ippm | B. Weis |
Internet-Draft | F. Brockners |
Intended status: Standards Track | C. Hill |
Expires: September 4, 2018 | S. Bhandari |
V. Govindan | |
C. Pignataro | |
Cisco | |
H. Gredler | |
RtBrick Inc. | |
J. Leddy | |
Comcast | |
S. Youell | |
JMPC | |
T. Mizrahi | |
Marvell | |
A. Kfir | |
B. Gafni | |
Mellanox Technologies, Inc. | |
P. Lapukhov | |
M. Spiegel | |
Barefoot Networks | |
March 03, 2018 |
GRE Encapsulation for In-situ OAM Data
draft-weis-ippm-ioam-gre-00
In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document outlines how IOAM data fields are encapsulated in GRE.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 4, 2018.
Copyright (c) 2018 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
In-situ Operations, Administration, and Maintenance (IOAM) records operational and telemetry information in the packet while the packet traverses a path between two points in the network. This document outlines how IOAM data fields are encapsulated in the Generic Routing Encapsulation (GRE) [RFC2784].
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in BCP 14 [RFC2119] [RFC8174] when, and only when, they appear in all capitals, as shown here.
Abbreviations used in this document:
GRE encapsulation is defined in [RFC2784]. IOAM encapsulation in GRE follows the GRE header.
IOAM data fields are carried in GRE using a Protocol Type value of TBD_IOAM. An IOAM header is added containing the different IOAM data fields defined in [I-D.ietf-ippm-ioam-data]. In an administrative domain where IOAM is used, insertion of the IOAM protocol header in GRE is enabled at the GRE tunnel endpoints, which also serve as IOAM encapsulating/decapsulating nodes by means of configuration.
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ |C| Reserved0 | Ver | Protocol Type = <TBD_IOAM> | G +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ R | Checksum (optional) | Reserved1 (Optional) | E +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | IOAM-Type | IOAM HDR len| Next Protocol | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ I ! | O ! | A ~ IOAM Option and Data Space ~ M | | | | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+ | | | Payload + Padding (L2/L3/ESP/...) | | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The GRE header and fields are defined in [RFC2784]. The GRE Protocol Type value is TBD_IOAM.
The IOAM header is defined as follows.
Multiple IOAM options MAY be included within the GRE encapsulation. For example, if a GRE encapsulation contains two IOAM options before a data packet, the Next Protocol field of the first IOAM option will contain the value of TBD_IOAM, while the Next Protocol field of the second IOAM option will contain the Ethertype or IP protocol Number indicating the type of the data packet.
This document describes the encapsulation of IOAM data fields in GRE. Security considerations of the specific IOAM data fields for each case (i.e., Trace, Proof of Transit, and E2E) are described in defined in [I-D.ietf-ippm-ioam-data].
As this document describes new protocol fields within the existing GRE encapsulation, these are similar to the security considerations of [RFC2784].
IOAM data transported in an OAM E2E header SHOULD be integrity protected (e.g., with IPsec ESP [RFC4303]) to detect changes made by a device between the sending and receiving OAM endpoints.
A new EtherType value is requested to be added to the [ETYPES] IANA registry. The description should be "In-situ OAM (IOAM)".
[ETYPES] | "IANA Ethernet Numbers" |
[I-D.ietf-ippm-ioam-data] | Brockners, F., Bhandari, S., Pignataro, C., Gredler, H., Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov, P., Chang, R. and d. daniel.bernier@bell.ca, "Data Fields for In-situ OAM", Internet-Draft draft-ietf-ippm-ioam-data-01, October 2017. |
[IP-PROT] | "IANA Protocol Numbers" |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC2784] | Farinacci, D., Li, T., Hanks, S., Meyer, D. and P. Traina, "Generic Routing Encapsulation (GRE)", RFC 2784, DOI 10.17487/RFC2784, March 2000. |
[RFC8174] | Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174, May 2017. |
[RFC4303] | Kent, S., "IP Encapsulating Security Payload (ESP)", RFC 4303, DOI 10.17487/RFC4303, December 2005. |
TBD