Network Working Group | X. Xu |
Internet-Draft | Alibaba, Inc |
Intended status: Standards Track | S. Hegde |
Expires: September 12, 2020 | Juniper |
D. Zhang | |
L. Xia | |
Huawei | |
March 11, 2020 |
Encapsulating IPsec ESP in UDP for Load-balancing
draft-xu-ipsecme-esp-in-udp-lb-04
IPsec Virtual Private Network (VPN) is widely used by enterprises to interconnect their geographical dispersed branch office locations across the Wide Area Network (WAN) or the Internet, especially in the Software-Defined-WAN (SD-WAN) era. In addition, IPsec is also increasingly used by cloud providers to encrypt IP traffic traversing data center interconnect WAN so as to meet the security and compliance requirements, especially in financial cloud and governmental cloud environments. To fully utilize the bandwidth available in the WAN or the Internet, load balancing of IPsec traffic over Equal Cost Multi-Path (ECMP) and/or Link Aggregation Group (LAG) is much attractive to those enterprises and cloud providers. This document defines a method to encapsulate IPsec Encapsulating Security Payload (ESP) packets over UDP tunnels for improving load-balancing of IPsec ESP traffic.
This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that other groups may also distribute working documents as Internet-Drafts. The list of current Internet-Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months and may be updated, replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts as reference material or to cite them other than as "work in progress."
This Internet-Draft will expire on September 12, 2020.
Copyright (c) 2020 IETF Trust and the persons identified as the document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF Documents (https://trustee.ietf.org/license-info) in effect on the date of publication of this document. Please review these documents carefully, as they describe your rights and restrictions with respect to this document. Code Components extracted from this document must include Simplified BSD License text as described in Section 4.e of the Trust Legal Provisions and are provided without warranty as described in the Simplified BSD License.
IPsec Virtual Private Network (VPN) is widely used by enterprises to interconnect their geographical dispersed branch office locations across the Wide Area Network (WAN) or the Internet, especially in the Software-Defined-WAN (SD-WAN) era. In addition, IPsec is also increasingly used by cloud providers to encrypt IP traffic traversing data center interconnect WAN so as to meet the security and compliance requirements, especially in financial cloud and governmental cloud environments. To fully utilize the bandwidth available in the WAN or the Internet, load balancing of IPsec traffic over Equal Cost Multi-Path (ECMP) and/or Link Aggregation Group (LAG) is much attractive to those enterprises and cloud providers. Since most existing core routers within IP WAN or the Internet can already support balancing IP traffic flows based on the hash of the five-tuple of UDP packets, by encapsulating IPsec Encapsulating Security Payload (ESP) packets over UDP tunnels with the UDP source port being used as an entropy field, it will enable existing core routers to perform efficient load-balancing of the IPsec ESP traffic without requiring any change to them. Therefore, this specification defines a method of encapsulating IPsec ESP packets over UDP tunnels for improving load-balancing of IPsec ESP traffic.
Encapsulating ESP in UDP, as defined in this document, can be used in both IPv4 and IPv6 networks. IPv6 flow label has been proposed as an entropy field for load balancing in IPv6 network environment [RFC6438]. However, as stated in [RFC6936], the end-to-end use of flow labels for load balancing is a long-term solution and therefore the use of load balancing using the transport header fields would continue until any widespread deployment is finally achieved. As such, ESP-in-UDP encapsulation would still have a practical application value in the IPv6 networks during this transition timeframe.
Note that the difference between the ESP-in-UDP encapsulation as proposed in this document and the ESP-in-UDP encapsulation as described in [RFC3948] is that the former uses the UDP tunnel for load-balancing improvement purpose and therefore the source port is used as an entropy field while the latter uses the UDP tunnel for NAT traverse purpose and therefore the source port is set to a constant value (i.e., 4500). In addition, the ESP-in-UDP encapsulation as described in this document is applicable to both the tunnel mode ESP encapsulation and the transport mode ESP encapsulation.
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted as described in RFC 2119.
This memo makes use of the terms defined in [RFC2401]and [RFC2406].
0 1 2 3 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | Source Port = Entropy | Dest Port = TBD1 | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | UDP Length | UDP Checksum | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ | | ~ ESP Packet ~ | | +-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Figure 1: ESP-in-UDP Encapsulation Format
ESP-in-UDP encapsulation format is shown as follows:
UDP Length:
This ESP-in-UDP encapsulation causes ESP [RFC2406] packets to be forwarded across IP WAN via "UDP tunnels". When performing ESP-in-UDP encapsulation by an IPsec VPN gateway, ordinary ESP encapsulation procedure is performed and then a formatted UDP header is inserted between ESP header and IP header. The Source Port field of the UDP header is filled with an entropy value which is generated by the IPsec VPN gateway. Upon receiving these UDP encapsulated packets, remote IPsec VPN gateway MUST decapsulate these packets by removing the UDP header and then perform ordinary ESP decapsulation procedure consequently.
Similar to all other IP-based tunneling technologies, ESP-in-UDP encapsulation introduces overheads and reduces the effective Maximum Transmission Unit (MTU) size. ESP-in-UDP encapsulation may also impact Time-to-Live (TTL) or Hop Count (HC) and Differentiated Services (DSCP). Hence, ESP-in-UDP MUST follow the corresponding procedures defined in [RFC2003].
Encapsulators MUST NOT fragment ESP packet, and when the outer IP header is IPv4, encapsulators MUST set the DF bit in the outer IPv4 header. It is strongly RECOMMENDED that IP transit core be configured to carry an MTU at least large enough to accommodate the added encapsulation headers. Meanwhile, it is strongly RECOMMENDED that Path MTU Discovery [RFC1191] [RFC1981] or Packetization Layer Path MTU Discovery (PLPMTUD) [RFC4821] is used to prevent or minimize fragmentation.
TBD.
TBD.
One UDP destination port number indicating ESP needs to be allocated by IANA:
Service Name: ESP-in-UDP Transport Protocol(s):UDP Assignee: IESG <iesg@ietf.org> Contact: IETF Chair <chair@ietf.org>. Description: Encapsulate ESP packets in UDP tunnels. Reference: This document. Port Number: TBD1 -- To be assigned by IANA.
TBD.
[RFC0768] | Postel, J., "User Datagram Protocol", STD 6, RFC 768, DOI 10.17487/RFC0768, August 1980. |
[RFC1191] | Mogul, J. and S. Deering, "Path MTU discovery", RFC 1191, DOI 10.17487/RFC1191, November 1990. |
[RFC1981] | McCann, J., Deering, S. and J. Mogul, "Path MTU Discovery for IP version 6", RFC 1981, DOI 10.17487/RFC1981, August 1996. |
[RFC2003] | Perkins, C., "IP Encapsulation within IP", RFC 2003, DOI 10.17487/RFC2003, October 1996. |
[RFC2119] | Bradner, S., "Key words for use in RFCs to Indicate Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/RFC2119, March 1997. |
[RFC2401] | Kent, S. and R. Atkinson, "Security Architecture for the Internet Protocol", RFC 2401, DOI 10.17487/RFC2401, November 1998. |
[RFC2406] | Kent, S. and R. Atkinson, "IP Encapsulating Security Payload (ESP)", RFC 2406, DOI 10.17487/RFC2406, November 1998. |
[RFC2460] | Deering, S. and R. Hinden, "Internet Protocol, Version 6 (IPv6) Specification", RFC 2460, DOI 10.17487/RFC2460, December 1998. |
[RFC4821] | Mathis, M. and J. Heffner, "Packetization Layer Path MTU Discovery", RFC 4821, DOI 10.17487/RFC4821, March 2007. |
[RFC6438] | Carpenter, B. and S. Amante, "Using the IPv6 Flow Label for Equal Cost Multipath Routing and Link Aggregation in Tunnels", RFC 6438, DOI 10.17487/RFC6438, November 2011. |
[RFC6935] | Eubanks, M., Chimento, P. and M. Westerlund, "IPv6 and UDP Checksums for Tunneled Packets", RFC 6935, DOI 10.17487/RFC6935, April 2013. |
[RFC6936] | Fairhurst, G. and M. Westerlund, "Applicability Statement for the Use of IPv6 UDP Datagrams with Zero Checksums", RFC 6936, DOI 10.17487/RFC6936, April 2013. |
[RFC3948] | Huttunen, A., Swander, B., Volpe, V., DiBurro, L. and M. Stenberg, "UDP Encapsulation of IPsec ESP Packets", RFC 3948, DOI 10.17487/RFC3948, January 2005. |