Network Working Group | S. Smyshlyaev, Ed. |
Internet-Draft | E. Alekseev |
Intended status: Informational | I. Oshkin |
Expires: June 24, 2017 | V. Popov |
CRYPTO-PRO | |
December 21, 2016 |
The Security Evaluated Standardized Password Authenticated Key Exchange (SESPAKE) Protocol
draft-smyshlyaev-sespake-14
This document specifies the Security Evaluated Standardized Password Authenticated Key Exchange (SESPAKE) protocol. The SESPAKE protocol provides password authenticated key exchange for usage in the systems for protection of sensitive information. The security proofs of the protocol were made for the case of an active adversary in the channel, including MitM attacks and attacks based on the impersonation of one of the subjects.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on June 24, 2017.
Copyright (c) 2016 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
The current document contains the description of the password authenticated key exchange protocol SESPAKE (security evaluated standardized password authenticated key exchange) for usage in the systems for protection of sensitive information. The protocol is intended to use for establishment of keys that are then used for organization of secure channel for protection of sensitive information. The security proofs of the protocol were made for the case of an active adversary in the channel, including MitM attacks and attacks based on the impersonation of one of the subjects.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in [RFC2119].
This document uses the following parameters of elliptic curves in accordance with [RFC6090]:
This memo uses the following functions:
This document uses the following terms and definitions for the sets and operations on the elements of these sets
The main point of the SESPAKE protocol is that parties sharing a weak key (a password) generate a strong common key. The active adversary who has an access to a channel is not able to obtain any information that can be used to find a key in offline mode, i.e. without interaction with legitimate participants.
The protocol is used by the subjects A (client) and B (server) that share some secret parameter that was established in an out-of-band mechanism: a client is a participant who stores a password as a secret parameter and a server is a participant who stores a password-based computed point of the elliptic curve.
The SESPAKE protocol consists of two steps: the key agreement step and the key confirmation step. During the first step (the key agreement step) the parties exchange keys using Diffie-Hellman with public components masked by an element that depends on the password - one of the predefined elliptic curve points multiplied by the password-based coefficient. This approach provides an implicit key authentication, which means that after this step one party is assured that no other party aside from a specifically identified second party may gain access to the generated secret key. During the second step (the key confirmation step) the parties exchange strings that strongly depend on the generated key. After this step the parties are assured that a legitimate party and no one else actually has possession of the secret key.
To protect against online guessing attacks the failed connections counters were introduced in the SESPAKE protocol. There is also a special way of a small order point processing and a mechanism that provides a reflection attack protection by using different operations for different sides.
Various elliptic curves can be used in the protocol. For each elliptic curve supported by clients the following values MUST be defined:
The method of generation of the points {P,Q_1,Q_2,…,Q_N} is described in Section 5.
The protocol parameters that are used by subject A are the following:
The protocol parameters that are used by subject B are the following:
It is possible that the point Q_PW is not stored and is calculated using PW in the beginning of the protocol. In that case B has to store PW and points Q_1,Q_2,…,Q_N.
After the setup of a new password value PW the values of the counters MUST be assigned as follows:
The basic SESPAKE steps are shown in the scheme below:
A [A_ID, PW] | B [B_ID, Q_PW , ind, salt] | |
---|---|---|
if C_1^A or C_2^A or C_3^A = 0 ==> QUIT | ||
decrement C_1^A, C_2^A, C_3^A by 1 | A_ID ---> | if C_1^B or C_2^B or C_3^B = 0 ==> QUIT |
z_A = 0 | <--- ID_ALG, B_ID (OPTIONAL), ind, salt | decrement C_1^B, C_2^B, C_3^B by 1 |
Q_PW^A = int(F(PW, salt, 2000)) * Q_ind | ||
choose alpha randomly from {1,...,q‑1} | ||
u_1 = alpha*P - Q_PW^A | u_1 ---> | if u_1 not in E ==> QUIT |
z_B = 0 | ||
Q_B = u_1 + Q_PW | ||
choose betta randomly from {1,...,q‑1} | ||
if m/q*Q_B = O ==> Q_B = betta*P, z_B = 1 | ||
K_B = HASH(BYTES((m/q*betta*(mod q))*Q_B)) | ||
if u_2 not in E ==> QUIT | <--- u_2 | u_2 = betta*P + Q_PW |
Q_A = u_2 - Q_PW^A | ||
if m/q*Q_A = O ==> Q_A = alpha*P, z_A = 1 | ||
K_A = HASH(BYTES((m/q*alpha(mod q))*Q_A)) | ||
U_1 = BYTES(u_1), U_2 = BYTES(u_2) | ||
MAC_A = HMAC(K_A, 0x01 || ID_A || ind || salt || U_1 || U_2 || ID_ALG (OPTIONAL) || DATA_A) | DATA_A, MAC_A ‑‑‑> | U_1 = BYTES(u_1), U_2 = BYTES(u_2) |
if MAC_A != HMAC(K_B, 0x01 || ID_A || ind || salt || U_1 || U_2 || ID_ALG (OPTIONAL) || DATA_A) ==> QUIT | ||
if z_B = 1 ==> QUIT | ||
C_1^B = CLim_1, increment C_2^B by 1 | ||
if MAC_B != HMAC(K_A, 0x02 || ID_B || ind || salt || U_1 || U_2 || ID_ALG (OPTIONAL) || DATA_A || DATA_B) ==> QUIT | <--- DATA_B, MAC_B | MAC_B = HMAC(K_B, 0x02 || ID_B || ind || salt || U_1 || U_2 || ID_ALG (OPTIONAL) || DATA_A || DATA_B) |
if z_A = 1 ==> QUIT | ||
C_1^A = CLim_1, increment C_2^A by 1 |
The full description of the protocol consists of the following steps:
After the successful finish of the procedure the subjects A and B are mutually authenticated and each subject has an explicitly authenticated value of K = K_A = K_B.
N o t e s :
This section provides an example of possible algorithm for generation of each point Q_i in the set {Q_1,…,Q_N} that corresponds to the given elliptic curve E.
The algorithm is based on choosing points with coordinates with a known preimages of a cryptographic hash function H, which is the GOST R 34.11-2012 hash function (see [RFC6986]) with 256-bit output, if 2^254 < q < 2^256, and the GOST R 34.11-2012 hash function (see [RFC6986]) with 512-bit output , if 2^508 < q < 2^512.
The algorithm consists of the following steps:
With the defined algorithm for any elliptic curve E point sets {Q_1,...,Q_N} are constructed. Constructed points in one set MUST have distinct X-coordinates.
N o t e : The knowledge of a hash function preimage prevents knowledge of the multiplicity of any point related to generator point P. It is of primary importance, because such a knowledge could be used to implement an attack against protocol with exhaustive search of password.
We thank Lolita Sonina, Georgiy Borodin, Sergey Agafin and Ekaterina Smyshlyaeva for their careful readings and useful comments.
Any cryptographic algorithms, particularly HASH function and HMAC function, that are used in the SESPAKE protocol MUST be carefully designed and MUST be able to withstand all known types of cryptanalytic attack.
It is RECOMMENDED that the HASH function satisfies the following condition:
hashlen <= log_2(q) + 4, where hashlen is the lengths of the HASH function output.
The output length of hash functions that are used in the SESPAKE protocol is RECOMMENDED to be greater or equal to 256 bits.
The points Q_1, Q_2,...,Q_N and P MUST be chosen in such a way that they are provable pseudorandom. As a practical matter, this means that the algorithm for generation of each point Q_i in the set {Q_1,...,Q_N} (see Section 5) ensures that multiplicity of any point under any other point is unknown.
For a certain ID_ALG using N = 1 is RECOMMENDED.
N o t e: The exact adversary models, which have been considered during the security evaluation, can be found in the paper [SESPAKE-SECURITY], containing the security proofs.
[SESPAKE-SECURITY] | Smyshlyaev, S., Oshkin, I., Alekseev, E. and L. Ahmetzyanova, "On the Security of One Password Authenticated Key Exchange Protocol", 2015. |
The following test examples are made for the protocol implementation that is based on the Russian national standards GOST R 34.10-2012 [GOST3410-2012] and GOST R 34.11-2012 [GOST3411-2012]. The English versions of these standards can be found in [RFC7091] and [RFC6986].
There is one point Q_1 for each of the elliptic curves below. This points were constructed using the method described in Section 5, in case when N = 1, where the GOST R 34.11-2012 hash function (see [RFC6986]) with 256-bit output is used if 2^254 < q < 2^256, the GOST R 34.11-2012 hash function (see [RFC6986]) with 512-bit output is used if 2^508 < q < 2^512.
Each of the points complies with the GOST R 34.10-2012 [GOST3410-2012] standard and is represented by a pair of (X, Y) coordinates in the canonical form and by a pair of (U, V) coordinates in the twisted Edwards form in accordance with the document [RFC7836] for the curves that have the equivalent representation in this form. There is a SEED value for each point, by which it was generated.
A.1.1. Curve id-GostR3410-2001-CryptoPro-A-ParamSet Point Q_1 X = 0x309dbc97423220b250bb9932bfaa84c26a56be4801f11b2b2eb2d6d5656722df Y = 0xd74935344e2c0698fee963ef7df0205becbf4e2dc9c9fe3047e0721da418cc31 SEED: 00 00 00 00 A.1.2. Curve id-GostR3410-2001-CryptoPro-B-ParamSet Point Q_1 X = 0x41c1f2635cde577b65e2711e82b1d9bffd91ce913f94ba2618eb2f218765c921 Y = 0x2a0637ce2e808540b80fcf06e496ce4495e2c7ce112990e9f54e9771318c9e01 SEED: 00 00 00 00 A.1.3. Curve id-GostR3410-2001-CryptoPro-C-ParamSet Point Q_1 X = 0x06eed2bc5de91de8da7728fddfa70659604bb12bf9f111282da313db8fa2cb0c Y = 0x881f29348d5e1d29b123a0e9d222c9c541dde0f6d9f5958dabc372768b12c5f6 SEED: 04 00 00 00 A.1.4. Curve id-tc26-gost-3410-2012-512-paramSetA Point Q_1 X = 0x2a17f8833a32795327478871b5c5e88aefb91126c64b4b8327289bea62559425 d18198f133f400874328b220c74497cd240586cb249e158532cb8090776cd61c Y = 0x8d70f3b58c4b725be316d7ca7052d94b8591f6b16c9d4517daa607c3223b13c5 b98942c8f812150b327a16696a39b3dbe1239dd417823f30780ae0bc9808da02 SEED: 01 00 00 00 A.1.5. Curve id-tc26-gost-3410-2012-512-paramSetB Point Q_1 X = 0x7e1fae8285e035bec244bef2d0e5ebf436633cf50e55231dea9c9cf21d4c8c33 df85d4305de92971f0a4b4c07e00d87bdbc720eb66e49079285aaf12e0171149 Y = 0x2cc89998b875d4463805ba0d858a196592db20ab161558ff2f4ef7a85725d209 53967ae621afdeae89bb77c83a2528ef6fce02f68bda4679d7f2704947dbc408 SEED: 00 00 00 00 A.1.6. Curve id-tc26-gost-3410-2012-256-paramSetA Point Q_1 X = 0x79507c89b398d65666110c4a0b1aa72cd1e31e49fc0f8b28623d1376d86c5924 Y = 0x88ff65cb730d2aeeb81f8c2b45afa2a5e3f34558dc7cbc42e7db56e063f18041 U = 0x0bf57df52df22001e604b64b13f1a73691d87ee44ac2f8f31343e32d7569104e V = 0x7282b17987112925f2b9cad1926b7c7a6efd8a0454cc7e96ff079a6063dabde6 SEED: 15 00 00 00 A.1.7. Curve id-tc26-gost-3410-2012-512-paramSetC Point Q_1 X = 0x489c91784e02e98f19a803abca319917f37689e5a18965251ce2ff4e8d8b298f 5ba7470f9e0e713487f96f4a8397b3d09a270c9d367eb5e0e6561adeeb51581d Y = 0x97b1577a5359b150e4c011c93f7ad5c41c427fee4f10e71dfc0078fd72914a24 d3ebb5f2338ed89abd4028d35d5bc05b0b6c625992659f86c38fb5736b1e8eaf U = 0xc5cb690681694c7b65b058249f026c7a7421766a71b41142fa594cdebde94c83 6265a9ff891815a68eb7d74e7040106690036740c2360d2c34f12c95f2952f3f V = 0x52d884c8bf0ad6c5f7b3973e32a668daa1f1ed092eff138dae6203b2ccdec561 47464d35fec4b727b2480eb143074712c76550c7a54ff3ea26f70059480dcb50 SEED: 13 00 00 00
This protocol implementation uses the GOST R 34.11-2012 hash function (see [RFC6986]) with 256-bit output as the H function and the HMAC_GOSTR3411_2012_512 function defined in [RFC7836] as a PRF function for the F function. The parameter len is considered equal to 256, if 2^254 < q < 2^256, and equal to 512, if 2^508 < q < 2^512.
The test examples for the point of each curve in Appendix A.1 are given below.
A.2.1 Curve id-GostR3410-2001-CryptoPro-A-ParamSet The input protocol parameters in this example take the following values: N = 1 ind = 1 ID_A: 00 00 00 00 ID_B: 00 00 00 00 PW: 31 32 33 34 35 36 ('123456') salt: 29 23 BE 84 E1 6C D6 AE 52 90 49 F1 F1 BB E9 EB Q_ind: X = 0x309DBC97423220B250BB9932BFAA84C26A56BE4801F11B2B2EB2D6D5656722DF Y = 0xD74935344E2C0698FEE963EF7DF0205BECBF4E2DC9C9FE3047E0721DA418CC31 The function F (PW, salt, 2000) takes the following values: F(PW,salt,2000): BD 04 67 3F 71 49 B1 8E 98 15 5B D1 E2 72 4E 71 D0 09 9A A2 51 74 F7 92 D3 32 6C 6F 18 12 70 67 The coordinates of the point Q_PW are: X = 0x2961C9B3E975FDFD31A9A87618BF3E00DFD6F52CA9C3A3AEBAA6F39F445F7356 Y = 0x7458C27A6D161D3ECAC57BCEC9ECBAE9EF14F60DC85AE28F6642429265409864 During the calculation of the message u_1 on the subject A the parameter alpha, the point alpha*P and the message u_1 take the following values: alpha=0x1F2538097D5A031FA68BBB43C84D12B3DE47B7061C0D5E24993E0C873CDBA6B3 alpha*P: X = 0xBBC77CF42DC1E62D06227935379B4AA4D14FEA4F565DDF4CB4FA4D31579F9676 Y = 0x8E16604A4AFDF28246684D4996274781F6CB80ABBBA1414C1513EC988509DABF u_1: X = 0x6952DF3333193201A4C946EB6B6D0F85C68222B4AF993B0A7A816C5BD684F979 Y = 0xC15106B7D8CB5A89F813CB6308CDB2A8B848F60C1C9F225E06A7EB4EA5C0D58E During processing a message u_1, calculation the K_B key and the message u_2 on the subject B the parameters betta, src, K_B = HASH(src), betta*P and u_2 take the following values: betta=0xDC497D9EF6324912FD367840EE509A2032AEDB1C0A890D133B45F596FCCBD45D src: 2E 01 A3 D8 4F DB 7E 94 7B B8 92 9B E9 36 3D F5 F7 25 D6 40 1A A5 59 D4 1A 67 24 F8 D5 F1 8E 2C A0 DB A9 31 05 CD DA F4 BF AE A3 90 6F DD 71 9D BE B2 97 B6 A1 7F 4F BD 96 DC C7 23 EA 34 72 A9 K_B: 1A 62 65 54 92 1D C2 E9 2B 4D D8 D6 7D BE 5A 56 62 E5 62 99 37 3F 06 79 95 35 AD 26 09 4E CA A3 betta*P: X = 0x6097341C1BE388E83E7CA2DF47FAB86E2271FD942E5B7B2EB2409E49F742BC29 Y = 0xC81AA48BDB4CA6FA0EF18B9788AE25FE30857AA681B3942217F9FED151BAB7D0 u_2: X = 0xFE005686A8CA25A91EFAA891EE301F95881A1EBB95A3314445BCC2D46C2F7F76 Y = 0x3B9D486451A663165F7C4534AAE15FA17925DB6AB88B975C4B4FBA4E540E0ED1 During processing a message u_2 and calculation the key on the subject A the K_A key takes the following value: K_A: 1A 62 65 54 92 1D C2 E9 2B 4D D8 D6 7D BE 5A 56 62 E5 62 99 37 3F 06 79 95 35 AD 26 09 4E CA A3 The message MAC_A=HMAC (K_A, 0x01 || ID_A || ind || salt || u_1 || u_2) from the subject A takes the following value: MAC_A: AF 49 FE D1 96 9E 09 5E 1B 00 45 D5 E7 48 2D F7 DD 07 7B 3B 13 33 58 31 85 EB F3 51 06 E9 9B 24 The message MAC_B=HMAC (K_B, 0x02 || ID_B || ind || salt || u_1 || u_2) from the subject B takes the following value: MAC_B: 17 81 15 B6 C7 5F 77 E1 8D 9A 6F 63 47 45 49 2A 74 D7 29 7A FA 93 98 F5 B7 D5 0A 7E 19 C6 F4 3C A.2.2 Curve id-GostR3410-2001-CryptoPro-B-ParamSet The input protocol parameters in this example take the following values: N = 1 ind = 1 ID_A: 00 00 00 00 ID_B: 00 00 00 00 PW: 31 32 33 34 35 36 ('123456') salt: 29 23 BE 84 E1 6C D6 AE 52 90 49 F1 F1 BB E9 EB Q_ind: X = 0x41C1F2635CDE577B65E2711E82B1D9BFFD91CE913F94BA2618EB2F218765C921 Y = 0x2A0637CE2E808540B80FCF06E496CE4495E2C7CE112990E9F54E9771318C9E01 The function F (PW, salt, 2000) takes the following values: F(PW,salt,2000): BD 04 67 3F 71 49 B1 8E 98 15 5B D1 E2 72 4E 71 D0 09 9A A2 51 74 F7 92 D3 32 6C 6F 18 12 70 67 The coordinates of the point Q_PW are: X = 0x09472603E9B4091241349C7355148D245C2477B7C5027BD7A846600B10C19CE0 Y = 0x20D8BF5708998671E5D40431AED9BCB92D37E0FB74ED15B7265DE8B8620815EF During the calculation of the message u_1 on the subject A the parameter alpha, the point alpha*P and the message u_1 take the following values: alpha=0x499D72B90299CAB0DA1F8BE19D9122F622A13B32B730C46BD0664044F2144FAD alpha*P: X = 0x61D6F916DB717222D74877F179F7EBEF7CD4D24D8C1F523C048E34A1DF30F8DD Y = 0x3EC48863049CFCFE662904082E78503F4973A4E105E2F1B18C69A5E7FB209000 u_1: X = 0x2375FDFC25F6E8BC73572909CC0535C765A10695B4192DC658EBF548D989243C Y = 0x755B0C4F57D55443312DFDB2457799A1706B94DF0F52AD6A2BD99B6FA1D6DA0F During processing a message u_1, calculation the K_B key and the message u_2 on the subject B the parameters betta, src, K_B = HASH(src), betta*P and u_2 take the following values: betta=0x0F69FF614957EF83668EDC2D7ED614BE76F7B253DB23C5CC9C52BF7DF8F4669D src: 50 14 0A 5D ED 33 43 EF C8 25 7B 79 E6 46 D9 F0 DF 43 82 8C 04 91 9B D4 60 C9 7A D1 4B A3 A8 6B 00 C4 06 B5 74 4D 8E B1 49 DC 8E 7F C8 40 64 D8 53 20 25 3E 57 A9 B6 B1 3D 0D 38 FE A8 EE 5E 0A K_B: A6 26 DE 01 B1 68 0F F7 51 30 09 12 2B CE E1 89 68 83 39 4F 96 03 01 72 45 5C 9A E0 60 CC E4 4A betta*P: X = 0x33BC6F7E9C0BA10CFB2B72546C327171295508EA97F8C8BA9F890F2478AB4D6C Y = 0x75D57B396C396F492F057E9222CCC686437A2AAD464E452EF426FC8EEED1A4A6 u_2: X = 0x2B68ECA785C336DD6DAC136F81BC7DF626629FB5843B51CC613E84B932E89C2A Y = 0x5E2D3621E6365AFFD90B294E3AB86C68FF51A2F8A730F2861DC67BDC693C407F During processing a message u_2 and calculation the key on the subject A the K_A key takes the following value: K_A: A6 26 DE 01 B1 68 0F F7 51 30 09 12 2B CE E1 89 68 83 39 4F 96 03 01 72 45 5C 9A E0 60 CC E4 4A The message MAC_A=HMAC (K_A, 0x01 || ID_A || ind || salt || u_1 || u_2) from the subject A takes the following value: MAC_A: 92 78 0B 53 0D 0A CE B8 03 48 75 5E 52 0A 6A 7A C8 78 B1 EA BF BD BB 2F 3B 4C 55 6E 57 8E 8F 53 The message MAC_B=HMAC (K_B, 0x02 || ID_B || ind || salt || u_1 || u_2) from the subject B takes the following value: MAC_B: 0D 53 A2 C3 0B B6 B8 F6 F0 7F 30 FE 83 F9 85 32 2B F7 C2 29 0E 11 93 D5 1B 3F 20 36 D2 10 32 F5 A.2.3 Curve id-GostR3410-2001-CryptoPro-C-ParamSet The input protocol parameters in this example take the following values: N = 1 ind = 1 ID_A: 00 00 00 00 ID_B: 00 00 00 00 PW: 31 32 33 34 35 36 ('123456') salt: 29 23 BE 84 E1 6C D6 AE 52 90 49 F1 F1 BB E9 EB Q_ind: X = 0x06EED2BC5DE91DE8DA7728FDDFA70659604BB12BF9F111282DA313DB8FA2CB0C Y = 0x881F29348D5E1D29B123A0E9D222C9C541DDE0F6D9F5958DABC372768B12C5F6 The function F (PW, salt, 2000) takes the following values: F(PW,salt,2000): BD 04 67 3F 71 49 B1 8E 98 15 5B D1 E2 72 4E 71 D0 09 9A A2 51 74 F7 92 D3 32 6C 6F 18 12 70 67 The coordinates of the point Q_PW are: X = 0x5CA067EC57D7376CF270C808A7E7D37736788E0575CAD74BFDC07AF541421DD3 Y = 0x9B0DCD79979AF5689D85EE9E8304053E5C3EEA6565428156BDDA995FC588C66C During the calculation of the message u_1 on the subject A the parameter alpha, the point alpha*P and the message u_1 take the following values: alpha=0x3A54AC3F19AD9D0B1EAC8ACDCEA70E581F1DAC33D13FEAFD81E762378639C1A8 alpha*P: X = 0x96B7F09C94D297C257A7DA48364C0076E59E48D221CBA604AE111CA3933B446A Y = 0x54E4953D86B77ECCEB578500931E822300F7E091F79592CA202A020D762C34A6 u_1: X = 0x919ACF0D8969A17F2D5CF8D2340237C26C747BD266BFC6CB8A17ABC95872EF26 Y = 0x18A4759F43951D553FCEF2D6C2F1013ED3BFD89243CE323EF5B5D87A68445ACD During processing a message u_1, calculation the K_B key and the message u_2 on the subject B the parameters betta, src, K_B = HASH(src), betta*P and u_2 take the following values: betta=0x448781782BF7C0E52A1DD9E6758FD3482D90D3CFCCF42232CF357E59A4D49FD4 src: 16 A1 2D 88 54 7E 1C 90 06 BA A0 08 E8 CB EC C9 D1 68 91 ED C8 36 CF B7 5F 8E B9 56 FA 76 11 94 D2 8E 25 DA D3 81 8D 16 3C 49 4B 05 9A 8C 70 A5 A1 B8 8A 7F 80 A2 EE 35 49 30 18 46 54 2C 47 0B K_B: BE 7E 7E 47 B4 11 16 F2 C7 7E 3B 8F CE 40 30 72 CA 82 45 0D 65 DE FC 71 A9 56 49 E4 DE EA EC EE betta*P: X = 0x4B9C0AB55A938121F282F48A2CC4396EB16E7E0068B495B0C1DD4667786A3EB7 Y = 0x223460AA8E09383E9DF9844C5A0F2766484738E5B30128A171B69A77D9509B96 u_2: X = 0x8F306F662D05C8B1E41828D8AA9C9E2B12F16D7FAF7D04C7FE92243EBB708C15 Y = 0x05783E1516FC20E93D69070D0199EA1C65DACE6375174B11D99216FD5EE53A23 During processing a message u_2 and calculation the key on the subject A the K_A key takes the following value: K_A: BE 7E 7E 47 B4 11 16 F2 C7 7E 3B 8F CE 40 30 72 CA 82 45 0D 65 DE FC 71 A9 56 49 E4 DE EA EC EE The message MAC_A=HMAC (K_A, 0x01 || ID_A || ind || salt || u_1 || u_2) from the subject A takes the following value: MAC_A: 94 6E A7 88 94 59 39 D0 67 8A CA 21 8C DB 3C 71 F4 8A C3 2D 4F 96 AE C9 E6 D1 58 EF 77 7E 5F A3 The message MAC_B=HMAC (K_B, 0x02 || ID_B || ind || salt || u_1 || u_2) from the subject B takes the following value: MAC_B: 31 CD DB F2 D0 1C 6E 96 59 CE 68 B7 A7 51 E5 ED D5 88 8D 1E 02 61 AA 2D F4 70 2F 47 64 E7 66 A7 A.2.4 Curve id-tc26-gost-3410-2012-512-paramSetA The input protocol parameters in this example take the following values: N = 1 ind = 1 ID_A: 00 00 00 00 ID_B: 00 00 00 00 PW: 31 32 33 34 35 36 ('123456') salt: 29 23 BE 84 E1 6C D6 AE 52 90 49 F1 F1 BB E9 EB Q_ind: X = 0x2A17F8833A32795327478871B5C5E88AEFB91126C64B4B8327289BEA62559425 D18198F133F400874328B220C74497CD240586CB249E158532CB8090776CD61C Y = 0x8D70F3B58C4B725BE316D7CA7052D94B8591F6B16C9D4517DAA607C3223B13C5 B98942C8F812150B327A16696A39B3DBE1239DD417823F30780AE0BC9808DA02 The function F (PW, salt, 2000) takes the following values: F(PW,salt,2000): BD 04 67 3F 71 49 B1 8E 98 15 5B D1 E2 72 4E 71 D0 09 9A A2 51 74 F7 92 D3 32 6C 6F 18 12 70 67 1C 62 13 E3 93 0E FD DA 26 45 17 92 C6 20 81 22 EE 60 D2 00 52 0D 69 5D FD 9F 5F 0F D5 AB A7 02 The coordinates of the point Q_PW are: X = 0x0C0AB53D0E0A9C607CAD758F558915A0A7DC5DC87B45E9A58FDDF30EC3385960 283E030CD322D9E46B070637785FD49D2CD711F46807A24C40AF9A42C8E2D740 Y = 0x206C57FED4792C5C2B075B2B7825EA038C614CE4DF4C4F17373FCD5507F8D39C C83082A4BFB8E61A4BBF83BE265CDE95F735963D8EB7B16128D47555AD1D723C During the calculation of the message u_1 on the subject A the parameter alpha, the point alpha*P and the message u_1 take the following values: alpha=0x3CE54325DB52FE798824AEAD11BB16FA766857D04A4AF7D468672F16D90E7396 046A46F815693E85B1CE5464DA9270181F82333B0715057BBE8D61D400505F0E alpha*P: X = 0xB93093EB0FCC463239B7DF276E09E592FCFC9B635504EA4531655D76A0A3078E 2B4E51CFE2FA400CC5DE9FBE369DB204B3E8ED7EDD85EE5CCA654C1AED70E396 Y = 0x809770B8D910EA30BD2FA89736E91DC31815D2D9B31128077EEDC371E9F69466 F497DC64DD5B1FADC587F860EE256109138C4A9CD96B628E65A8F590520FC882 u_1: X = 0x81D5279D82647E0C294FF8D812E034D7B5260EB906279EB17A61A17A3B9B0FBC E40DEA14329CE2DF5F89F74E833BFD023A5B8CD88AB8B4AC9B74572D5D33C58B Y = 0x06648C66E449DF2F2FD59C07B60DAC6787A212FD7033F76D6A447403A10F91E2 B50F64C2E769DFC56B126546DA5CFD43E41E47A30A69C437996A3E9D5E5922D2 During processing a message u_1, calculation the K_B key and the message u_2 on the subject B the parameters betta, src, K_B = HASH(src), betta*P and u_2 take the following values: betta=0xB5C286A79AA8E97EC0E19BC1959A1D15F12F8C97870BA9D68CC12811A56A3BB1 1440610825796A49D468CDC9C2D02D76598A27973D5960C5F50BCE28D8D345F4 src: 84 59 C2 0C B5 C5 32 41 6D B9 28 EB 50 C0 52 0F B2 1B 9C D3 9A 4E 76 06 B2 21 BE 15 CA 1D 02 DA 08 15 DE C4 49 79 C0 8C 7D 23 07 AF 24 7D DA 1F 89 EC 81 20 69 F5 D9 CD E3 06 AF F0 BC 3F D2 6E D2 01 B9 53 52 A2 56 06 B6 43 E8 88 30 2E FC 8D 3E 95 1E 3E B4 68 4A DB 5C 05 7B 8F 8C 89 B6 CC 0D EE D1 00 06 5B 51 8A 1C 71 7F 76 82 FF 61 2B BC 79 8E C7 B2 49 0F B7 00 3F 94 33 87 37 1C 1D K_B: 53 24 DE F8 48 B6 63 CC 26 42 2F 5E 45 EE C3 4C 51 D2 43 61 B1 65 60 CA 58 A3 D3 28 45 86 CB 7A betta*P: X = 0x238B38644E440452A99FA6B93D9FD7DA0CB83C32D3C1E3CFE5DF5C3EB0F9DB91 E588DAEDC849EA2FB867AE855A21B4077353C0794716A6480995113D8C20C7AF Y = 0xB2273D5734C1897F8D15A7008B862938C8C74CA7E877423D95243EB7EBD02FD2 C456CF9FC956F078A59AA86F19DD1075E5167E4ED35208718EA93161C530ED14 u_2: X = 0xDB665DF5A55A855A807445BD816398AFD810A1FF9328D39C2E7C92B350592EB9 15188922C58CD82DCD09480F8C6C9E714683F759CFB0C69314ACFE4814C482B4 Y = 0x1280DB5628E13CD177B06D5F4745104B09260BEAF4089917B96EC61953A42EDF DC24852CA32C8DEA84D6F1B745EABF23E3042AFAE32FD6A25E652128B83C2B00 During processing a message u_2 and calculation the key on the subject A the K_A key takes the following value: K_A: 53 24 DE F8 48 B6 63 CC 26 42 2F 5E 45 EE C3 4C 51 D2 43 61 B1 65 60 CA 58 A3 D3 28 45 86 CB 7A The message MAC_A=HMAC (K_A, 0x01 || ID_A || ind || salt || u_1 || u_2) from the subject A takes the following value: MAC_A: D6 8B 7B A4 3B E5 38 DB 16 3B 91 0B 62 FF 9B 06 C1 89 1C F4 E9 5E DE CB 92 26 21 89 F2 3D 28 D6 The message MAC_B=HMAC (K_B, 0x02 || ID_B || ind || salt || u_1 || u_2) from the subject B takes the following value: MAC_B: 02 B1 AA 10 48 AF 93 7B C8 78 D0 7C 3C 83 D2 A6 63 FC 1E A3 4F 97 BA 0A 37 03 AA CC C9 96 2D A8 A.2.5 Curve id-tc26-gost-3410-2012-512-paramSetB The input protocol parameters in this example take the following values: N = 1 ind = 1 ID_A: 00 00 00 00 ID_B: 00 00 00 00 PW: 31 32 33 34 35 36 ('123456') salt: 29 23 BE 84 E1 6C D6 AE 52 90 49 F1 F1 BB E9 EB Q_ind: X = 0x7E1FAE8285E035BEC244BEF2D0E5EBF436633CF50E55231DEA9C9CF21D4C8C33 DF85D4305DE92971F0A4B4C07E00D87BDBC720EB66E49079285AAF12E0171149 Y = 0x2CC89998B875D4463805BA0D858A196592DB20AB161558FF2F4EF7A85725D209 53967AE621AFDEAE89BB77C83A2528EF6FCE02F68BDA4679D7F2704947DBC408 The function F (PW, salt, 2000) takes the following values: F(PW,salt,2000): BD 04 67 3F 71 49 B1 8E 98 15 5B D1 E2 72 4E 71 D0 09 9A A2 51 74 F7 92 D3 32 6C 6F 18 12 70 67 1C 62 13 E3 93 0E FD DA 26 45 17 92 C6 20 81 22 EE 60 D2 00 52 0D 69 5D FD 9F 5F 0F D5 AB A7 02 The coordinates of the point Q_PW are: X = 0x7D03E65B8050D1E12CBB601A17B9273B0E728F5021CD47C8A4DD822E4627BA5F 9C696286A2CDDA9A065509866B4DEDEDC4A118409604AD549F87A60AFA621161 Y = 0x16037DAD45421EC50B00D50BDC6AC3B85348BC1D3A2F85DB27C3373580FEF87C 2C743B7ED30F22BE22958044E716F93A61CA3213A361A2797A16A3AE62957377 During the calculation of the message u_1 on the subject A the parameter alpha, the point alpha*P and the message u_1 take the following values: alpha=0x715E893FA639BF341296E0623E6D29DADF26B163C278767A7982A989462A3863 FE12AEF8BD403D59C4DC4720570D4163DB0805C7C10C4E818F9CB785B04B9997 alpha*P: X = 0x10C479EA1C04D3C2C02B0576A9C42D96226FF033C1191436777F66916030D87D 02FB93738ED7669D07619FFCE7C1F3C4DB5E5DF49E2186D6FA1E2EB5767602B9 Y = 0x039F6044191404E707F26D59D979136A831CCE43E1C5F0600D1DDF8F39D0CA3D 52FBD943BF04DDCED1AA2CE8F5EBD7487ACDEF239C07D015084D796784F35436 u_1: X = 0x45C05CCE8290762F2470B719B4306D62B2911CEB144F7F72EF11D10498C7E921 FF163FE72044B4E7332AD8CBEC3C12117820F53A60762315BCEB5BC6DA5CF1E0 Y = 0x5BE483E382D0F5F0748C4F6A5045D99E62755B5ACC9554EC4A5B2093E121A2DD 5C6066BC9EDE39373BA19899208BB419E38B39BBDEDEB0B09A5CAAEAA984D02E During processing a message u_1, calculation the K_B key and the message u_2 on the subject B the parameters betta, src, K_B = HASH(src), betta*P and u_2 take the following values: betta=0x30FA8C2B4146C2DBBE82BED04D7378877E8C06753BD0A0FF71EBF2BEFE8DA8F3 DC0836468E2CE7C5C961281B6505140F8407413F03C2CB1D201EA1286CE30E6D src: 3F 04 02 E4 0A 9D 59 63 20 5B CD F4 FD 89 77 91 9B BA F4 80 F8 E4 FB D1 25 5A EC E6 ED 57 26 4B D0 A2 87 98 4F 59 D1 02 04 B5 F4 5E 4D 77 F3 CF 8A 63 B3 1B EB 2D F5 9F 8A F7 3C 20 9C CA 8B 50 B4 18 D8 01 E4 90 AE 13 3F 04 F4 F3 F4 D8 FE 8E 19 64 6A 1B AF 44 D2 36 FC C2 1B 7F 4D 8F C6 A1 E2 9D 6B 69 AC CE ED 4E 62 AB B2 0D AD 78 AC F4 FE B0 ED 83 8E D9 1E 92 12 AB A3 89 71 4E 56 0C K_B: D5 90 E0 5E F5 AE CE 8B 7C FB FC 71 BE 45 5F 29 A5 CC 66 6F 85 CD B1 7E 7C C7 16 C5 9F F1 70 E9 betta*P: X = 0x34C0149E7BB91AE377B02573FCC48AF7BFB7B16DEB8F9CE870F384688E3241A3 A868588CC0EF4364CCA67D17E3260CD82485C202ADC76F895D5DF673B1788E67 Y = 0x608E944929BD643569ED5189DB871453F13333A1EAF82B2FE1BE8100E775F13D D9925BD317B63BFAF05024D4A738852332B64501195C1B2EF789E34F23DDAFC5 u_2: X = 0x0535F95463444C4594B5A2E14B35760491C670925060B4BEBC97DE3A3076D1A5 81F89026E04282B040925D9250201024ACA4B2713569B6C3916A6F3344B840AD Y = 0x40E6C2E55AEC31E7BCB6EA0242857FC6DFB5409803EDF4CA20141F72CC3C7988 706E076765F4F004340E5294A7F8E53BA59CB67502F0044558C854A7D63FE900 During processing a message u_2 and calculation the key on the subject A the K_A key takes the following value: K_A: D5 90 E0 5E F5 AE CE 8B 7C FB FC 71 BE 45 5F 29 A5 CC 66 6F 85 CD B1 7E 7C C7 16 C5 9F F1 70 E9 The message MAC_A=HMAC (K_A, 0x01 || ID_A || ind || salt || u_1 || u_2) from the subject A takes the following value: MAC_A: DE 46 BB 4C 8C E0 8A 6E F3 B8 DF AC CC 1A 39 B0 8D 8C 27 B6 CB 0F CF 59 23 86 A6 48 F4 E5 BD 8C The message MAC_B=HMAC (K_B, 0x02 || ID_B || ind || salt || u_1 || u_2) from the subject B takes the following value: MAC_B: EC B1 1D E2 06 1C 55 F1 D1 14 59 CB 51 CE 31 40 99 99 99 2F CA A1 22 2F B1 4F CE AB 96 EE 7A AC A.2.6 Curve id-tc26-gost-3410-2012-256-paramSetA The input protocol parameters in this example take the following values: N = 1 ind = 1 ID_A: 00 00 00 00 ID_B: 00 00 00 00 PW: 31 32 33 34 35 36 ('123456') salt: 29 23 BE 84 E1 6C D6 AE 52 90 49 F1 F1 BB E9 EB Q_ind: X = 0x79507C89B398D65666110C4A0B1AA72CD1E31E49FC0F8B28623D1376D86C5924 Y = 0x88FF65CB730D2AEEB81F8C2B45AFA2A5E3F34558DC7CBC42E7DB56E063F18041 The function F (PW, salt, 2000) takes the following values: F(PW,salt,2000): BD 04 67 3F 71 49 B1 8E 98 15 5B D1 E2 72 4E 71 D0 09 9A A2 51 74 F7 92 D3 32 6C 6F 18 12 70 67 The coordinates of the point Q_PW are: X = 0x310C046307536414C193126268A2F28B969D262B318A45F3765DD1E31C06D4DE Y = 0x156F7711D121329F7FA5AB0708A694BF1DE799CFC467EAAB83707521B1DDD652 During the calculation of the message u_1 on the subject A the parameter alpha, the point alpha*P and the message u_1 take the following values: alpha=0x147B72F6684FB8FD1B418A899F7DBECAF5FCE60B13685BAA95328654A7F0707F alpha*P: X = 0x33FBAC14EAE538275A769417829C431BD9FA622B6F02427EF55BD60EE6BC2888 Y = 0x22F2EBCF960A82E6CDB4042D3DDDA511B2FBA925383C2273D952EA2D406EAE46 u_1: X = 0x88736306F23710439D24AD67EA89CEF401856C4DC1D717DFBB781FD29B1A7353 Y = 0x067EFCB7A00E752C92EDF694B7D3D04948A1B457793495A466078F776F3E951F During processing a message u_1, calculation the K_B key and the message u_2 on the subject B the parameters betta, src, K_B = HASH(src), betta*P and u_2 take the following values: betta=0x30D5CFADAA0E31B405E6734C03EC4C5DF0F02F4BA25C9A3B320EE6453567B4CB src: A3 39 A0 B8 9C EF 1A 6F FD 4C A1 28 04 9E 06 84 DF 4A 97 75 B6 89 A3 37 84 1B F7 D7 91 20 7F 35 11 86 28 F7 28 8E AA 0F 7E C8 1D A2 0A 24 FF 1E 69 93 C6 3D 9D D2 6A 90 B7 4D D1 A2 66 28 06 63 K_B: 7D F7 1A C3 27 ED 51 7D 0D E4 03 E8 17 C6 20 4B C1 91 65 B9 D1 00 2B 9F 10 88 A6 CD A6 EA CF 27 betta*P: X = 0x2B2D89FAB735433970564F2F28CFA1B57D640CB902BC6334A538F44155022CB2 Y = 0x10EF6A82EEF1E70F942AA81D6B4CE5DEC0DDB9447512962874870E6F2849A96F u_2: X = 0xA7D1F51754416E65D3DEAEF33E93FB72572AA954392D306F15DC28922A73A4CC Y = 0x5F8CE8692B52EE616BE3554A42983E9B6C22CF14521F625FE9A9A0D4B35C7408 During processing a message u_2 and calculation the key on the subject A the K_A key takes the following value: K_A: 7D F7 1A C3 27 ED 51 7D 0D E4 03 E8 17 C6 20 4B C1 91 65 B9 D1 00 2B 9F 10 88 A6 CD A6 EA CF 27 The message MAC_A=HMAC (K_A, 0x01 || ID_A || ind || salt || u_1 || u_2) from the subject A takes the following value: MAC_A: 9C 39 A4 4F B4 B0 41 4B 3C 7E 0D 93 7E 5D 18 86 90 15 66 88 74 24 92 6C 22 B3 F8 93 F2 F8 13 98 The message MAC_B=HMAC (K_B, 0x02 || ID_B || ind || salt || u_1 || u_2) from the subject B takes the following value: MAC_B: 4C CB 94 EB 2E 29 E5 4E 47 15 61 F3 B9 19 F3 3F 47 6D DD 10 28 56 59 8C 59 78 9B 86 FC 2B 47 BB A.2.7 Curve id-tc26-gost-3410-2012-512-paramSetC The input protocol parameters in this example take the following values: N = 1 ind = 1 ID_A: 00 00 00 00 ID_B: 00 00 00 00 PW: 31 32 33 34 35 36 ('123456') salt: 29 23 BE 84 E1 6C D6 AE 52 90 49 F1 F1 BB E9 EB Q_ind: X = 0x489C91784E02E98F19A803ABCA319917F37689E5A18965251CE2FF4E8D8B298F 5BA7470F9E0E713487F96F4A8397B3D09A270C9D367EB5E0E6561ADEEB51581D Y = 0x97B1577A5359B150E4C011C93F7AD5C41C427FEE4F10E71DFC0078FD72914A24 D3EBB5F2338ED89ABD4028D35D5BC05B0B6C625992659F86C38FB5736B1E8EAF The function F (PW, salt, 2000) takes the following values: F(PW,salt,2000): BD 04 67 3F 71 49 B1 8E 98 15 5B D1 E2 72 4E 71 D0 09 9A A2 51 74 F7 92 D3 32 6C 6F 18 12 70 67 1C 62 13 E3 93 0E FD DA 26 45 17 92 C6 20 81 22 EE 60 D2 00 52 0D 69 5D FD 9F 5F 0F D5 AB A7 02 The coordinates of the point Q_PW are: X = 0x0185AE6271A81BB7F236A955F7CAA26FB63849813C0287D96C83A15AE6B6A864 67AB13B6D88CE8CD7DC2E5B97FF5F28FAC2C108F2A3CF3DB5515C9E6D7D210E8 Y = 0x12FDDF06D1088E58E39B133886792483FC2C84C1D54C17C0CD31A1F8B589D13F 7DAC361DEFD478ACD99ED8A3B4E2E92D87632543A7530208CE7218F549B0F40F During the calculation of the message u_1 on the subject A the parameter alpha, the point alpha*P and the message u_1 take the following values: alpha=0x332F930421D14CFE260042159F18E49FD5A54167E94108AD80B1DE60B13DE799 9A34D611E63F3F870E5110247DF8EC7466E648ACF385E52CCB889ABF491EDFF0 alpha*P: X = 0x561655966D52952E805574F4281F1ED3A2D498932B00CBA9DECB42837F09835B FFBFE2D84D6B6B242FE7B57F92E1A6F2413E12DDD6383E4437E13D72693469AD Y = 0xF6B18328B2715BD7F4178615273A36135BC0BF62F7D8BB9F080164AD36470AD0 3660F51806C64C6691BADEF30F793720F8E3FEAED631D6A54A4C372DCBF80E82 u_1: X = 0xC20633FEA34B846489F627BBB1835E436FAA3DBA002C9C47921F28A976384962 A159C3E7F3F85797E1BAA86F17B290DD9DA86D829241422D37AB144D2C088BB4 Y = 0x31D6F6B1639D175C285316459B08713D69033166D854EEB1C72B27CBAA6916C4 606830B58F231CAC380797F81492EDE7558C21FEC01088A5C562BCD4D6E50F6C During processing a message u_1, calculation the K_B key and the message u_2 on the subject B the parameters betta, src, K_B = HASH(src), betta*P and u_2 take the following values: betta=0x38481771E7D054F96212686B613881880BD8A6C89DDBC656178F014D2C093432 A033EE10415F13A160D44C2AD61E6E2E05A7F7EC286BCEA3EA4D4D53F8634FA2 src: 4F 4D 64 B5 D0 70 08 E9 E6 85 87 4F 88 2C 3E 1E 60 A6 67 5E ED 42 1F C2 34 16 3F DE B4 4C 69 18 B7 BC CE AB 88 A0 F3 FB 78 8D A8 DB 10 18 51 FF 1A 41 68 22 BA 37 C3 53 CE C4 C5 A5 23 95 B7 72 AC 93 C0 54 E3 F4 05 5C ED 6F F0 BE E4 A6 A2 4E D6 8B 86 FE FA 70 DE 4A 2B 16 08 51 42 A4 DF F0 5D 32 EC 7D DF E3 04 F5 C7 04 FD FA 06 0F 64 E9 E8 32 14 00 25 F3 92 E5 03 50 77 0E 3F B6 2C AC K_B: A0 83 84 A6 2F 4B E1 AE 48 98 FC A3 6D AA 3F AA 45 1B 3E C5 B5 9C E3 75 F8 9E 92 9F 4B 13 25 8C betta*P: X = 0xB7C5818687083433BC1AFF61CB5CA79E38232025E0C1F123B8651E62173CE687 3F3E6FFE7281C2E45F4F524F66B0C263616ED08FD210AC4355CA3292B51D71C3 Y = 0x497F14205DBDC89BDDAF50520ED3B1429AD30777310186BE5E68070F016A44E0 C766DB08E8AC23FBDFDE6D675AA4DF591EB18BA0D348DF7AA40973A2F1DCFA55 u_2: X = 0x5C371E68D05C2919FE0B82B74E0B44F267F9A76EC8FE4DCD0B0D60C16D497BFE 5B741FDB98BBE0C254BE39F81FE53B907F07947723C92784F9724DF014F07346 Y = 0xF55086C0B4737A566F0CD27EF24905E686F168C3F07E294DBCD21ECF01FAF82A 56925311046B8029098232FA61DA9A1B756FE5CFCCCC23101766C113E1226B42 During processing a message u_2 and calculation the key on the subject A the K_A key takes the following value: K_A: A0 83 84 A6 2F 4B E1 AE 48 98 FC A3 6D AA 3F AA 45 1B 3E C5 B5 9C E3 75 F8 9E 92 9F 4B 13 25 8C The message MAC_A=HMAC (K_A, 0x01 || ID_A || ind || salt || u_1 || u_2) from the subject A takes the following value: MAC_A: A5 74 AD 15 AC FD 81 A1 46 DC E9 0B 15 79 96 DD 23 EA 33 43 D8 2A 06 A1 95 36 B8 84 59 23 F9 5A The message MAC_B=HMAC (K_B, 0x02 || ID_B || ind || salt || u_1 || u_2) from the subject B takes the following value: MAC_B: 04 12 AA 7E B2 8D AE 3A 98 5C 32 C2 72 C9 8F 81 62 8D 39 E7 A3 FA 36 C4 AB C5 4F 87 57 6E F8 A9