ippm | B. Weis |
Internet-Draft | Independent |
Intended status: Standards Track | F. Brockners |
Expires: October 30, 2020 | C. Hill |
S. Bhandari | |
V. Govindan | |
C. Pignataro | |
Cisco | |
H. Gredler | |
RtBrick Inc. | |
J. Leddy | |
S. Youell | |
JMPC | |
T. Mizrahi | |
Huawei Network.IO Innovation Lab | |
A. Kfir | |
B. Gafni | |
Mellanox Technologies, Inc. | |
P. Lapukhov | |
M. Spiegel | |
Barefoot Networks, an Intel company | |
April 28, 2020 |
EtherType Protocol Identification of In-situ OAM Data
draft-weis-ippm-ioam-eth-03
In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document defines an EtherType that identifies IOAM data fields as being the next protocol in a packet, and a header that encapsulates the IOAM data fields.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on October 30, 2020.
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a particular network domain. The term "in-situ" refers to the fact that the IOAM data fields are added to the data packets rather than being sent within packets specifically dedicated to OAM. This document defines how IOAM data fields are carried as part of encapsulations where the IOAM data follows a header that uses an EtherType to denote the next protocol in the packet. Examples of these protocols are GRE [RFC2890] and Geneve [I-D.ietf-nvo3-geneve]). This document outlines how IOAM data fields are encoded in these protocols.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Abbreviations used in this document:
When the IOAM data fields are included within an encapsulation that identifies the next protocol using an EtherType (e.g., GRE or Geneve) the presence of IOAM data fields are identified with TBD_IOAM. When this EtherType is used, an additional IOAM header is also included. This header indicates the type of IOAM data that follows, and the next protocol that follows the IOAM data.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | IOAM-Type | IOAM HDR len| Next Protocol | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ ! | ! | ~ IOAM Option and Data Space ~ | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The IOAM encapsulation is defined as follows.
Multiple IOAM options MAY be included within the IOAM Option and Data Space. For example, if two IOAM options are included, the Next Protocol field of the first IOAM option will contain the value of TBD_IOAM, while the Next Protocol field of the second IOAM option will contain the EtherType indicating the type of the data packet.
The IOAM EtherType can be used with many encapsulations. The following sections show how it can be used with GRE and Geneve.
When IOAM data fields are carried in GRE, the IOAM encapsulation defined above follows the GRE header, as shown in Figure 1.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |C| |K|S| Reserved0 | Ver | Protocol Type = <TBD_IOAM> | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Checksum (optional) | Reserved1 (Optional) | G +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ R | Key (optional) | E +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | Sequence Number (Optional) | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | IOAM-Type | IOAM HDR len| Next Protocol | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I ! | O ! | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | | | Payload + Padding (L2/L3/ESP/...) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: GRE Encapsulation Example
[RFC2890]. The GRE Protocol Type value is TBD_IOAM.
Figure 2 shows two example protocol header stacks that use GRE along with IOAM. IOAM-Option-Types (the below diagram uses "IOAM" as shorthand for IOAM-Option-Types) are sequenced in behind the GRE header that follows the "outer" IP header.
Example 1 Example 2 | ... | | ... | +----------------+ +----------------+ | TCP/UDP header | | IP, ... | +----------------+ +----------------+ | IP header | | Eth. header | +----------------+ +----------------+ | IOAM | | IOAM | +----------------+ +----------------+ | GRE header | | GRE header | +----------------+ +----------------+ | IP header | | IP header | +----------------+ +----------------+ | Layer 2 | | Layer 2 | +----------------+ +----------------+ | Layer 1 | | Layer 1 | +----------------+ +----------------+
Figure 2: GRE with IOAM examples
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |Ver| Opt Len |O|C| Rsvd. | Protocol Type = <TBD_IOAM> | |G +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |E | Virtual Network Identifier (VNI) | Reserved | |N +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |E | Variable Length Options | |V +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+E | IOAM-Type | IOAM HDR len| Next Protocol | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I ! | O ! | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | | | Inner header + Payload + Padding (L2/L3/ESP/...) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Geneve Encapsulation Example
When IOAM data fields are carried in Geneve, the IOAM encapsulation defined above follows the Geneve header, as shown in Figure 3.[I-D.ietf-nvo3-geneve]. The Geneve Protocol Type value is TBD_IOAM.
This document describes the encapsulation of IOAM data fields in GRE. Security considerations of the specific IOAM data fields for each case (i.e., Trace, Proof of Transit, and E2E) are described in defined in [I-D.ietf-ippm-ioam-data].
As this document describes new protocol fields within the existing GRE encapsulation, these are similar to the security considerations of [RFC2890].
IOAM data transported in an OAM E2E header SHOULD be integrity protected (e.g., with IPsec ESP [RFC4303]) to detect changes made by a device between the sending and receiving OAM endpoints.
A new EtherType value is requested to be added to the [ETYPES] IANA registry. The description should be "In-situ OAM (IOAM)".
[ETYPES] | "IANA Ethernet Numbers" |
[I-D.ietf-ippm-ioam-data] | Brockners, F., Bhandari, S., Pignataro, C., Gredler, H., Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov, P., remy@barefootnetworks.com, r., daniel.bernier@bell.ca, d. and J. Lemon, "Data Fields for In-situ OAM", Internet-Draft draft-ietf-ippm-ioam-data-09, March 2020. |
[I-D.ietf-nvo3-geneve] | Gross, J., Ganga, I. and T. Sridhar, "Geneve: Generic Network Virtualization Encapsulation", Internet-Draft draft-ietf-nvo3-geneve-16, March 2020. |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC2890] | Dommety, G., "Key and Sequence Number Extensions to GRE", RFC 2890, DOI 10.17487/RFC2890, September 2000. |
[RFC8174] | Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017. |
[RFC4303] | Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/RFC4303, December 2005. |