RADIUS Extensions Working Group | S. Winter |
Internet-Draft | RESTENA |
Intended status: Experimental Protocol | M. McCauley |
Expires: August 29, 2009 | OSC |
February 27, 2009 |
NAI-based Dynamic Peer Discovery for RADIUS over TLS and DTLS
draft-winter-dynamic-discovery-00
This document specifies a means to find authoritative AAA servers for a given NAI realm. It can be used in conjunction with RADIUS over TLS and RADIUS over DTLS.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet- Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on August 29, 2009.
Copyright (c) 2009 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (http://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
This document may contain material from IETF Documents or IETF Contributions published or made publicly available before November 10, 2008. The person(s) controlling the copyright in some of this material may not have granted the IETF Trust the right to allow modifications of such material outside the IETF Standards Process. Without obtaining an adequate license from the person(s) controlling the copyright in such materials, this document may not be modified outside the IETF Standards Process, and derivative works of it may not be created outside the IETF Standards Process, except to format it for publication as an RFC or to translate it into languages other than English.
In this document, several words are used to signify the requirements of the specification. The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119. [RFC2119]
RadSec node: a RadSec client or server
RadSec Client: a RadSec instance which initiates a new connection.
RadSec Server: a RadSec instance which listens on a RadSec port and accepts new connections
DNS definitions of RadSec servers can be either NAPTR records or SRV records. When both are defined, the resolution algorithm prefers NAPTR results (see section Section 2.2 below). The NAPTR service field used is "AAA+RADSECT". The SRV prefix used is "_radsec._tcp". It is expected that in most cases, the label used for the records is the DNS representation (punycode) of the literal realm name for which the server is the AAA server.
However, arbitrary other labels may be used if, for example, a roaming consortium uses realm names which are not associated to DNS names or special-purpose consortia where a globally valid discovery is not a use case. Such other labels require a consortium-wide agreement about the transformation from realm name to lookup label.
Examples:
For a given NAI-based input realm, the following algorithm is used to determine the AAA server to contact:
For example, if the User-Name realm was 'example.com', and DNS contained the following records, the following subsequent lookups would be performed:
Then the target selected would be a RadSec server on port 2083 at IPv6 address 2001:0DB8::202:44ff:fe0a:f704. If no connection to this IPv6 address can be established, the algorithm continues to query a A record.
When using DNS without security, the replies to NAPTR, SRV and A/AAAA requests as described in section Section 2 can not be trusted. RADIUS transports have an out-of-DNS-band means to verify that the discovery attempt led to the intended target (TLD/DTLS: ceritifcate verification or TLS shared secret ciphers; UDP/TCP: the RADIUS shared secret) and are safe from DNS-based redirection attacks. [Note: assuming here that a hypothetical RADIUS/UDP SRV discovery will NOT deliver the shared secret in the DNS response!]
The discovery process is always susceptible to bidding down attacks if a realm has SRV records for RADIUS/UDP and/or RADIUS/TCP as well as for RADIUS/TLS and/or RADIUS/DTLS. While the SRV query will expose both transports, an attacker in the routing path might suppress the subsequent A/AAAA results for the TLS or DTLS peer and trick the inititating peer into using the weakly protected UDP or TCP transports. The use of DNSSEC can not fully mitigate this attack, since it does not provide a means to detect packet suppression. The only way to disable such bidding down attacks is by intiating connections only to the peer(s) which match or exceed a configured minimum security level. An implementation SHOULD provide a means to configure the administratively desired minimum security level.
This document contains no actions for IANA. Maybe. Not sure about the labels "AAAS+RADSECT" and "_radsec._tcp.".
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, March 1997. |