECT IDENTIFIER ::= { pkcs-1 10 }

The parameters field associated with this OID in a value of type AlgorithmIdentifier SHALL have a value of type RSASSA-PSS-params:

    RSASSA-PSS-params ::= SEQUENCE {
        hashAlgorithm      [0] HashAlgorithm      DEFAULT sha1, 
        maskGenAlgorithm   [1] MaskGenAlgorithm   DEFAULT mgf1SHA1, 
        saltLength         [2] INTEGER            DEFAULT 20,
        trailerField       [3] TrailerField       DEFAULT trailerFieldBC
    }

The fields of type RSASSA-PSS-params have the following meanings:

    TrailerField ::= INTEGER { trailerFieldBC(1) }

If the default values of the hashAlgorithm, maskGenAlgorithm, and trailerField fields of RSASSA-PSS-params are used, then the algorithm identifier will have the following value:

    rSASSA-PSS-Default-Identifier    RSASSA-AlgorithmIdentifier ::= {
        algorithm   id-RSASSA-PSS, 
        parameters  RSASSA-PSS-params : {
            hashAlgorithm       sha1,
            maskGenAlgorithm    mgf1SHA1,
            saltLength          20,
            trailerField        trailerFieldBC
        }
    }

    RSASSA-AlgorithmIdentifier ::= AlgorithmIdentifier { 
        {PKCS1Algorithms} 
    }

Note. In some applications, the hash function underlying a signature scheme is identified separately from the rest of the operations in the signature scheme. For instance, in PKCS #7 [RFC2315], a hash function identifier is placed before the message and a "digest encryption" algorithm identifier (indicating the rest of the operations) is carried with the signature. In order for PKCS #7 to support the RSASSA-PSS signature scheme, an object identifier would need to be defined for the operations in RSASSA-PSS after the hash function (analogous to the RSAEncryption OID for the RSASSA-PKCS1-v1_5 scheme). S/MIME CMS [RFC5652] takes a different approach. Although a hash function identifier is placed before the message, an algorithm identifier for the full signature scheme may be carried with a CMS signature (this is done for DSA signatures). Following this convention, the id-RSASSA-PSS OID can be used to identify RSASSA-PSS signatures in CMS. Since CMS is considered the successor to PKCS #7 and new developments such as the addition of support for RSASSA-PSS will be pursued with respect to CMS rather than PKCS #7, an OID for the "rest of" RSASSA-PSS is not defined in this version of PKCS #1.

A.2.4. RSASSA-PKCS-v1_5

The object identifier for RSASSA-PKCS1-v1_5 SHALL be one of the following. The choice of OID depends on the choice of hash algorithm: MD2, MD5, SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, or SHA-512/256. Note that if either MD2 or MD5 is used, then the OID is just as in PKCS #1 v1.5. For each OID, the parameters field associated with this OID in a value of type AlgorithmIdentifier SHALL have a value of type NULL. The OID should be chosen in accordance with the following table:

      Hash algorithm   OID
      ------------------------------------------------------------
      MD2              md2WithRSAEncryption        ::= {pkcs-1 2}
      MD5              md5WithRSAEncryption        ::= {pkcs-1 4}
      SHA-1            sha1WithRSAEncryption       ::= {pkcs-1 5}
      SHA-256          sha224WithRSAEncryption     ::= {pkcs-1 14}
      SHA-256          sha256WithRSAEncryption     ::= {pkcs-1 11}
      SHA-384          sha384WithRSAEncryption     ::= {pkcs-1 12}
      SHA-512          sha512WithRSAEncryption     ::= {pkcs-1 13}
      SHA-512/224      sha512-224WithRSAEncryption ::= {pkcs-1 15}
      SHA-512/256      sha512-256WithRSAEncryption ::= {pkcs-1 16}

The EMSA-PKCS1-v1_5 encoding method includes an ASN.1 value of type DigestInfo, where the type DigestInfo has the syntax

    DigestInfo ::= SEQUENCE {
        digestAlgorithm DigestAlgorithm,
        digest OCTET STRING 
    }

digestAlgorithm identifies the hash function and SHALL be an algorithm ID with an OID in the set PKCS1-v1-5DigestAlgorithms. For a discussion of supported hash functions, see Appendix B.1.

    DigestAlgorithm ::= AlgorithmIdentifier {
       {PKCS1-v1-5DigestAlgorithms} 
    }

    PKCS1-v1-5DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
        { OID id-md2        PARAMETERS NULL }|
        { OID id-md5        PARAMETERS NULL }|
        { OID id-sha1       PARAMETERS NULL }|
        { OID id-sha224     PARAMETERS NULL }|
        { OID id-sha256     PARAMETERS NULL }|
        { OID id-sha384     PARAMETERS NULL }|
        { OID id-sha512     PARAMETERS NULL }|
        { OID id-sha512-224 PARAMETERS NULL }|
        { OID id-sha512-256 PARAMETERS NULL }
    }

Appendix B. Supporting techniques

This section gives several examples of underlying functions supporting the encryption schemes in Section 7 and the encoding methods in Section 9. A range of techniques is given here to allow compatibility with existing applications as well as migration to new techniques. While these supporting techniques are appropriate for applications to implement, none of them is required to be implemented. It is expected that profiles for PKCS #1 v2.2 will be developed that specify particular supporting techniques.

This section also gives object identifiers for the supporting techniques.

B.1. Hash functions

Hash functions are used in the operations contained in Sections 7 and 9. Hash functions are deterministic, meaning that the output is completely determined by the input. Hash functions take octet strings of variable length, and generate fixed length octet strings. The hash functions used in the operations contained in Sections 7 and 9 should generally be collision-resistant. This means that it is infeasible to find two distinct inputs to the hash function that produce the same output. A collision-resistant hash function also has the desirable property of being one-way; this means that given an output, it is infeasible to find an input whose hash is the specified output. In addition to the requirements, the hash function should yield a mask generation function (Appendix B.2) with pseudorandom output.

Nine hash functions are given as examples for the encoding methods in this document: MD2 [RFC1319], MD5 [RFC1321], SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 [SHS]. For the RSAES-OAEP encryption scheme and EMSA-PSS encoding method, only SHA-1, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 are RECOMMENDED. For the EMSA-PKCS1-v1_5 encoding method, SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 are RECOMMENDED for new applications. MD2, MD5 and SHA-1 are recommended only for compatibility with existing applications based on PKCS #1 v1.5.

The object identifiers id-md2, id-md5, id-sha1, id-sha224, id-sha256, id-sha384, id-sha512, id-sha512/224, and id-sha512/256, identify the respective hash functions:

    
    id-md2      OBJECT IDENTIFIER ::= {
        iso (1) member-body (2) us (840) rsadsi (113549) 
        digestAlgorithm (2) 2
    }

    id-md5      OBJECT IDENTIFIER ::= {
        iso (1) member-body (2) us (840) rsadsi (113549) 
        digestAlgorithm (2) 5
    }

    id-sha1    OBJECT IDENTIFIER ::= {
        iso(1) identified-organization(3) oiw(14) secsig(3)
         algorithms(2) 26
    }

    id-sha224    OBJECT IDENTIFIER ::= {
        joint-iso-itu-t (2) country (16) us (840) organization (1) 
        gov (101) csor (3) nistalgorithm (4) hashalgs (2) 4
    }

    id-sha256    OBJECT IDENTIFIER ::= {
        joint-iso-itu-t (2) country (16) us (840) organization (1) 
        gov (101) csor (3) nistalgorithm (4) hashalgs (2) 1
    }

    id-sha384    OBJECT IDENTIFIER ::= {
        joint-iso-itu-t (2) country (16) us (840) organization (1) 
        gov (101) csor (3) nistalgorithm (4) hashalgs (2) 2
    }

    id-sha512    OBJECT IDENTIFIER ::= {
        joint-iso-itu-t (2) country (16) us (840) organization (1) 
        gov (101) csor (3) nistalgorithm (4) hashalgs (2) 3
    }

    id-sha512-224    OBJECT IDENTIFIER ::= {
        joint-iso-itu-t (2) country (16) us (840) organization (1) 
        gov (101) csor (3) nistalgorithm (4) hashalgs (2) 5
    }

    id-sha512-256    OBJECT IDENTIFIER ::= {
        joint-iso-itu-t (2) country (16) us (840) organization (1) 
        gov (101) csor (3) nistalgorithm (4) hashalgs (2) 6
    }

The parameters field associated with these OIDs in a value of type AlgorithmIdentifier SHALL have a value of type NULL.

The parameters field associated with id-md2 and id-md5 in a value of type AlgorithmIdentifier shall have a value of type NULL.

The parameters field associated with id-sha1, id-sha224, id-sha256, id-sha384, id-sha512, id-sha512/224, and id-sha512/256 should generally be omitted, but if present, shall have a value of type NULL.

This is to align with the definitions originally promulgated by NIST. For the SHA algorithms, implementations MUST accept AlgorithmIdentifier values both without parameters and with NULL parameters.

Exception: When formatting the DigestInfoValue in EMSA-PKCS1-v1_5 (see 9.2), the parameters field associated with id-sha1, id-sha224, id-sha256, id-sha384, id-sha512, id-sha512/224, and id-sha512/256 shall have a value of type NULL. This is to maintain compatibility with existing implementations and with the numeric information values already published for EMSA-PKCS1-v1_5 which are also reflected in IEEE 1363a-2004 [IEEE1363A].

Note. Version 1.5 of PKCS #1 also allowed for the use of MD4 in signature schemes. The cryptanalysis of MD4 has progressed significantly in the intervening years. For example, Dobbertin [MD4] demonstrated how to find collisions for MD4 and that the first two rounds of MD4 are not one-way [MD4FIRST]. Because of these results and others (e.g. [MD4LAST]), MD4 is NOT RECOMMENDED.

Further advances have been made in the cryptanalysis of MD2 and MD5, and especially after Stevens et al. findings [PREFIX] on chosen-prefix collisions on MD5. MD2 and MD5 should be considered cryptographically broken and removed from existing applications. This version of the standard supports MD2 and MD5 just for backwards compatibility reasons.

There have also been advances in the cryptanalysis of SHA-1. Particularly the results of Wang et al. [SHA1CRYPT] (which have been independently verified by M. Cochran in his analysis [COCHRAN]) on using a differential path to find collisions in SHA-1, which conclude that the security strength of the SHA-1 hashing algorithm is significantly reduced. However, this reduction is not significant enough to warrant the removal of SHA-1 from existing applications, but its usage is only recommended for backwards compatibility reasons.

To address these concerns, only SHA-224, SHA-256, SHA-384, SHA-512, SHA-512/224, and SHA-512/256 are RECOMMENDED for new applications. As of today, the best (known) collision attacks against these hash functions are generic attacks with complexity 2L/2, where L is the bit length of the hash output. For the signature schemes in this document, a collision attack is easily translated into a signature forgery. Therefore, the value L / 2 should be at least equal to the desired security level in bits of the signature scheme (a security level of B bits means that the best attack has complexity 2B). The same rule of thumb can be applied to RSAES-OAEP; it is RECOMMENDED that the bit length of the seed (which is equal to the bit length of the hash output) be twice the desired security level in bits.

B.2. Mask generation functions

A mask generation function takes an octet string of variable length and a desired output length as input, and outputs an octet string of the desired length. There may be restrictions on the length of the input and output octet strings, but such bounds are generally very large. Mask generation functions are deterministic; the octet string output is completely determined by the input octet string. The output of a mask generation function should be pseudorandom: Given one part of the output but not the input, it should be infeasible to predict another part of the output. The provable security of RSAES-OAEP and RSASSA-PSS relies on the random nature of the output of the mask generation function, which in turn relies on the random nature of the underlying hash.

One mask generation function is given here: MGF1, which is based on a hash function. MGF1 coincides with the mask generation functions defined in IEEE 1363-2000 [IEEE1363] and ANSI X9.44-2007 [ANSIX944]. Future versions of this document may define other mask generation functions.

B.2.1. MGF1

MGF1 is a Mask Generation Function based on a hash function.

MGF1 (mgfSeed, maskLen)

Options:

   
   Hash     hash function (hLen denotes the length in octets of the hash
            function output)

Input:

   
   mgfSeed  seed from which mask is generated, an octet string
   maskLen  intended length in octets of the mask, at most 2^32 hLen

Output:

   
   mask     mask, an octet string of length maskLen

Error:

"mask too long"

Steps:

  1. If maskLen > 2^32 hLen, output "mask too long" and stop.
  2. Let T be the empty octet string.
  3. For counter from 0 to \ceil (maskLen / hLen) - 1, do the following:
    1. Convert counter to an octet string C of length 4 octets (see Section 4.1):
      • C = I2OSP (counter, 4) .

    2. Concatenate the hash of the seed mgfSeed and C to the octet string T:
      • T = T || Hash(mgfSeed || C) .

  4. Output the leading maskLen octets of T as the octet string mask.

The object identifier id-mgf1 identifies the MGF1 mask generation function:

   
   id-mgf1    OBJECT IDENTIFIER ::= { pkcs-1 8 }

The parameters field associated with this OID in a value of type AlgorithmIdentifier shall have a value of type hashAlgorithm, identifying the hash function on which MGF1 is based.

Appendix C. ASN.1 module

   
-- PKCS #1 v2.2 ASN.1 Module
-- Revised October 27, 2012

-- This module has been checked for conformance with the
-- ASN.1 standard by the OSS ASN.1 Tools 

PKCS-1 {
    iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) pkcs-1(1) 
    modules(0) pkcs-1(1)
}

DEFINITIONS EXPLICIT TAGS ::=

BEGIN

-- EXPORTS ALL
-- All types and values defined in this module are exported for use
-- in other ASN.1 modules.

IMPORTS

id-sha224, id-sha256, id-sha384, id-sha512, id-sha512-224, 
id-sha512-256
    FROM NIST-SHA2 {
        joint-iso-itu-t(2) country(16) us(840) organization(1) 
        gov(101) csor(3) nistalgorithm(4) hashAlgs(2)
    };

-- ============================
--   Basic object identifiers 
-- ============================

-- The DER encoding of this in hexadecimal is:
-- (0x)06 08 
--        2A 86 48 86 F7 0D 01 01
--
pkcs-1    OBJECT IDENTIFIER ::= { 
    iso(1) member-body(2) us(840) rsadsi(113549) pkcs(1) 1
}

--
-- When rsaEncryption is used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be NULL.
--
rsaEncryption    OBJECT IDENTIFIER ::= { pkcs-1 1 }

--
-- When id-RSAES-OAEP is used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be RSAES-OAEP-params.
--
id-RSAES-OAEP    OBJECT IDENTIFIER ::= { pkcs-1 7 }

--
-- When id-pSpecified is used in an AlgorithmIdentifier the
-- parameters MUST be an OCTET STRING.
--
id-pSpecified    OBJECT IDENTIFIER ::= { pkcs-1 9 }

--
-- When id-RSASSA-PSS is used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be RSASSA-PSS-params.
--
id-RSASSA-PSS    OBJECT IDENTIFIER ::= { pkcs-1 10 }

--
-- When the following OIDs are used in an AlgorithmIdentifier the
-- parameters MUST be present and MUST be NULL.
--
md2WithRSAEncryption         OBJECT IDENTIFIER ::= { pkcs-1 2 }
md5WithRSAEncryption         OBJECT IDENTIFIER ::= { pkcs-1 4 }
sha1WithRSAEncryption        OBJECT IDENTIFIER ::= { pkcs-1 5 }
sha224WithRSAEncryption      OBJECT IDENTIFIER ::= { pkcs-1 14 }
sha256WithRSAEncryption      OBJECT IDENTIFIER ::= { pkcs-1 11 }
sha384WithRSAEncryption      OBJECT IDENTIFIER ::= { pkcs-1 12 }
sha512WithRSAEncryption      OBJECT IDENTIFIER ::= { pkcs-1 13 }
sha512-224WithRSAEncryption  OBJECT IDENTIFIER ::= { pkcs-1 15 }
sha512-256WithRSAEncryption  OBJECT IDENTIFIER ::= { pkcs-1 16 }

--
-- This OID really belongs in a module with the secsig OIDs.
--
id-sha1    OBJECT IDENTIFIER ::= {
    iso(1) identified-organization(3) oiw(14) secsig(3) algorithms(2)
    26
}

--
-- OIDs for MD2 and MD5, allowed only in EMSA-PKCS1-v1_5.
--
id-md2 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 2
}

id-md5 OBJECT IDENTIFIER ::= {
    iso(1) member-body(2) us(840) rsadsi(113549) digestAlgorithm(2) 5
}

--
-- When id-mgf1 is used in an AlgorithmIdentifier the parameters MUST
-- be present and MUST be a HashAlgorithm, for example sha1.
--
id-mgf1    OBJECT IDENTIFIER ::= { pkcs-1 8 }

-- ================
--   Useful types
-- ================

ALGORITHM-IDENTIFIER ::= CLASS {
    &id    OBJECT IDENTIFIER  UNIQUE, 
    &Type  OPTIONAL
}
    WITH SYNTAX { OID &id [PARAMETERS &Type] }

-- Note: the parameter InfoObjectSet in the following definitions
-- allows a distinct information object set to be specified for sets
-- of algorithms such as:  
-- DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
--     { OID id-md2  PARAMETERS NULL }|
--     { OID id-md5  PARAMETERS NULL }|
--     { OID id-sha1 PARAMETERS NULL }
-- }
--

AlgorithmIdentifier { ALGORITHM-IDENTIFIER:InfoObjectSet } ::= 
    SEQUENCE {
      algorithm   
          ALGORITHM-IDENTIFIER.&id({InfoObjectSet}), 
      parameters  
          ALGORITHM-IDENTIFIER.&Type({InfoObjectSet}{@.algorithm})  
            OPTIONAL
}



-- ==============
--   Algorithms
-- ==============

--
-- Allowed EME-OAEP and EMSA-PSS digest algorithms.
--
OAEP-PSSDigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
    { OID id-sha1       PARAMETERS NULL }|
    { OID id-sha224     PARAMETERS NULL }|
    { OID id-sha256     PARAMETERS NULL }|
    { OID id-sha384     PARAMETERS NULL }|
    { OID id-sha512     PARAMETERS NULL }|
    { OID id-sha512-224 PARAMETERS NULL }|
    { OID id-sha512-256 PARAMETERS NULL },
    ...  -- Allows for future expansion --
}

--
-- Allowed EMSA-PKCS1-v1_5 digest algorithms.
--
PKCS1-v1-5DigestAlgorithms    ALGORITHM-IDENTIFIER ::= {
    { OID id-md2        PARAMETERS NULL }|
    { OID id-md5        PARAMETERS NULL }|
    { OID id-sha1       PARAMETERS NULL }|
    { OID id-sha224     PARAMETERS NULL }|
    { OID id-sha256     PARAMETERS NULL }|
    { OID id-sha384     PARAMETERS NULL }|
    { OID id-sha512     PARAMETERS NULL }|
    { OID id-sha512-224 PARAMETERS NULL }|
    { OID id-sha512-256 PARAMETERS NULL }
}

-- When id-md2 and id-md5 are used in an AlgorithmIdentifier the
-- parameters field shall have a value of type NULL.

-- When id-sha1, id-sha224, id-sha256, id-sha384, id-sha512,
-- id-sha512-224, and id-sha512-256 are used in an
-- AlgorithmIdentifier the parameters (which are optional) SHOULD be
-- omitted, but if present, SHALL have a value of type NULL. However,
-- implementations MUST accept AlgorithmIdentifier values both
-- without parameters and with NULL parameters.

-- Exception: When formatting the DigestInfoValue in EMSA-PKCS1-v1_5
-- (see 9.2), the parameters field associated with id-sha1,
-- id-sha224, id-sha256, id-sha384 , id-sha512 , id-sha512-224, and
-- id-sha512-256 SHALL have a value of type NULL. This is to maintain
-- compatibility with existing implementations and with the numeric
-- information values already published for EMSA-PKCS1-v1_5, which
-- are also reflected in IEEE 1363a-2004.

sha1    HashAlgorithm ::= {
    algorithm   id-sha1, 
    parameters  SHA1Parameters : NULL
}

HashAlgorithm ::= AlgorithmIdentifier { {OAEP-PSSDigestAlgorithms} }

SHA1Parameters ::= NULL

--
-- Allowed mask generation function algorithms. 
-- If the identifier is id-mgf1, the parameters are a HashAlgorithm. 
--
PKCS1MGFAlgorithms    ALGORITHM-IDENTIFIER ::= {
    { OID id-mgf1 PARAMETERS HashAlgorithm }, 
    ...  -- Allows for future expansion --
}

--
-- Default AlgorithmIdentifier for id-RSAES-OAEP.maskGenAlgorithm and
-- id-RSASSA-PSS.maskGenAlgorithm.
--
mgf1SHA1    MaskGenAlgorithm ::= {
    algorithm   id-mgf1, 
    parameters  HashAlgorithm : sha1
}

MaskGenAlgorithm ::= AlgorithmIdentifier { {PKCS1MGFAlgorithms} }

--
-- Allowed algorithms for pSourceAlgorithm.
--
PKCS1PSourceAlgorithms    ALGORITHM-IDENTIFIER ::= {
    { OID id-pSpecified PARAMETERS EncodingParameters }, 
    ...  -- Allows for future expansion --
}

EncodingParameters ::= OCTET STRING(SIZE(0..MAX))

-- 
-- This identifier means that the label L is an empty string, so the
-- digest of the empty string appears in the RSA block before
-- masking.
--

pSpecifiedEmpty    PSourceAlgorithm ::= {
    algorithm   id-pSpecified, 
    parameters  EncodingParameters : emptyString
}

PSourceAlgorithm ::= AlgorithmIdentifier { {PKCS1PSourceAlgorithms} }

emptyString    EncodingParameters ::= ''H 

--
-- Type identifier definitions for the PKCS #1 OIDs.
--
PKCS1Algorithms    ALGORITHM-IDENTIFIER ::= {
    { OID rsaEncryption                PARAMETERS NULL } |
    { OID md2WithRSAEncryption         PARAMETERS NULL } |
    { OID md5WithRSAEncryption         PARAMETERS NULL } |
    { OID sha1WithRSAEncryption        PARAMETERS NULL } |
    { OID sha224WithRSAEncryption      PARAMETERS NULL } |
    { OID sha256WithRSAEncryption      PARAMETERS NULL } |
    { OID sha384WithRSAEncryption      PARAMETERS NULL } |
    { OID sha512WithRSAEncryption      PARAMETERS NULL } |
    { OID sha512-224WithRSAEncryption  PARAMETERS NULL } |
    { OID sha512-256WithRSAEncryption  PARAMETERS NULL } |
    { OID id-RSAES-OAEP   PARAMETERS RSAES-OAEP-params } |
    PKCS1PSourceAlgorithms                               |
    { OID id-RSASSA-PSS   PARAMETERS RSASSA-PSS-params },
    ...  -- Allows for future expansion --
}

-- ===================
--   Main structures
-- ===================

RSAPublicKey ::= SEQUENCE {
    modulus           INTEGER,  -- n
    publicExponent    INTEGER   -- e 
}

-- 
-- Representation of RSA private key with information for the CRT
-- algorithm.
--
RSAPrivateKey ::= SEQUENCE {
    version           Version, 
    modulus           INTEGER,  -- n
    publicExponent    INTEGER,  -- e
    privateExponent   INTEGER,  -- d
    prime1            INTEGER,  -- p
    prime2            INTEGER,  -- q
    exponent1         INTEGER,  -- d mod (p-1)
    exponent2         INTEGER,  -- d mod (q-1) 
    coefficient       INTEGER,  -- (inverse of q) mod p
    otherPrimeInfos   OtherPrimeInfos OPTIONAL 
}

Version ::= INTEGER { two-prime(0), multi(1) }
    (CONSTRAINED BY 
      {-- version MUST
 be multi if otherPrimeInfos present --})

OtherPrimeInfos ::= SEQUENCE SIZE(1..MAX) OF OtherPrimeInfo


OtherPrimeInfo ::= SEQUENCE {
    prime             INTEGER,  -- ri
    exponent          INTEGER,  -- di
    coefficient       INTEGER   -- ti
}

--
-- AlgorithmIdentifier.parameters for id-RSAES-OAEP.
-- Note that the tags in this Sequence are explicit.
--
RSAES-OAEP-params ::= SEQUENCE {
    hashAlgorithm      [0] HashAlgorithm     DEFAULT sha1, 
    maskGenAlgorithm   [1] MaskGenAlgorithm  DEFAULT mgf1SHA1, 
    pSourceAlgorithm   [2] PSourceAlgorithm  DEFAULT pSpecifiedEmpty 
}

-- 
-- Identifier for default RSAES-OAEP algorithm identifier.
-- The DER Encoding of this is in hexadecimal:
-- (0x)30 0D
--        06 09 
--           2A 86 48 86 F7 0D 01 01 07
--        30 00   
-- Notice that the DER encoding of default values is "empty". 
--

rSAES-OAEP-Default-Identifier    RSAES-AlgorithmIdentifier ::= {
    algorithm   id-RSAES-OAEP, 
    parameters  RSAES-OAEP-params : {
        hashAlgorithm       sha1, 
        maskGenAlgorithm    mgf1SHA1, 
        pSourceAlgorithm    pSpecifiedEmpty
    }
}

RSAES-AlgorithmIdentifier ::= AlgorithmIdentifier { 
    {PKCS1Algorithms} 
}

-- 
-- AlgorithmIdentifier.parameters for id-RSASSA-PSS.
-- Note that the tags in this Sequence are explicit.
--
RSASSA-PSS-params ::= SEQUENCE {
    hashAlgorithm      [0] HashAlgorithm      DEFAULT sha1, 
    maskGenAlgorithm   [1] MaskGenAlgorithm   DEFAULT mgf1SHA1, 
    saltLength         [2] INTEGER            DEFAULT 20,
    trailerField       [3] TrailerField       DEFAULT trailerFieldBC
}

TrailerField ::= INTEGER { trailerFieldBC(1) }

-- 
-- Identifier for default RSASSA-PSS algorithm identifier
-- The DER Encoding of this is in hexadecimal:
-- (0x)30 0D
--        06 09 
--           2A 86 48 86 F7 0D 01 01 0A
--        30 00   
-- Notice that the DER encoding of default values is "empty". 
--
rSASSA-PSS-Default-Identifier    RSASSA-AlgorithmIdentifier ::= {
    algorithm   id-RSASSA-PSS, 
    parameters  RSASSA-PSS-params : {
        hashAlgorithm       sha1, 
        maskGenAlgorithm    mgf1SHA1, 
        saltLength          20,
        trailerField        trailerFieldBC
    }
}

RSASSA-AlgorithmIdentifier ::= AlgorithmIdentifier { 
    {PKCS1Algorithms} 
}

--
-- Syntax for the EMSA-PKCS1-v1_5 hash identifier.
--
DigestInfo ::= SEQUENCE {
    digestAlgorithm DigestAlgorithm,
    digest OCTET STRING 
}

DigestAlgorithm ::= AlgorithmIdentifier { 
    {PKCS1-v1-5DigestAlgorithms} 
}

END

Appendix D. Intellectual property considerations

The RSA public-key cryptosystem is described in U.S. Patent 4,405,829, which expired on September 20, 2000. EMC Corporation makes no other patent claims on the constructions described in this document, although specific underlying techniques may be covered. Multi-prime RSA is described in U.S. Patent 5,848,159.

The PSS signature scheme [PSS] is described in U.S. Patent 6,266,771, which expired on July 24, 2009, and U.S. Patent 7,036,014, which expired on April 25, 2010, and was held by the University of California. The PSS signature scheme is specified in IEEE P1363a-2004 [IEEE1363A]. Prior to the finalization of this standard, the University of California provided a letter to the IEEE P1363 working group stating that if the PSS signature scheme is included in an IEEE standard, "the University of California will, when that standard is adopted, FREELY license any conforming implementation of PSS as a technique for achieving a digital signature with appendix" [GRELL].

EMC Corporation makes no other representations regarding intellectual property claims by other parties. Such determination is the responsibility of the user.

Appendix E. Revision history

Versions 1.0 -- 1.3

Versions 1.0 -- 1.3 were distributed to participants in RSA Data Security, Inc.'s Public-Key Cryptography Standards meetings in February and March 1991. Version 1.4

Version 1.4 was part of the June 3, 1991 initial public release of PKCS. Version 1.4 was published as NIST/OSI Implementors' Workshop document SEC-SIG-91-18. Version 1.5

Version 1.5 incorporated several editorial changes, including updates to the references and the addition of a revision history. The following substantive changes were made:

Version 1.5 was republished as IETF RFC 2313.

Version 2.0

Version 2.0 incorporated major editorial changes in terms of the document structure and introduced the RSAES-OAEP encryption scheme. This version continued to support the encryption and signature processes in version 1.5, although the hash algorithm MD4 was no longer allowed due to cryptanalytic advances in the intervening years. Version 2.0 was republished as RFC 2437 [RFC2437].

Version 2.1

Version 2.1 introduces multi-prime RSA and the RSASSA-PSS signature scheme with appendix along with several editorial improvements. This version continues to support the schemes in version 2.0.

Version 2.2

Version 2.2 updates the list of allowed hashing algorithms to align them with FIPS 180-4 [SHS], therefore adding SHA-224, SHA-512/224 and SHA-512/256. The following substantive changes were made:

Appendix F. About PKCS

The Public-Key Cryptography Standards are specifications produced by RSA Laboratories in cooperation with secure systems developers worldwide for the purpose of accelerating the deployment of public-key cryptography. First published in 1991 as a result of meetings with a small group of early adopters of public-key technology, the PKCS documents have become widely referenced and implemented. Contributions from the PKCS series have become part of many formal and de facto standards, including ANSI X9 and IEEE P1363 documents, PKIX, SET, S/MIME, SSL/TLS, and WAP/WTLS.

Further development of most PKCS documents occurs through the IETF. Suggestions for improvement are welcome.

Appendix G. Acknowledgements

This document is based on a contribution of RSA Laboratories, the research center of RSA Security Inc.

Authors' Addresses

Kathleen M. Moriarty (editor) EMC Corporation 176 South Street Hopkinton, MA 01748 US EMail: kathleen.moriarty@emc.com
Burt Kaliski Verisign 12061 Bluemont Way Reston, VA 20190 US EMail: bkaliski@verisign.com URI: http://verisignlabs.com
Jakob Jonsson Subset AB Munkbrogtan 4 Stockholm, SE-11127 SE Phone: +46 8 428 687 43 EMail: jakob.jonsson@subset.se
Andreas Rusch RSA 345 Queen Street Brisbane, QLD 4000 AU EMail: andreas.rusch@rsa.com