Internet DRAFT - draft-acee-idr-lldp-peer-discovery
draft-acee-idr-lldp-peer-discovery
Network Working Group A. Lindem
Internet-Draft LabN Consulting, L.L.C.
Intended status: Standards Track K. Patel
Expires: 7 July 2024 Arrcus, Inc
S. Zandi
LinkedIn
J. Haas
Juniper Networks, Inc
X. Xu
China Mobile
4 January 2024
BGP Logical Link Discovery Protocol (LLDP) Peer Discovery
draft-acee-idr-lldp-peer-discovery-17
Abstract
Link Layer Discovery Protocol (LLDP) or IEEE Std 802.1AB is
implemented in networking equipment from many vendors. It is natural
for IETF protocols to avail this protocol for simple discovery tasks.
This document describes how BGP would use LLDP to discover directly
connected and 2-hop peers when peering is based on loopback
addresses.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 7 July 2024.
Copyright Notice
Copyright (c) 2024 IETF Trust and the persons identified as the
document authors. All rights reserved.
Lindem, et al. Expires 7 July 2024 [Page 1]
Internet-Draft BGP LLDP Peer Discovery January 2024
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Requirements Notation . . . . . . . . . . . . . . . . . . 3
1.1.1. Requirements Language . . . . . . . . . . . . . . . . 3
2. LLDP Extensions . . . . . . . . . . . . . . . . . . . . . . . 3
2.1. LLDP IETF Organizationally Specific TLV Format . . . . . 3
2.2. BGP Config OS-TLV Format . . . . . . . . . . . . . . . . 4
2.2.1. BGP Config OS-TLV - Peering Address Sub-TLV . . . . . 4
2.2.2. BGP Config OS-TLV - BGP Local AS Sub-TLV . . . . . . 5
2.2.3. BGP Config OS-TLV - BGP Identifier Sub-TLV . . . . . 6
2.2.4. BGP Config OS-TLV - Session Group-ID Sub-TLV . . . . 7
2.2.5. BGP Config OS-TLV - BGP Session Capabilities
Sub-TLV . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.6. BGP Config OS-TLV - Key Chain Sub-TLV . . . . . . . . 8
2.2.7. BGP Config OS-TLV - Local Address Sub-TLV . . . . . . 9
2.2.8. BGP Config OS-TLV - BGP State Version Sub-TLV . . . . 10
3. BGP LLDP Peer Discovery Operations . . . . . . . . . . . . . 11
3.1. Advertising BGP Speaker . . . . . . . . . . . . . . . . . 11
3.2. Receiving BGP Speaker . . . . . . . . . . . . . . . . . . 12
3.3. Updating or Deleting Auto-Discovery Parameters . . . . . 13
4. LLDP Authentication/Encryption . . . . . . . . . . . . . . . 14
5. Security Considerations . . . . . . . . . . . . . . . . . . . 14
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 14
6.1. IANA Assigned LLDP Subtype . . . . . . . . . . . . . . . 14
6.2. BGP Config LLDP OS-TLV Sub-TLVs . . . . . . . . . . . . . 14
7. Contributors . . . . . . . . . . . . . . . . . . . . . . . . 15
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 15
8.1. Normative References . . . . . . . . . . . . . . . . . . 15
8.2. Informative References . . . . . . . . . . . . . . . . . 16
Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . 17
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 17
Lindem, et al. Expires 7 July 2024 [Page 2]
Internet-Draft BGP LLDP Peer Discovery January 2024
1. Introduction
Link Layer Discovery Protocol (LLDP) [LLDP] or IEEE Std 802.1AB is
implemented in networking equipment from many vendors. It is natural
for IETF protocols to avail this protocol for simple discovery tasks.
This document describes how BGP [RFC4271] would use LLDP to discover
directly connected and 2-hop peers when peering is based on loopback
addresses.
1.1. Requirements Notation
1.1.1. Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
2. LLDP Extensions
2.1. LLDP IETF Organizationally Specific TLV Format
The format of the LLDP IETF Organizationally Specific TLV (OS-TLV) is
defined in [LLDP]. It is shown below for completeness.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (127) | Length | OUI (3 Octets) 00-00-5E |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| OUI Continued | Subtype | Value |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... (Up to 507 Octets) |
Type IETF Organizationally Specific TLV type value, 127.
Length The length of the remainder of the TLV.
OUI IETF Organizationally unique identifier for the
organization's OUI. For IANA, this is value is
00-00-5E as specified in [IEEE-802-IANA].
Subtype IETF specific subtype
Value Value for organizationally specific TLV. The Length of
the value is 4 octets less than the TLV length.
Lindem, et al. Expires 7 July 2024 [Page 3]
Internet-Draft BGP LLDP Peer Discovery January 2024
Figure 1: LLDP IETF Organizationally Specific TLV
The OUI for IANA was allocated in section 1.4 of [RFC7042]. This
document requests creation of a registry for IETF specific sub-types
for LLDP IETF Organizationally Specific TLVs.
2.2. BGP Config OS-TLV Format
The BGP Config IETF Organizationally Specific TLV (OS-TLV) will be
used to advertise BGP configuration information. The configuration
information will be composed of Sub-TLVs. Since the length is
limited to 507 octets, multiple BGP Config OS-TLVs could be included
in a single LLDP advertisement.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (127) | Length | OUI (3 Octets) 00-00-5E |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|OUI Continued | TBD | BGP Config Sub-TLVs ... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| ... (Up to 507 Octets) |
Length The length of the BGP TLV.
Subtype IETF specific subtype for BGP Config OS-TLV. The
value shall be TBD.
Value BGP Config Sub-TLVs each with a 1 byte Type and
Length. The Length will include solely the value
portion of the TLV and not the Type and Length
fields themselves.
2.2.1. BGP Config OS-TLV - Peering Address Sub-TLV
The BGP OS-TLV Peering Address Sub-TLV will be used to advertise the
local IP addresses used for BGP sessions and the associated address
families specified by AFI/SAFI tuples. The AFI/SAFI tuple, 0/0,
indicates to use the associated peering address for all locally
configured address families without an explicit peering address
specification. As always, the address families supported for a given
BGP session will be determined during capabilities negotiation
[RFC4760]. It is RECOMMENDED that the wildcard AFI/SAFI be used in
deployments with fairly homogenous address family usage.
Lindem, et al. Expires 7 July 2024 [Page 4]
Internet-Draft BGP LLDP Peer Discovery January 2024
The format of the BGP Peering Address Sub-TLV is shown below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (1) | Length | Address Family| IPv4/IPv6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ IPv4/IPv6 Peering Address ... ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| AFI | SAFI | o o o
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type The Sub-TLV Type value shall be 1.
Length The Sub-TLV length in octets will be 4 for IPv4 or 16
for IPv6 plus 3 times the number of AFI/SAFI tuples.
Address IANA Address family (1 for IPv4 or 2 for IPv6)
Family
Peering An IPv4 address (4 octets) or an IPv6 address (16 octets)
Address
AFI/SAFI One or more AFI/SAFI tuples for BGP session using this
Pairs peering address. The AFI/SAFI tuple, 0/0, is a wildcard
indicating to attempt negotiation for all AFI/SAFIs.
2.2.2. BGP Config OS-TLV - BGP Local AS Sub-TLV
The BGP Config OS-TLV Local AS Sub-TLV will be used to advertise the
4-octet local Autonomous System (AS) number(s). For AS transitions,
a second local AS number may be specified. The format of the BGP
Local AS Sub-TLV is shown below.
Lindem, et al. Expires 7 July 2024 [Page 5]
Internet-Draft BGP LLDP Peer Discovery January 2024
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (2) |Length (4 or 8)| Local AS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Local AS | Optional Second Local AS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Optional Second Local AS |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type The Sub-TLV Type value shall be 2.
Length The Sub-TLV Length will be 4 or 8 octets.
Local AS Local Autonomous System (AS)
Second Local AS Local Autonomous System (AS)
2.2.3. BGP Config OS-TLV - BGP Identifier Sub-TLV
The BGP Config OS-TLV BGP Identifier Sub-TLV will be used to
advertise the 4-octet local BGP Identifier. The BGP Identifier is
used for debugging purposes and possibly to reduce the likelihood of
BGP connection collisions. The format of the BGP Identifier Sub-TLV
is shown below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (3) | Length (4) | BGP Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BGP Identifier |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type The Sub-TLV Type value shall be 3.
Length The Sub-TLV Length will be 4 octets.
BGP Identifier Local BGP Identifier (aka, BGP Router ID)
Lindem, et al. Expires 7 July 2024 [Page 6]
Internet-Draft BGP LLDP Peer Discovery January 2024
2.2.4. BGP Config OS-TLV - Session Group-ID Sub-TLV
The BGP Config OS-TLV Session Group-ID Sub-TLV is an opaque 4-octet
value that is used to represent a category of BGP session that is
supported on the interface. The format of the Session Group-ID Sub-
TLV is shown below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (4) | Length (4) | Session Group-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session Group-ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type The Sub-TLV Type value shall be 4.
Length The Sub-TLV Length will be 4 octets.
Session Group-ID The session group-id used to indicate a
class or category of BGP session supported on
the interface.
2.2.5. BGP Config OS-TLV - BGP Session Capabilities Sub-TLV
The BGP Config OS-TLV Session Capabilities Sub-TLV will be used to
advertise an 8-octet Session Capabilities field. The session
capabilities are represented as bit flags identifying the supported
BGP session capabilities. The format of the BGP Session Capabilities
Sub-TLV is shown below.
Lindem, et al. Expires 7 July 2024 [Page 7]
Internet-Draft BGP LLDP Peer Discovery January 2024
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (5) | Length (8) | Session Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Session Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type The Sub-TLV Type value shall be 5.
Length The Sub-TLV Length will be 8 octets.
Session Bit fields identify BGP session capabilities
Capabilities
The BGP Session Capabilities is an 8-octet bit field. The most
significant bit is the first bit (Bit 1) of the Session Capabilities.
The following bits are defined:
Bit 1: This bit indicates support for TCP MD5
authentication [TCP-MD5].
Bit 2: This bit indicates support for TCP-AO
authentication [TCP-AO].
Bit 3: This bit indicates support for Generalized TTL
Security Mechanism (GTSM) [GTSM] with a
configured TTL range of 254-255.
TCP MD5 authentication is described in [RFC2385]. The TCP
Authentication Option (TCP-AO) is described in [RFC5925]. The
Generalized TTL Security Mechanism (GTSM) is described in [RFC5082].
If both TCP MD5 authentication and TCP-AO authentication are
specified and TCP-AO is supported, it will take precedence.
2.2.6. BGP Config OS-TLV - Key Chain Sub-TLV
The BGP Config OS-TLV Key Chain Sub-TLV is a string specifying the
name for the key chain used for session authentication. Key chains
[RFC8177] are a commonly used for protocol authentication and
encryption key specification. Given the limited length of all BGP
configuration information, the key chain name will be limited to 64
characters and will not include a trailing string delimiter. The
format of the Session Group-ID Sub-TLV is shown below.
Lindem, et al. Expires 7 July 2024 [Page 8]
Internet-Draft BGP LLDP Peer Discovery January 2024
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (6) |Length (1 - 64)| Key Chain Name |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Key Chain Name (Up to 64 Octets) |
O
O
O
| O |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type The Sub-TLV Type value shall be 6.
Length The Sub-TLV Length will be 1 - 64 octets.
Key Chain Name The name of a key chain to be used for
MD5 or TCP-AO authentication.
2.2.7. BGP Config OS-TLV - Local Address Sub-TLV
The BGP OS-TLV Local Address Sub-TLV will be used to advertise a
local IP addresses used for BGP next-hops. Advertising a local
interface address is useful when the address family is different from
the advertised BGP peering address.
The format of the BGP Local Interface Address Sub-TLV is shown below.
Lindem, et al. Expires 7 July 2024 [Page 9]
Internet-Draft BGP LLDP Peer Discovery January 2024
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (7) | Length | Address Family| IPv4/IPv6 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ IPv4/IPv6 Local Address ... ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type The Sub-TLV Type value shall be 7.
Length The Sub-TLV length in octets will be 4 for IPv4 or 16
for IPv6 plus 3 times the number of AFI/SAFI tuples.
Address IANA Address family (1 for IPv4 or 2 for IPv6)
Family
Local An IPv4 address (4 octets) or an IPv6 address (16 octets)
Address
2.2.8. BGP Config OS-TLV - BGP State Version Sub-TLV
The BGP OS-TLV Version Sub-TLV will be used to advertise a
monotonically increasing version. This version will indicate if any
local BGP state that may impact BGP session establishment has
changed. Changes can range from anything as obvious a change in
local peering address to more indirect changes such as the
modification of the key-chain being advertised.
The format of the BGP State Version Sub-TLV is shown below.
Lindem, et al. Expires 7 July 2024 [Page 10]
Internet-Draft BGP LLDP Peer Discovery January 2024
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (3) | Length (4) | BGP State Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BGP State Version |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type The Sub-TLV Type value shall be 8.
Length The Sub-TLV Length will be 4 octets.
BGP State Version BGP State Version - Monotonically increasing
version number indicating if any local state
that may effect BGP session establishment has
changed.
3. BGP LLDP Peer Discovery Operations
The simple use case is to just use the peer address advertised in the
LLDP Packet Data Unit (PDU) to establish a 1-hop BGP peer session.
This can be used in data centers using BGP as described in [RFC7938].
The use case where a loopback address or other local address is
advertised as the peering address is also supported. However,
reachabiliy to a peering address other than the interface address is
beyond the scope of this document.
3.1. Advertising BGP Speaker
A BGP speaker MAY advertise its BGP peering address in an LLDP PDU
for a link using the BGP Local Address Sub-TLV of the BGP-OS TLV.
This can be an IPv4 or IPv6 local address associated with the LLDP
link for 1-hop peering. For 2-hop peering, it could be a loopback
address or any other address that is local to the node but not the
LLDP link. As noted above, reachability to the loopback address is
beyond the scope of this document.
A BGP speaker MAY advertise its local AS number using the BGP Local
AS Sub-TLV of the BGP-OS TLV. During AS transitions, a second local
AS number may be included in the Local AS Sub-TLV. The local BGP
identifier may also be advertised using the BGP Identifier Sub-TLV of
the BGP-OS TLV. While not specifically required for session
establishment, the values may be used for validation, trouble-
shooting, and connection collision avoidance. A BGP speaker may also
announce a Session Group-ID indicating the class or category of
Lindem, et al. Expires 7 July 2024 [Page 11]
Internet-Draft BGP LLDP Peer Discovery January 2024
session(s) supported and/or mapping to a set of session parameters.
Additionally, a BGP speaker MAY also announce relevant capabilities
using BGP Session Capabilities Sub-TLV of the BGP-OS TLV.
If TCP MD5 authentication [RFC2385] or TCP Authentication Option
(TCP-AO) [RFC5925] is to be used on the session, the Key Chain Sub-
TLV of the BGP-OS TLV MAY be used to specify the key chain name.
3.2. Receiving BGP Speaker
A BGP speaker configured for LLDP peer discovery WILL attempt to
establish BGP sessions using the address in the BGP Local Address
Sub-TLV of BGP-OS TLV format. If the peering address is directly
accessible over the link on which the LLDP PDU is received, the BGP
speaker will attempt to establish a 1-hop BGP session with the peer.
If the received BGP Peering Address is not directly accessible over
the link, the peer must be reachable for the session to be
established and the mechanisms for establishing reachability are
beyond the scope of this specification. If the BGP speaker receives
the same BGP peering address in LLDP PDUs received on multiple links,
it will not establish multiple sessions. Rather, a single 2-hop
session will be established.
When the deployment of address families is fairly homogenous across
the deployment, the wildcard AFI/SAFI can be utilized to simplify
LLDP advertisement. When there is variance in the address families
supported, usage of the wildcard could result in session
establishment delay due to capabilities negotiation [RFC5492].
A BGP speaker MAY receive a remote neighbor's local AS number(s) in
an LLDP PDU in the BGP Local AS Sub-TLV of the BGP-OS TLV. A BGP
speaker MAY use the received local AS number(s) to perform validation
checking of the AS received in the OPEN message. A BGP speaker MAY
receive a remote neighbor's BGP Identifier in the BGP Identifier Sub-
TLV of the BGP-OS TLV. This can be used to avoid connection
collisions by delaying session establishment if the remote BGP
Identifier is greater than the receiving speaker's BGP Identifier.
A BGP speaker MAY receive a Session Group-ID Sub-TLV in the LLDP BGP-
OS TLV. This Session Group-ID may be used for validation and/or
mapping the session to a particular set of session parameters. For
example, the Session Group-ID could be mapped to a spine, leaf, or
Top-of-Rack (ToR) session in a data center deployment and can be used
to detect cabling problems when an unexpected Session Group-ID is
received.
Lindem, et al. Expires 7 July 2024 [Page 12]
Internet-Draft BGP LLDP Peer Discovery January 2024
Additionally, A BGP speaker MAY receive a remote neighbor's
capabilities in LLDP in the BGP Session Capabilities Sub-TLV of the
BGP-OS TLV. A BGP speaker MAY use the received capabilities to
ensure appropriate local neighbor configuration in order to
facilitate session establishment.
If TCP MD5 authentication [RFC2385]. or TCP Authentication Option
(TCP-AO) [RFC5925] is to be used on the session as determined either
via the Session Capabilities Sub-TLV, Session Group-ID, or local
policy, the key chain name in the Key Chain Sub-TLV of the BGP-OS TLV
MAY be used to identify the correct key chain [RFC8177].
The BGP State Version associated with the LLDP peer SHOULD be
retained to determine whether anything impacting BGP session
establishment has changed. When session establishment fails, this
can be used to avoid back-off on attempting to establish a BGP
session when nothing has changed on the peer or locally.
3.3. Updating or Deleting Auto-Discovery Parameters
A BGP speaker MAY change or delete any BGP LLDP auto-discovery
parameter by simply updating or removing the corresponding Sub-TLV
previously advertised in the BGP-OS TLV. Additionally, the BGP State
Version Sub-TLV should be advertised with the version incremented
from the previous version. The BGP speaker(s) receiving the
advertisement will update or delete the changed or deleted auto-
discovery parameters. However, there will be no change to existing
BGP sessions with the advertising BGP Speaker. Changes to existing
BGP sessions are the purview of the BGP protocol and are beyond the
scope of this document.
Since LLDP information is cumulative, reception of an LLDP PDU
without the BGP-OS TLV indicates that BGP LLDP auto-discovery has
been disabled for the BGP speaker and all parameters learnt during
BGP LLDP auto-discovery SHOULD be deleted. As above, changes to
existing BGP sessions are beyond the scope of this document.
The LLDP Multi-Frame extension [LLDP-MULTIFRAME] removes the limit on
a LLDP PDU being fitting in a single layer 2 frame. This will
increase the number of TLVs which can be contained in LLDP PDU and
the applicablity of LLDP as a BGP discovery protocol. The
specificaiton of the LLDP API for BGP and other applications is
beyond the scope of this document. However, it is RECOMMENDED that
the LLDP BGP TLVs only be delivered to BGP when a complete LLDP PDU
is received.
Lindem, et al. Expires 7 July 2024 [Page 13]
Internet-Draft BGP LLDP Peer Discovery January 2024
4. LLDP Authentication/Encryption
The IEEE 802.1AE [MACsec] standard can be used for encryption and/or
authentication to provide privacy and integrity. MACsec utilizes the
Galois/Counter Mode Advanced Encryption Standard (AES-GCM) for
authenticated encryption and Galois Message Authentication Code
(GMAC) if only authentication, but not encryption is required.
The MACsec Key Agreement (MKA) is included as part of the IEEE
802.1X-20200 Port-Based Network Access Control Standard [MKA]. The
purpose of MKA is to provide a method for discovering MACsec peers
and negotiating the security keys needed to secure the link.
5. Security Considerations
This security considerations for BGP [RFC4271] apply equally to this
extension.
Additionally, BGP peering address discovery should only be done on
trusted links (e.g., in a data center network) since LLDP packets are
not authenticated or encrypted [LLDP].
LLDP Authentication and/or encryption can provided as described in
section Section 4.
6. IANA Considerations
6.1. IANA Assigned LLDP Subtype
IANA is requested to assign a code point in the IANA Link Layer
Discovery Protocol (LLDP) TLV Sub-Types Registry for BGP
configuration. The value is TBD.
6.2. BGP Config LLDP OS-TLV Sub-TLVs
IANA is requested to create a registry for Sub-TLVs of the BGP Config
LLDP OS-TLV. Assignments are requested as specified in the table
below.
Lindem, et al. Expires 7 July 2024 [Page 14]
Internet-Draft BGP LLDP Peer Discovery January 2024
+-------------+-----------------------------------+
| Range | Assignment Policy |
+-------------+-----------------------------------+
| 0 | Reserved (not to be assigned) |
| | |
| 1 | Peering Address |
| | |
| 2 | Local AS |
| | |
| 3 | BGP Identifier |
| | |
| 4 | Session Group-ID |
| | |
| 5 | Session Capabilities |
| | |
| 6 | Key Chain Name |
| | |
| 7 | Local Address |
| | |
| 8 | BGP State Version |
| | |
| 9-127 | Unassigned (IETF Review) |
| | |
| 128-254 | Reserved (Not to be assigned now) |
| | |
| 255 | Reserved (not to be assigned) |
+-------------+-----------------------------------+
Figure 2: LLDP BGP Config OS-TLV Types
* Types in the range 9-127 are to be assigned subject to IETF
Review. New values are assigned only through RFCs that have been
shepherded through the IESG as AD-Sponsored or IETF WG Documents
[RFC5226].
* Types in the range 128-254 are reserved and not to be assigned at
this time. Before any assignments can be made in this range,
there MUST be a Standards Track RFC that specifies IANA
Considerations that covers the range being assigned.
7. Contributors
Contributors' Addresses
8. References
8.1. Normative References
Lindem, et al. Expires 7 July 2024 [Page 15]
Internet-Draft BGP LLDP Peer Discovery January 2024
[LLDP] IEEE, "IEEE Standard for Local and metropolitan area
networks-- Station and Media Access Control Connectivity
Discovery Corrigendum 2: Technical and Editorial
Corrections", IEEE 802.1AB-2009/Cor 2-2015,
DOI 10.1109/ieeestd.2015.7056401, 9 March 2015,
<https://doi.org/10.1109/ieeestd.2015.7056401>.
[LLDP-MULTIFRAME]
IEEE, "IEEE Standard for Local and metropolitan area
networks-- Station and Media Access Control Connectivity
Discovery Amendment 2: Support for Multiframe Protocol
Data Units", IEEE 802.1ABdh-2021,
DOI 10.1109/IEEESTD.2022.9760302, 19 April 2022,
<https://doi.org/10.1109/IEEESTD.2022.9760302>.
[MACsec] IEEE, "IEEE Standard for Local and metropolitan area
networks - Media Access Control (MAC) Security",
IEEE Standard 802.1AE-2018, 27 September 2018.
[MKA] IEEE, "IEEE Standard for Local and metropolitan area
networks - Port Based Network Access Control",
IEEE Standard 802.1X-2020, 30 January 2020.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC4271] Rekhter, Y., Ed., Li, T., Ed., and S. Hares, Ed., "A
Border Gateway Protocol 4 (BGP-4)", RFC 4271,
DOI 10.17487/RFC4271, January 2006,
<https://www.rfc-editor.org/info/rfc4271>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
8.2. Informative References
[RFC2385] Heffernan, A., "Protection of BGP Sessions via the TCP MD5
Signature Option", RFC 2385, DOI 10.17487/RFC2385, August
1998, <https://www.rfc-editor.org/info/rfc2385>.
[RFC4760] Bates, T., Chandra, R., Katz, D., and Y. Rekhter,
"Multiprotocol Extensions for BGP-4", RFC 4760,
DOI 10.17487/RFC4760, January 2007,
<https://www.rfc-editor.org/info/rfc4760>.
Lindem, et al. Expires 7 July 2024 [Page 16]
Internet-Draft BGP LLDP Peer Discovery January 2024
[RFC5082] Gill, V., Heasley, J., Meyer, D., Savola, P., Ed., and C.
Pignataro, "The Generalized TTL Security Mechanism
(GTSM)", RFC 5082, DOI 10.17487/RFC5082, October 2007,
<https://www.rfc-editor.org/info/rfc5082>.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<https://www.rfc-editor.org/info/rfc5226>.
[RFC5492] Scudder, J. and R. Chandra, "Capabilities Advertisement
with BGP-4", RFC 5492, DOI 10.17487/RFC5492, February
2009, <https://www.rfc-editor.org/info/rfc5492>.
[RFC5925] Touch, J., Mankin, A., and R. Bonica, "The TCP
Authentication Option", RFC 5925, DOI 10.17487/RFC5925,
June 2010, <https://www.rfc-editor.org/info/rfc5925>.
[RFC7042] Eastlake 3rd, D. and J. Abley, "IANA Considerations and
IETF Protocol and Documentation Usage for IEEE 802
Parameters", BCP 141, RFC 7042, DOI 10.17487/RFC7042,
October 2013, <https://www.rfc-editor.org/info/rfc7042>.
[RFC7938] Lapukhov, P., Premji, A., and J. Mitchell, Ed., "Use of
BGP for Routing in Large-Scale Data Centers", RFC 7938,
DOI 10.17487/RFC7938, August 2016,
<https://www.rfc-editor.org/info/rfc7938>.
[RFC8177] Lindem, A., Ed., Qu, Y., Yeung, D., Chen, I., and J.
Zhang, "YANG Data Model for Key Chains", RFC 8177,
DOI 10.17487/RFC8177, June 2017,
<https://www.rfc-editor.org/info/rfc8177>.
Appendix A. Acknowledgments
Thanks to Sujay Gupta and Paul Congdon for review and comments.
Thanks to Donald Eastlake for guidance on IANA LLDP TLV Subtype
assignment. Thanks to Dan Romascanu for review of the IANA
considerations.
Authors' Addresses
Acee Lindem
LabN Consulting, L.L.C.
301 Midenhall Way
Cary, NC 27513
United States of America
Lindem, et al. Expires 7 July 2024 [Page 17]
Internet-Draft BGP LLDP Peer Discovery January 2024
Email: acee.ietf@gmail.com
Keyur Patel
Arrcus, Inc
Email: keyur@arrcus.com
Shawn Zandi
LinkedIn
222 2nd Street
San Francisco, CA 94105
United States of America
Email: szandi@linkedin.com
Jeff Haas
Juniper Networks, Inc
1133 Innovation, Inc.
Sunnyvale, CA 94089
United States of America
Email: jhaas@juniper.net
Xiaohu Xu
China Mobile
Email: 13910161692@qq.com
Lindem, et al. Expires 7 July 2024 [Page 18]