Index - Month Index of IDs
All IDs - sorted by date)
Semantic Definition Format (SDF) for Data and Interactions of Things | ||||||||||||||
|
The Semantic Definition Format (SDF) is a format for domain experts to use in the creation and maintenance of data and interaction models that describe Things, i.e., physical objects that are available for interaction over a network. An SDF specification describes definitions of SDF Objects/SDF Things and their associated interactions (Events, Actions, Properties), as well as the Data types for the information exchanged in those interactions. Tools convert this format to database formats and other serializations as needed. // The present revision (-18) adds security considerations, a few // editorial cleanups, discusses JSON pointer encodings, and adds // sockets to the CDDL for easier future extension. |
Common YANG Data Types for Layer 1 Networks | ||||||||||||||
|
This document defines a collection of common common data types, identities, and groupings in the YANG data modeling language. These derived common common data types, identities, and groupings are intended to be imported by modules that model Layer 1 configuration and state capabilities. The Layer 1 types are representative of Layer 1 client signals applicable to transport networks, such as Optical Transport Networks (OTN). The Optical Transport Network (OTN) data structures are included in this document as Layer 1 types. |
Forward Secrecy for the Extensible Authentication Protocol Method for Authentication and Key Agreement (EAP-AKA' FS) | ||||||||||||||
|
This document updates RFC 9048, the improved Extensible Authentication Protocol Method for 3GPP Mobile Network Authentication and Key Agreement (EAP-AKA'), with an optional extension providing ephemeral key exchange. Similarly, this document also updates the earlier version of the EAP-AKA' specification in RFC 5448. The extension EAP-AKA' Forward Secrecy (EAP-AKA' FS), when negotiated, provides forward secrecy for the session keys generated as a part of the authentication run in EAP-AKA'. This prevents an attacker who has gained access to the long-term key from obtaining session keys established in the past, assuming these have been properly deleted. In addition, EAP-AKA' FS mitigates passive attacks (e.g., large scale pervasive monitoring) against future sessions. This forces attackers to use active attacks instead. |
BIER Fast ReRoute | ||||||||||||||
|
BIER is a scalable multicast overlay that utilizes a routing underlay, e.g., IP, to build up its Bit Index Forwarding Tables (BIFTs). This document proposes Fast Reroute for BIER (BIER-FRR). It protects BIER traffic after detecting the failure of a link or node in the core of a BIER domain until affected BIFT entries are recomputed after reconvergence of the routing underlay. BIER-FRR is applied locally at the point of local repair (PLR) and does not introduce any per-flow state. The document specifies nomenclature for BIER-FRR and gives examples for its integration in BIER forwarding. Furthermore, it presents operation modes for BIER-FRR. Link and node protection may be chosen as protection level. Moreover, the backup strategies tunnel-based BIER-FRR and LFA-based BIER-FRR are defined and compared. | |||||||||||||
An HTTPS-based Transport for YANG Notifications | ||||||||||||||
|
This document defines a protocol for sending asynchronous event notifications similar to notifications defined in RFC 5277, but over HTTPS. YANG modules for configuring publishers are also defined. Examples are provided illustrating how to configure various publishers. This document requires that the publisher is a "server" (e.g., a NETCONF or RESTCONF server), but does not assume that the receiver is a server. |