Internet-Draft | Multilinear Galois Mode (MGM) | January 2021 |
Smyshlyaev, et al. | Expires 30 July 2021 | [Page] |
Multilinear Galois Mode (MGM) is an authenticated encryption with associated data (AEAD) block cipher mode based on EtM principle. MGM is defined for use with 64-bit and 128-bit block ciphers.¶
MGM has been standardized in Russia. It is used as an AEAD mode for the GOST block cipher algorithms in many protocols, e.g. TLS 1.3 and IPsec. This document provides a reference for MGM to enable review of the mechanisms in use and to make MGM available for use with any block cipher.¶
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.¶
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.¶
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."¶
This Internet-Draft will expire on 30 July 2021.¶
Copyright (c) 2021 IETF Trust and the persons identified as the document authors. All rights reserved.¶
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.¶
Multilinear Galois Mode (MGM) is an authenticated encryption with associated data (AEAD) block cipher mode based on EtM principle. MGM is defined for use with 64-bit and 128-bit block ciphers. The MGM design principles can easily be applied to other block sizes.¶
MGM has been standardized in Russia [R1323565.1.026-2019]. It is used as an AEAD mode for the GOST block cipher algorithms in many protocols, e.g. TLS 1.3 and IPsec. This document provides a reference for MGM to enable review of the mechanisms in use and to make MGM available for use with any block cipher.¶
This document does not have IETF consensus and does not imply IETF support for MGM.¶
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.¶
This document uses the following terms and definitions for the sets and operations on the elements of these sets:¶
An additional parameter that defines the functioning of Multilinear Galois Mode (MGM) is the bit length S of the authentication tag, 32 <= S <= n. The value of S MUST be fixed for a particular protocol. The choice of the value S involves a trade-off between message expansion and the forgery probability.¶
The MGM encryption and tag generation procedure takes the following parameters as inputs:¶
The MGM encryption and tag generation procedure outputs the following parameters:¶
The MGM encryption and tag generation procedure consists of the following steps:¶
+----------------------------------------------------------------+ | MGM-Encrypt(K, ICN, A, P) | |----------------------------------------------------------------| | 1. Encryption step: | | - if |P| = 0 then | | - C*_q = P*_q | | - C = P | | - else | | - Y_1 = E_K(0^1 || ICN), | | - For i = 2, 3, ... , q do | | Y_i = incr_r(Y_{i-1}), | | - For i = 1, 2, ... , q - 1 do | | C_i = P_i (xor) E_K(Y_i), | | - C*_q = P*_q (xor) MSB_u(E_K(Y_q)), | | - C = C_1 || ... || C*_q. | | | | 2. Padding step: | | - A_h = A*_h || 0^{n-t}, | | - C_q = C*_q || 0^{n-u}. | | | | 3. Authentication tag T generation step: | | - Z_1 = E_K(1^1 || ICN), | | - sum = 0, | | - For i = 1, 2, ..., h do | | H_i = E_K(Z_i), | | sum = sum (xor) ( H_i (x) A_i ), | | Z_{i+1} = incr_l(Z_i), | | - For j = 1, 2, ..., q do | | H_{h+j} = E_K(Z_{h+j}), | | sum = sum (xor) ( H_{h+j} (x) C_j ), | | Z_{h+j+1} = incr_l(Z_{h+j}), | | - H_{h+q+1} = E_K(Z_{h+q+1}), | | - T = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) | | ( len(A) || len(C) ) ))). | | | | 4. Return (ICN, A, C, T). | +----------------------------------------------------------------+¶
The ICN value for each message that is encrypted under the given key K must be chosen in a unique manner.¶
Users who do not wish to encrypt plaintext can provide a string P of zero length. Users who do not wish to authenticate associated data can provide a string A of zero length. The length of the associated data A and of the plaintext P MUST be such that 0 < |A| + |P| < 2^{n/2}.¶
The MGM decryption and tag verification procedure takes the following parameters as inputs:¶
The MGM decryption and tag verification procedure outputs FAIL or the following parameters:¶
The MGM decryption and tag verification procedure consists of the following steps:¶
+----------------------------------------------------------------+ | MGM-Decrypt(K, ICN, A, C, T) | |----------------------------------------------------------------| | 1. Padding step: | | - A_h = A*_h || 0^{n-t}, | | - C_q = C*_q || 0^{n-u}. | | | | 2. Authentication tag T verification step: | | - Z_1 = E_K(1^1 || ICN), | | - sum = 0, | | - For i = 1, 2, ..., h do | | H_i = E_K(Z_i), | | sum = sum (xor) ( H_i (x) A_i ), | | Z_{i+1} = incr_l(Z_i), | | - For j = 1, 2, ..., q do | | H_{h+j} = E_K(Z_{h+j}), | | sum = sum (xor) ( H_{h+j} (x) C_j ), | | Z_{h+j+1} = incr_l(Z_{h+j}), | | - H_{h+q+1} = E_K(Z_{h+q+1}), | | - T' = MSB_S(E_K(sum (xor) ( H_{h+q+1} (x) | | ( len(A) || len(C) ) ))), | | - If T' != T then return FAIL. | | | | 3. Decryption step: | | - if |C| = 0 then | | - P = C | | - else | | - Y_1 = E_K(0^1 || ICN), | | - For i = 2, 3, ... , q do | | Y_i = incr_r(Y_{i-1}), | | - For i = 1, 2, ... , q - 1 do | | P_i = C_i (xor) E_K(Y_i), | | - P*_q = C*_q (xor) MSB_u(E_K(Y_q)), | | - P = P_1 || ... || P*_q. | | | | 4. Return (A, P). | +----------------------------------------------------------------+¶
The length of the associated data A and of the ciphertext C MUST be such that 0 < |A| + |C| < 2^{n/2}.¶
The MGM was originally proposed in [PDMODE].¶
From the operational point of view the MGM is designed to be parallelizable, inverse free, online and to provide availability of precomputations.¶
Parallelizability of the MGM is achieved due to its counter-type structure and the usage of the multilinear function for authentication. Indeed, both encryption blocks E_K(Y_i) and authentication blocks H_i are produced in the counter mode manner, and the multilinear function determined by H_i is parallelizable in itself. Additionally, the counter-type structure of the mode provides the inverse free property.¶
The online property means the possibility to process message even if it is not completely received (so its length is unknown). To provide this property the MGM uses blocks E_K(Y_i) and H_i which are produced basing on two independent source blocks Y_i and Z_i.¶
Availability of precomputations for the MGM means the possibility to calculate H_i and E_K(Y_i) even before data is retrieved. It is holds due to again the usage of counters for calculating them.¶
The security properties of the MGM are based on the following:¶
Different functions generating the counter values:¶
The functions incr_r and incr_l are chosen to minimize intersection (if it happens) of counter values Y_i and Z_i.¶
Encryption of the multilinear function output:¶
It allows to resist attacks based on padding and linear properties (see [Ferg05] for details).¶
Multilinear function for authentication:¶
Encryption of the nonces (0^1 || ICN) and (1^1 || ICN):¶
The use of this encryption minimizes the number of plaintext/ciphertext pairs of blocks known to an adversary. It allows to resist attacks that need substantial amount of such material (e.g., linear and differential cryptanalysis, side-channel attacks).¶
It is crucial to the security of MGM to use unique ICN values. Using the same ICN values for two different messages encrypted with the same key eliminates the security properties of this mode.¶
Security analysis for MGM with E_K being a random permutation was performed in [SecMGM]. More precisely, the bounds for confidentiality advantage (CA) and integrity advantage (IA) (for details see [I-D.irtf-cfrg-aead-limits]) were obtained. According to these results, for an adversary making at most q encryption queries with the total length of plaintexts and associated data of at most s blocks and allowed to output a forgery with the summary length of ciphertext and associated data of at most l blocks:¶
where n is the block size and S is the authentication tag size.¶
These bounds can be used as guidelines on how to calculate confidentiality and integrity limits (for details also see [I-D.irtf-cfrg-aead-limits]).¶
This document does not require any IANA actions.¶
Test vectors for the Kuznyechik block cipher (n = 128, k = 256) defined in [GOST3412-2015] (the English version can be found in [RFC7801]).¶
-------------------------Example 1-------------------------- Encryption key K: 00000: 88 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 00010: FE DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF ICN: 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Associated authenticated data A: 00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03 00020: EA 05 05 05 05 05 05 05 05 Plaintext P: 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 00010: 00 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00020: 11 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 00030: 22 33 44 55 66 77 88 99 AA BB CC EE FF 0A 00 11 00040: AA BB CC 1. Encryption step: 0^1 || ICN: 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Y_1: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CD E_K(Y_1): 00000: B8 57 48 C5 12 F3 19 90 AA 56 7E F1 53 35 DB 74 Y_2: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CE E_K(Y_2): 00000: 80 64 F0 12 6F AC 9B 2C 5B 6E AC 21 61 2F 94 33 Y_3: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED CF E_K(Y_3): 00000: 58 58 82 1D 40 C0 CD 0D 0A C1 E6 C2 47 09 8F 1C Y_4: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D0 E_K(Y_4): 00000: E4 3F 50 81 B5 8F 0B 49 01 2F 8E E8 6A CD 6D FA Y_5: 00000: 7F 67 9D 90 BE BC 24 30 5A 46 8D 42 B9 D4 ED D1 E_K(Y_5): 00000: 86 CE 9E 2A 0A 12 25 E3 33 56 91 B2 0D 5A 33 48 C: 00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC 00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39 00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C 00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB 00040: 2C 75 52 2. Padding step: A_1 || ... || A_h: 00000: 02 02 02 02 02 02 02 02 01 01 01 01 01 01 01 01 00010: 04 04 04 04 04 04 04 04 03 03 03 03 03 03 03 03 00020: EA 05 05 05 05 05 05 05 05 00 00 00 00 00 00 00 C_1 || ... || C_q: 00000: A9 75 7B 81 47 95 6E 90 55 B8 A3 3D E8 9F 42 FC 00010: 80 75 D2 21 2B F9 FD 5B D3 F7 06 9A AD C1 6B 39 00020: 49 7A B1 59 15 A6 BA 85 93 6B 5D 0E A9 F6 85 1C 00030: C6 0C 14 D4 D3 F8 83 D0 AB 94 42 06 95 C7 6D EB 00040: 2C 75 52 00 00 00 00 00 00 00 00 00 00 00 00 00 3. Authentication tag T generation step: 1^1 || ICN: 00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Z_1: 00000: 7F C2 45 A8 58 6E 66 02 A7 BB DB 27 86 BD C6 6F H_1: 00000: 8D B1 87 D6 53 83 0E A4 BC 44 64 76 95 2C 30 0B current sum: 00000: 4C F4 27 F4 AD B7 5C F4 C0 DA 39 D5 AB 48 CF 38 Z_2: 00000: 7F C2 45 A8 58 6E 66 03 A7 BB DB 27 86 BD C6 6F H_2: 00000: 7A 24 F7 26 30 E3 76 37 21 C8 F3 CD B1 DA 0E 31 current sum: 00000: 94 95 44 0E F6 24 A1 DD C6 F5 D9 77 28 50 C5 73 Z_3: 00000: 7F C2 45 A8 58 6E 66 04 A7 BB DB 27 86 BD C6 6F H_3: 00000: 44 11 96 21 17 D2 06 35 C5 25 E0 A2 4D B4 B9 0A current sum: 00000: A4 9A 8C D8 A6 F2 74 23 DB 79 E4 4A B3 06 D9 42 Z_4: 00000: 7F C2 45 A8 58 6E 66 05 A7 BB DB 27 86 BD C6 6F H_4: 00000: D8 C9 62 3C 4D BF E8 14 CE 7C 1C 0C EA A9 59 DB current sum: 00000: 09 FE 3F 6A 83 3C 21 B3 90 27 D0 20 6A 84 E1 5A Z_5: 00000: 7F C2 45 A8 58 6E 66 06 A7 BB DB 27 86 BD C6 6F H_5: 00000: A5 E1 F1 95 33 3E 14 82 96 99 31 BF BE 6D FD 43 current sum: 00000: B5 DA 26 BB 00 EB A8 04 35 D7 97 6B C6 B5 46 4D Z_6: 00000: 7F C2 45 A8 58 6E 66 07 A7 BB DB 27 86 BD C6 6F H_6: 00000: B4 CA 80 8C AC CF B3 F9 17 24 E4 8A 2C 7E E9 D2 current sum: 00000: DD 1C 0E EE F7 83 C8 EB 2A 33 F3 58 D7 23 0E E5 Z_7: 00000: 7F C2 45 A8 58 6E 66 08 A7 BB DB 27 86 BD C6 6F H_7: 00000: 72 90 8F C0 74 E4 69 E8 90 1B D1 88 EA 91 C3 31 current sum: 00000: 89 6C E1 08 32 EB EA F9 06 9F 3F 73 76 59 4D 40 Z_8: 00000: 7F C2 45 A8 58 6E 66 09 A7 BB DB 27 86 BD C6 6F H_8: 00000: 23 CA 27 15 B0 2C 68 31 3B FD AC B3 9E 4D 0F B8 current sum: 00000: 99 1A F5 C9 D0 80 F7 63 87 FE 64 9E 7C 93 C6 42 Z_9: 00000: 7F C2 45 A8 58 6E 66 0A A7 BB DB 27 86 BD C6 6F H_9: 00000: BC BC E6 C4 1A A3 55 A4 14 88 62 BF 64 BD 83 0D len(A) || len(C): 00000: 00 00 00 00 00 00 01 48 00 00 00 00 00 00 02 18 sum (xor) ( H_9 (x) ( len(A) || len(C) ) ): 00000: C0 C7 22 DB 5E 0B D6 DB 25 76 73 83 3D 56 71 28 Tag T: 00000: CF 5D 65 6F 40 C3 4F 5C 46 E8 BB 0E 29 FC DB 4C¶
-------------------------Example 2-------------------------- Encryption key K: 00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE 00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88 ICN: 00000: 11 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Associated authenticated data A: 00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 Plaintext P: 00000: 1. Encryption step: C: 00000: 2. Padding step: A_1 || ... || A_h: 00000: 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 01 C_1 || ... || C_q: 00000: 3. Authentication tag T generation step: 1^1 || ICN: 00000: 91 22 33 44 55 66 77 00 FF EE DD CC BB AA 99 88 Z_1: 00000: 79 32 72 68 96 C4 3E 3F BF D6 50 89 EB F1 E5 B6 H_1: 00000: 99 3A 80 66 CC C0 A4 0F AC 4A 14 F7 A2 F6 6D 9B current sum: 00000: 0A C1 1E 2C 1C D6 07 D8 2F E3 55 54 B4 01 02 81 Z_2: 00000: 79 32 72 68 96 C4 3E 40 BF D6 50 89 EB F1 E5 B6 H_2: 00000: 0C 38 A7 1E E7 93 BF 76 89 81 BF CD 7C DA 78 C8 len(A) || len(C): 00000: 00 00 00 00 00 00 00 80 00 00 00 00 00 00 00 00 sum (xor) ( H_2 (x) ( len(A) || len(C) ) ): 00000: CA 1E F8 92 71 EA 60 C4 53 9E 40 EB 26 C2 80 5D Tag T: 00000: 79 01 E9 EA 20 85 CD 24 7E D2 49 69 5F 9F 8A 85¶
Test vectors for the Magma block cipher (n = 64, k = 256) defined in [GOST3412-2015] (the English version can be found in [RFC8891]).¶
-------------------------Example 1-------------------------- Encryption key K: 00000: FF EE DD CC BB AA 99 88 77 66 55 44 33 22 11 00 00010: F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF ICN: 00000: 12 DE F0 6B 3C 13 0A 59 Associated authenticated data A: 00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 00020: 05 05 05 05 05 05 05 05 EA Plaintext P: 00000: FF EE DD CC BB AA 99 88 11 22 33 44 55 66 77 00 00010: 88 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 00020: 99 AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88 00030: AA BB CC EE FF 0A 00 11 22 33 44 55 66 77 88 99 00040: AA BB CC 1. Encryption step: 0^1 || ICN: 00000: 12 DE F0 6B 3C 13 0A 59 Y_1: 00000: 56 23 89 01 62 DE 31 BF E_K(Y_1): 00000: 38 7B DB A0 E4 34 39 B3 Y_2: 00000: 56 23 89 01 62 DE 31 C0 E_K(Y_2): 00000: 94 33 00 06 10 F7 F2 AE Y_3: 00000: 56 23 89 01 62 DE 31 C1 E_K(Y_3): 00000: 97 B7 AA 6D 73 C5 87 57 Y_4: 00000: 56 23 89 01 62 DE 31 C2 E_K(Y_4): 00000: 94 15 52 8B FF C9 E8 0A Y_5: 00000: 56 23 89 01 62 DE 31 C3 E_K(Y_5): 00000: 03 F7 68 BF F1 82 D6 70 Y_6: 00000: 56 23 89 01 62 DE 31 C4 E_K(Y_6): 00000: FD 05 F8 4E 9B 09 D2 FE Y_7: 00000: 56 23 89 01 62 DE 31 C5 E_K(Y_7): 00000: DA 4D 90 8A 95 B1 75 C4 Y_8: 00000: 56 23 89 01 62 DE 31 C6 E_K(Y_8): 00000: 65 99 73 96 DA C2 4B D7 Y_9: 00000: 56 23 89 01 62 DE 31 C7 E_K(Y_9): 00000: A9 00 50 4A 14 8D EE 26 C: 00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE 00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D 00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76 00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E 00040: 03 BB 9C 2. Padding step: A_1 || ... || A_h: 00000: 01 01 01 01 01 01 01 01 02 02 02 02 02 02 02 02 00010: 03 03 03 03 03 03 03 03 04 04 04 04 04 04 04 04 00020: 05 05 05 05 05 05 05 05 EA 00 00 00 00 00 00 00 C_1 || ... || C_q: 00000: C7 95 06 6C 5F 9E A0 3B 85 11 33 42 45 91 85 AE 00010: 1F 2E 00 D6 BF 2B 78 5D 94 04 70 B8 BB 9C 8E 7D 00020: 9A 5D D3 73 1F 7D DC 70 EC 27 CB 0A CE 6F A5 76 00030: 70 F6 5C 64 6A BB 75 D5 47 AA 37 C3 BC B5 C3 4E 00040: 03 BB 9C 00 00 00 00 00 3. Authentication tag T generation step: 1^1 || ICN: 00000: 92 DE F0 6B 3C 13 0A 59 Z_1: 00000: 2B 07 3F 04 94 F3 72 A0 H_1: 00000: 70 8A 78 19 1C DD 22 AA current sum: 00000: D6 BB 5B EA 81 93 12 62 Z_2: 00000: 2B 07 3F 05 94 F3 72 A0 H_2: 00000: 6F 02 CC 46 4B 2F A0 A3 current sum: 00000: DD 1C 82 4E 91 78 49 A5 Z_3: 00000: 2B 07 3F 06 94 F3 72 A0 H_3: 00000: 9F 81 F2 26 FD 19 6F 05 current sum: 00000: 05 89 22 17 F6 5A DA C7 Z_4: 00000: 2B 07 3F 07 94 F3 72 A0 H_4: 00000: B9 C2 AC 9B E5 B5 DF F9 current sum: 00000: D1 DB 9B 7F C4 9E 7C 97 Z_5: 00000: 2B 07 3F 08 94 F3 72 A0 H_5: 00000: 74 B5 EC 96 55 1B F8 88 current sum: 00000: 56 45 F6 B5 18 5C B7 1A Z_6: 00000: 2B 07 3F 09 94 F3 72 A0 H_6: 00000: 7E B0 21 A4 03 5B 04 C3 current sum: 00000: 3F C2 C2 E6 FB EE D0 4D Z_7: 00000: 2B 07 3F 0A 94 F3 72 A0 H_7: 00000: C2 A9 C3 A8 70 4D 9B B0 current sum: 00000: 15 47 1F B5 CD 8E 6C 02 Z_8: 00000: 2B 07 3F 0B 94 F3 72 A0 H_8: 00000: F5 D5 05 A8 7B 83 83 B5 current sum: 00000: 12 56 78 96 1D 40 E0 93 Z_9: 00000: 2B 07 3F 0C 94 F3 72 A0 H_9: 00000: F7 95 E7 5F DE B8 93 3C current sum: 00000: 6E F4 0A B0 C1 5F 20 48 Z_10: 00000: 2B 07 3F 0D 94 F3 72 A0 H_10: 00000: 65 A1 A3 E6 80 F0 81 45 current sum: 00000: A4 64 A7 08 FF 45 14 22 Z_11: 00000: 2B 07 3F 0E 94 F3 72 A0 H_11: 00000: 1C 74 A5 76 4C B0 D5 95 current sum: 00000: 60 94 4E 05 D0 85 75 14 Z_12: 00000: 2B 07 3F 0F 94 F3 72 A0 H_12: 00000: DC 84 47 A5 14 E7 83 E7 current sum: 00000: EE 98 B9 B5 0F F7 83 E8 Z_13: 00000: 2B 07 3F 10 94 F3 72 A0 H_13: 00000: A7 E3 AF E0 04 EE 16 E3 current sum: 00000: C0 39 0F A2 28 AF 6D CB Z_14: 00000: 2B 07 3F 11 94 F3 72 A0 H_14: 00000: A5 AA BB 0B 79 80 D0 71 current sum: 00000: 73 E0 6E 07 EF 37 CD CC Z_15: 00000: 2B 07 3F 12 94 F3 72 A0 H_15: 00000: 6E 10 4C C9 33 52 5C 5D current sum: 00000: 2F 40 69 0A EB 53 F5 39 Z_16: 00000: 2B 07 3F 13 94 F3 72 A0 H_16: 00000: 83 11 B6 02 4A A9 66 C1 len(A) || len(C): 00000: 00 00 01 48 00 00 02 18 sum (xor) ( H_16 (x) ( len(A) || len(C) ) ): 00000: 73 CE F4 4B AE 6B DB 61 Tag T: 00000: A7 92 80 69 AA 10 FD 10¶
-------------------------Example 2-------------------------- Encryption key K: 00000: 99 AA BB CC DD EE FF 00 11 22 33 44 55 66 77 FE 00010: DC BA 98 76 54 32 10 01 23 45 67 89 AB CD EF 88 ICN: 00000: 00 77 66 55 44 33 22 11 Associated authenticated data A: 00000: Plaintext P: 00000: 22 33 44 55 66 77 00 FF 1. Encryption step: 0^1 || ICN: 00000: 00 77 66 55 44 33 22 11 Y_1: 00000: 5B 2A 7E 60 4F 9F BB 95 E_K(Y_1): 00000: 48 A6 A5 17 0D 52 9D B1 C: 00000: 6A 95 E1 42 6B 25 9D 4E 2. Padding step: A_1 || ... || A_h: 00000: C_1 || ... || C_q: 00000: 6A 95 E1 42 6B 25 9D 4E 3. Authentication tag T generation step: 1^1 || ICN: 00000: 80 77 66 55 44 33 22 11 Z_1: 00000: 59 73 54 78 7E 52 E6 EB H_1: 00000: EC E3 F9 DA 11 8C 7D 95 current sum: 00000: 25 D0 E4 20 7B 6B F6 3D Z_2: 00000: 59 73 54 79 7E 52 E6 EB H_2: 00000: 31 0C 0D AC C9 D0 4D 93 len(A) || len(C): 00000: 00 00 00 00 00 00 00 40 sum (xor) ( H_2 (x) ( len(A) || len(C) ) ): 00000: 66 D3 8F 12 0F 78 92 49 Tag T: 00000: 33 4E E2 70 45 0B EC 9E¶
Evgeny Alekseev¶
CryptoPro¶
alekseev@cryptopro.ru¶
Alexandra Babueva¶
CryptoPro¶
babueva@cryptopro.ru¶
Lilia Akhmetzyanova¶
CryptoPro¶
lah@cryptopro.ru¶
Grigory Marshalko¶
TC 26¶
marshalko_gb@tc26.ru¶
Vladimir Rudskoy¶
TC 26¶
rudskoy_vi@tc26.ru¶
Alexey Nesterenko¶
National Research University Higher School of Economics¶
anesterenko@hse.ru¶
Lidia Nikiforova¶
CryptoPro¶
nikiforova@cryptopro.ru¶