lwig | R. Struik |
Internet-Draft | Struik Security Consultancy |
Intended status: Informational | July 19, 2018 |
Expires: January 20, 2019 |
Alternative Elliptic Curve Representations
draft-struik-lwig-curve-representations-01
This document specifies how to represent Montgomery curves and (twisted) Edwards curves as curves in short-Weierstrass form and illustrates how this can be used to implement elliptic curve computations using existing implementations that already implement, e.g., ECDSA and ECDH using NIST prime curves.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on January 20, 2019.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
It is well-known that elliptic curves can be represented using different curve models. Recently, IETF standardized elliptic curves that are claimed to have better performance and improved robustness against "real world" attacks than curves represented in the traditional "short" Weierstrass model. This draft specifies an alternative representation of points of Curve25519, a so-called Montgomery curve, and of points of Edwards25519, a so-called twisted Edwards curve, which are both specified in [RFC7748], as points of a specific so-called "short" Weierstrass curve, called Wei25519. The draft also defines how to efficiently switch between these different representations.
Use of Wei25519 allows easy definition of signature schemes and key agreement schemes already specified for traditional NIST prime curves, thereby allowing easy integration with existing specifications, such as NIST SP 800-56a, FIPS Pub 186-4, and ANSI X9.62-2005 and fostering code reuse on platforms that already implement some of these schemes using elliptic curve arithmetic for curves in "short" Weierstrass form (see Appendix B.1).
For the specification of Wei25519 and its relationship to Curve25519 and Edwards25519, see Appendix D. For further details and background information on elliptic curves, we refer to the other appendices.
RFC 8032 [RFC8032] specifies the use of EdDSA, a "full" Schnorr signature scheme, with instantiation by Edwards25519 and Ed448, two so-called twisted Edwards curves. These curves can also be used with the widely implemented signature scheme ECDSA [FIPS-186-4], by instantiating ECDSA with the curve Wei25519 and hash function SHA-256, where "under the hood" an implementation may carry out elliptic curve scalar multiplication routines using the corresponding representations of a point of the curve Wei25519 in Weierstrass form as a point of the Montgomery curve Curve25519 or of the twisted Edwards curve Edwards25519. (The corresponding ECDSA-SHA512-448 scheme arises if one were to specify a curve in short-Weierstrass form corresponding to Ed448 and use the hash function SHA512.) Note that, in either case, one can implement these schemes with the same representation conventions as used with existing NIST specifications, including bit/byte-ordering, compression functions, and the-like. This allows implementations of ECDSA with the hash function SHA-256 and with the NIST curve P-256 or with the curve Wei25519 specified in this draft to use the same implementation (instantiated with, respectively, the NIST P-256 elliptic curve domain parameters or with the domain parameters of curve Wei25519 specified in Appendix D).
Any existing specification of cryptographic schemes using elliptic curves in Weierstrass form and that allows introduction of a new elliptic curve (here: Wei25519) is amenable to similar constructs, thus spawning "offspring" protocols, simply by instantiating these using the new curve in "short" Weierstrass form, thereby allowing code and/or specifications reuse and, for implementations that so desire, carrying out curve computations "under the hood" on Montgomery curve and twisted Edwards curve cousins hereof (where these exist). This would simply require definition of a new object identifier for any such envisioned "offspring" protocol. This could significantly simplify standardization of schemes and help keeping the resource and maintenance cost of implementations supporting algorithm agility [RFC7696] at bay.
The different representations of elliptic curve points discussed in this draft are all obtained using a publicly known transformation. Since this transformation is an isomorphism, this transformation maps elliptic curve points to equivalent mathematical objects.
There is *currently* no IANA action required for this document. New object identifiers would be required in case one wishes to specify one or more of the "offspring" protocols exemplified in Section 3.
Let GF(q) denote the finite field with q elements, where q is an odd prime power and where q is not divisible by three. Let W_{a,b} be the Weierstrass curve with defining equation y^2 = x^3 + a*x + b, where a and b are elements of GF(q) and where 4*a^3 + 27*b^2 is nonzero. The points of W_{a,b} are the ordered pairs (x, y) whose coordinates are elements of GF(q) and that satisfy the defining equation (the so-called affine points), together with the special point O (the so-called "point at infinity").This set forms a group under addition, via the so-called "chord-and-tangent" rule, where the point at infinity serves as the identity element. See Appendix B.1 for details of the group operation.
Let GF(q) denote the finite field with q elements, where q is an odd prime power. Let M_{A,B} be the Montgomery curve with defining equation B*v^2 = u^3 + A*u^2 + u, where A and B are elements of GF(q) with A unequal to (+/-)2 and with B nonzero. The points of M_{A,B} are the ordered pairs (u, v) whose coordinates are elements of GF(q) and that satisfy the defining equation (the so-called affine points), together with the special point O (the so-called "point at infinity").This set forms a group under addition, via the so-called "chord-and-tangent" rule, where the point at infinity serves as the identity element. See Appendix B.2 for details of the group operation.
Let GF(q) denote the finite field with q elements, where q is an odd prime power. Let E_{a,d} be the twisted Edwards curve with defining equation a*x^2 + y^2 = 1+ d*x^2*y^2, where a and d are distinct nonzero elements of GF(q). The points of E_{a,d} are the ordered pairs (x, y) whose coordinates are elements of GF(q) and that satisfy the defining equation (the so-called affine points). It can be shown that this set forms a group under addition if a is a square in GF(q), whereas d is not, where the point (0, 1) serves as the identity element. (Note that the identity element satisfies the defining equation.) See Appendix B.3 for details of the group operation. An Edwards curve is a twisted Edwards curve with a=1.
For each point P of the Weierstrass curve W_{a,b}, the point at infinity O serves as identity element, i.e., P + O = O + P = P.
For each affine point P:=(x, y) of the Weierstrass curve W_{a,b}, the point -P is the point (x, -y) and one has P + (-P) = O.
Let P1:=(x1, y1) and P2:=(x2, y2) be distinct affine points of the Weierstrass curve W_{a,b} and let Q:=P1 + P2, where Q is not the identity element. Then Q:=(x, y), where
Let P:= (x1, y1) be an affine point of the Weierstrass curve W_{a,b} and let Q:=2P, where Q is not the identity element. Then Q:= (x, y), where
For each point P of the Montgomery curve M_{A,B}, the point at infinity O serves as identity element, i.e., P + O = O + P = P.
For each affine point P:=(x, y) of the Montgomery curve M_{A,B}, the point -P is the point (x, -y) and one has P + (-P) = O.
Let P1:=(x1, y1) and P2:=(x2, y2) be distinct affine points of the Montgomery curve M_{A,B} and let Q:=P1 + P2, where Q is not the identity element. Then Q:=(x, y), where
Let P:= (x1, y1) be an affine point of the Montgomery curve M_{A,B} and let Q:=2P, where Q is not the identity element. Then Q:= (x, y), where
Alternative and more efficient group laws exist, e.g., when using the so-called Montgomery ladder. Details are out of scope.
Note: The group laws below hold for twisted Edwards curves E_{a,d} where a is a square in GF(q), whereas d is not. In this case, the addition formulae below are defined for each pair of points, without exceptions. Generalizations of this group law to other twisted Edwards curves are out of scope.
For each point P of the twisted Edwards curve E_{a,d}, the point O=(0,1) serves as identity element, i.e., P + O = O + P = P.
For each point P:=(x, y) of the twisted Edwards curve E_{a,d}, the point -P is the point (-x, y) and one has P + (-P) = O.
Let P1:=(x1, y1) and P2:=(x2, y2) be points of the twisted Edwards curve E_{a,d} and let Q:=P1 + P2. Then Q:=(x, y), where
Let P:=(x1, y1) be a point of the twisted Edwards curve E_{a,d} and let Q:=2P. Then Q:=(x, y), where
Note that one can use the formulae for point addition to implement point doubling, taking inverses and adding the identity element as well (i.e., the point addition formulae are uniform and complete (subject to our Note above)).
The non-binary curves specified in Appendix A are expressed in different curve models, viz. as curves in short-Weierstrass form, as Montgomery curves, or as twisted Edwards curves. These curve models are related, as follows.
One can map points of the Montgomery curve M_{A,B} to points of the twisted Edwards curve E_{a,d}, where a:=(A+2)/B and d:=(A-2)/B and, conversely, map points of the twisted Edwards curve E_{a,d} to points of the Montgomery curve M_{A,B}, where A:=2(a+d)/(a-d) and where B:=4/(a-d). For twisted Edwards curves we consider (i.e., those where a is a square in GF(q), whereas d is not), this defines a one-to-one correspondence, which - in fact - is an isomorphism between M_{A,B} and E_{a,d}, thereby showing that, e.g., the discrete logarithm problem in either curve model is equally hard.
For the Montgomery curves and twisted Edwards curves we consider, the mapping from M_{A,B} to E_{a,d} is defined by mapping the point at infinity O and the point (0, 0) of order two of M_{A,B} to, respectively, the point (0, 1) and the point (0, -1) of order two of E_{a,d}, while mapping each other point (u, v) of M_{A,B} to the point (x, y):=(u/v, (u-1)/(u+1)) of E_{a,d}. The inverse mapping from E_{a,d} to M_{A,B} is defined by mapping the point (0, 1) and the point (0, -1) of order two of E_{a,d} to, respectively, the point at infinity O and the point (0, 0) of order two of M_{A,B}, while each other point (x, y) of E_{a,d} is mapped to the point (u, v):=((1+y)/(1-y), (1+y)/((1-y)*x)) of M_{A,B}.
Implementations may take advantage of this mapping to carry out elliptic curve group operations originally defined for a twisted Edwards curve on the corresponding Montgomery curve, or vice-versa, and translating the result back to the original curve, thereby potentially allowing code reuse.
One can map points of the Montgomery curve M_{A,B} to points of the Weierstrass curve W_{a,b}, where a:=(3-A^2)/(3*B^2) and b:=(2*A^3-9*A)/(27*B^3). This defines a one-to-one correspondence, which - in fact - is an isomorphism between M_{A,B} and W_{a,b}, thereby showing that, e.g., the discrete logarithm problem in either curve model is equally hard.
The mapping from M_{A,B} to W_{a,b} is defined by mapping the point at infinity O of M_{A,B} to the point at infinity O of W_{a,b}, while mapping each other point (u, v) of M_{A,B} to the point (x, y):=(u/B+A/(3*B), v/B) of W_{a,b}. Note that not all Weierstrass curves can be injectively mapped to Montgomery curves, since the latter have a point of order two and the former may not. In particular, if a Weierstrass curve has prime order, such as is the case with the so-called "NIST curves", this inverse mapping is not defined.
This mapping can be used to implement elliptic curve group operations originally defined for a twisted Edwards curve or for a Montgomery curve using group operations on the corresponding elliptic curve in short-Weierstrass form and translating the result back to the original curve, thereby potentially allowing code reuse. Note that implementations for elliptic curves with short-Weierstrass form that hard-code the domain parameter a to a= -3 (which value is known to allow more efficient implementations) cannot always be used this way, since the curve W_{a,b} may not always be expressed in terms of a Weierstrass curve with a=-3 via a coordinate transformation.
One can map points of the twisted Edwards curve E_{a,d} to points of the Weierstrass curve W_{a,b}, via function composition, where one uses the isomorphic mapping between twisted Edwards curve and Montgomery curves of Appendix C.1 and the one between Montgomery and Weierstrass curves of Appendix C.2. Obviously, one can use function composition (now using the respective inverses) to realize the inverse of this mapping.
The elliptic curve Curve25519 is the Montgomery curve M_{A,B} defined over the prime field GF(p), with p:=2^{255}-19, where A:=486662 and B:=1. This curve has order h*n, where h=8 and where n is a prime number. For this curve, A^2-4 is not a square in GF(p), whereas A+2 is. The quadratic twist of this curve has order h1*n1, where h1=4 and where n1 is a prime number. For this curve, the base point is the point (Gu,Gv), where Gu=9 and where Gv is an odd integer in the interval [0, p-1].
This curve has the same group structure as (is "isomorphic" to) the twisted Edwards curve E_{a,d} defined over GF(p), with as base point the point (Gx,Gy), where parameters are as specified in Appendix D.3. This curve is denoted as Edwards25519. For this curve, the parameter a is a square in GF(p), whereas d is not, so the group laws of Appendix B.3 apply.
The curve is also isomorphic to the elliptic curve W_{a,b} in short-Weierstrass form defined over GF(p), with as base point the point (Gx',Gy'), where parameters are as specified in Appendix D.3. This curve is denoted as Wei25519.
Each point (u,v) of Curve25519 corresponds to the point (x,y):=(u + A/3,y) of Wei25519, while the point at infinity of Curve25519 corresponds to the point at infinity of Wei25519. (Here, we used the mapping of Appendix C.2.) Under this mapping, the base point (Gu,Gv) of Curve25519 corresponds to the base point (Gx',Gy') of Wei25519. The inverse mapping maps the point (x,y) on Wei25519 to (u,v):=(x - A/3,y) on Curve25519, while mapping the point at infinity of Wei25519 to the point at infinity on Curve25519. Note that this mapping involves a simple shift of the first coordinate and can be implemented via integer-only arithmetic as a shift of (p+A)/3 for the isomorphic mapping and a shift of -(p+A)/3 for its inverse, where delta=(p+A)/3 is the element of GF(p) defined by
The curve Edwards25519 is isomorphic to the curve Curve25519, where the base point (Gu,Gv) of Curve25519 corresponds to the base point (Gx,Gy) of Edwards25519 and where the point at infinity and the point (0,0) of order two of Curve25519 correspond to, respectively, the point (0, 1) and the point (0, -1) of order two of Edwards25519 and where each other point (u, v) of Curve25519 corresponds to the point (c*u/v, (u-1)/(u+1)) of Edwards25519, where c is the element of GF(p) defined by Appendix C.1.) The inverse mapping from Edwards25519 to Curve25519 is defined by mapping the point (0, 1) and the point (0, -1) of order two of Edwards25519 to, respectively, the point at infinity and the point (0,0) of order two of Curve25519 and having each other point (x, y) of Edwards25519 correspond to the point ((1 + y)/(1 - y), c*(1 + y)/((1-y)*x)).
(Here, we used the mapping of
The curve Edwards25519 is isomorphic to the Weierstrass curve Wei25519, where the base point (Gx,Gy) of Edwards25519 corresponds to the base point (Gx',Gy') of Wei25519 and where the identity element (0,1) and the point (0,-1) of order two of Edwards25519 correspond to, respectively, the point at infinity O and the point (A/3, 0) of order two of Wei25519 and where each other point (x, y) of Edwards25519 corresponds to the point (x', y'):=((1+y)/(1-y)+A/3, c*(1+y)/((1-y)*x)) of Wei25519, where c was defined before. (Here, we used the mapping of Appendix C.3.) The inverse mapping from Wei25519 to Edwards25519 is defined by mapping the point at infinity O and the point (A/3, 0) of order two of Wei25519 to, respectively, the identity element (0,1) and the point (0,-1) of order two of Edwards25519 and having each other point (x, y) of Wei25519 correspond to the point (c*(3*x-A)/(3*y), (3*x-A-3)/(3*x-A+3)).
Note that these mappings can be easily realized in projective coordinates, using a few field multiplications only, thus allowing switching between alternative representations with negligible relative incremental cost.
The parameters of the Montgomery curve and the corresponding isomorphic curves in twisted Edwards curve and short-Weierstrass form are as indicated below. Here, the domain parameters of the Montgomery curve Curve25519 and of the twisted Edwards curve Edwards25519 are as specified in RFC 7748; the domain parameters of Wei25519 are "new".
General parameters (for all curve models):
Montgomery curve-specific parameters (for Curve25519):
Twisted Edwards curve-specific parameters (for Edwards25519):
Weierstrass curve-specific parameters (for Wei25519):