Internet DRAFT - draft-acee-ospf-rfc4970bis
draft-acee-ospf-rfc4970bis
Network Working Group A. Lindem, Ed.
Internet-Draft N. Shen
Obsoletes: 4970 (if approved) J. Vasseur
Intended status: Standards Track Cisco Systems
Expires: February 1, 2015 R. Aggarwal
Arktan
S. Shaffer
Akamai
July 31, 2014
Extensions to OSPF for Advertising Optional Router Capabilities
draft-acee-ospf-rfc4970bis-00.txt
Abstract
It is useful for routers in an OSPFv2 or OSPFv3 routing domain to
know the capabilities of their neighbors and other routers in the
routing domain. This document proposes extensions to OSPFv2 and
OSPFv3 for advertising optional router capabilities. A new Router
Information (RI) Link State Advertisement (LSA) is proposed for this
purpose. In OSPFv2, the RI LSA will be implemented with a new opaque
LSA type ID. In OSPFv3, the RI LSA will be implemented with a new
LSA type function code. In both protocols, the RI LSA can be
advertised at any of the defined flooding scopes (link, area, or
autonomous system (AS)). This document obsoletes RFC 4970 by
providing a revised specification including support for advertisement
of multiple instances of the RI LSA and a TLV for functional
capabilities.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on February 1, 2015.
Copyright Notice
Lindem, et al. Expires February 1, 2015 [Page 1]
Internet-Draft OSPF Capability Extensions July 2014
Copyright (c) 2014 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Requirements Notation . . . . . . . . . . . . . . . . . . 3
1.2. Summary of Changes from RFC 4970 . . . . . . . . . . . . . 3
2. OSPF Router Information (RI) LSA . . . . . . . . . . . . . . . 4
2.1. OSPFv2 Router Information (RI) Opaque LSA . . . . . . . . 4
2.2. OSPFv3 Router Information (RI) Opaque LSA . . . . . . . . 6
2.3. OSPF Router Informational Capabilities TLV . . . . . . . . 6
2.4. Assigned OSPF Router Informational Capability Bits . . . . 8
2.5. OSPF Router Functional Capabilities TLV . . . . . . . . . 8
2.6. Flooding Scope of the Router Information LSA . . . . . . . 9
3. Security Considerations . . . . . . . . . . . . . . . . . . . 11
4. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
5. References . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.1. Normative References . . . . . . . . . . . . . . . . . . . 15
5.2. Informative References . . . . . . . . . . . . . . . . . . 15
Appendix A. Acknowledgments . . . . . . . . . . . . . . . . . . . 16
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 17
Lindem, et al. Expires February 1, 2015 [Page 2]
Internet-Draft OSPF Capability Extensions July 2014
1. Introduction
It is useful for routers in an OSPFv2 [OSPF] or OSPFv3 [OSPFV3]
routing domain to know the capabilities of their neighbors and other
routers in the routing domain. This can be useful for both the
advertisement and discovery of OSPFv2 and OSPFv3 capabilities.
Throughout this document, OSPF will be used when the specification is
applicable to both OSPFv2 and OSPFv3. Similarly, OSPFv2 or OSPFv3
will be used when the text is protocol specific.
OSPF uses the options field in LSAs and hello packets to advertise
optional router capabilities. In the case of OSPFv2, all the bits in
this field have been allocated so new optional capabilities cannot be
advertised. This document proposes extensions to OSPF to advertise
these optional capabilities via opaque LSAs in OSPFv2 and new LSAs in
OSPFv3. For existing OSPF capabilities, backward-compatibility
issues dictate that this advertisement is used primarily for
informational purposes. For future OSPF extensions, this
advertisement MAY be used as the sole mechanism for advertisement and
discovery.
This document obsoletes RFC 4970 by providing a revised specification
including support for advertisement of multiple instances of the RI
LSA and a TLV for functional capabilities.
1.1. Requirements Notation
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC-KEYWORDS].
1.2. Summary of Changes from RFC 4970
This document includes the following changes from RFC 4970 [RFC4970]:
1. The main change is that an OSPF router will be able to advertise
multiple instances of the OSPF Router Information LSA. This
change permeates through much of the document
2. Additionally, Section 2.5 includes a new TLV for functional
capabilities. This is constast to the existing TLV which is used
to advertise capabilities for informational purposes only.
3. Finally, references have been updated for drafts that have become
RFCs and RFCs that have been obseleted since the publication of
RFC 4970.
Lindem, et al. Expires February 1, 2015 [Page 3]
Internet-Draft OSPF Capability Extensions July 2014
2. OSPF Router Information (RI) LSA
OSPFv2 routers will advertise a link scoped, area-scoped, or AS-
scoped Opaque-LSA [OPAQUE]. The OSPFv2 Router Information LSA has an
Opaque type of 4 and Opaque ID is the instance ID. The first
instance ID, i.e., 0, should always contain the Router Informational
Capabilities TLV and, if advertised, the Router Functional
Capabilities TLV. RI Information LSAs subsequence to the first can
be used for information which doesn't fit in the first instance.
2.1. OSPFv2 Router Information (RI) Opaque LSA
OSPFv2 routers will advertise a link scoped, area-scoped, or AS-
scoped Opaque-LSA [OPAQUE]. The OSPFv2 Router Information LSA has an
Opaque type of 4 and Opaque ID specifies the LSA instance ID with the
first instance always having an Instance ID of 0.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | 9, 10, or 11 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 4 | Opaque ID (Instance ID) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+- TLVs -+
| ... |
OSPFv2 Router Information Opaque LSA
The format of the TLVs within the body of an RI LSA is the same as
the format used by the Traffic Engineering Extensions to OSPF [TE].
The LSA payload consists of one or more nested Type/Length/Value
(TLV) triplets. The format of each TLV is:
Lindem, et al. Expires February 1, 2015 [Page 4]
Internet-Draft OSPF Capability Extensions July 2014
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Value... |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
TLV Format
The Length field defines the length of the value portion in octets
(thus a TLV with no value portion would have a length of 0). The TLV
is padded to 4-octet alignment; padding is not included in the length
field (so a 3-octet value would have a length of 3, but the total
size of the TLV would be 8 octets). Nested TLVs are also 32-bit
aligned. For example, a 1-byte value would have the length field set
to 1, and 3 octets of padding would be added to the end of the value
portion of the TLV. Unrecognized types are ignored.
Lindem, et al. Expires February 1, 2015 [Page 5]
Internet-Draft OSPF Capability Extensions July 2014
2.2. OSPFv3 Router Information (RI) Opaque LSA
The OSPFv3 Router Information LSA has a function code of 12 while the
S1/S2 bits are dependent on the desired flooding scope for the LSA.
The U bit will be set indicating that the OSPFv3 RI LSA should be
flooded even if it is not understood. The Link State ID (LSID) value
for this LSA is the instance ID. The first instance ID, i.e., 0,
should always contain the Router Informational Capabilities TLV and,
if advertised, the Router Functional Capabilities TLV. OSPFv3 Router
Information LSAs subsequence to the first can be used for information
which doesn't fit in the first instance. OSPFv3 routers MAY
advertise multiple RIs LSA per flooding scope.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age |1|S12| 12 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Link State ID (Instance ID) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
+- TLVs -+
| ... |
OSPFv3 Router Information LSA
The format of the TLVs within the body of an RI LSA is as defined in
Section 2.1
When a new Router Information LSA TLV is defined, the specification
MUST explicitly state whether the TLV is applicable to OSPFv2 only,
OSPFv3 only, or both OSPFv2 and OSPFv3.
2.3. OSPF Router Informational Capabilities TLV
The first defined TLV in the body of an RI LSA is the Router
Informational Capabilities TLV. An OSPF router advertising an OSPF
RI LSA MAY include the Router Informational Capabilities TLV. If
included, it MUST be the first TLV in the first instance of the OSPF
RI LSA. Additionally, the TLV MUST accurately reflect the OSPF
Lindem, et al. Expires February 1, 2015 [Page 6]
Internet-Draft OSPF Capability Extensions July 2014
router's capabilities in the scope advertised. However, the
informational capabilities advertised have no impact on the OSPF's
operation -- they are advertised purely for informational purposes.
The format of the Router Informational Capabilities TLV is as
follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Informational Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type A 16-bit field set to 1.
Length A 16-bit field that indicates the length of the value
portion in octets and will be a multiple of 4 octets
dependent on the number of capabilities advertised.
Initially, the length will be 4, denoting 4 octets of
informational capability bits.
Value A variable length sequence of capability bits rounded
to a multiple of 4 octets padded with undefined bits.
Initially, there are 4 octets of capability bits. Bits
are numbered left-to-right starting with the most
significant bit being bit 0.
OSPF Router Informational Capabilities TLV
The Router Informational Capabilities TLV MAY be followed by optional
TLVs that further specify a capability.
Lindem, et al. Expires February 1, 2015 [Page 7]
Internet-Draft OSPF Capability Extensions July 2014
2.4. Assigned OSPF Router Informational Capability Bits
The following informational capability bits are assigned:
Bit Capabilities
0 OSPF graceful restart capable [GRACE]
1 OSPF graceful restart helper [GRACE]
2 OSPF Stub Router support [STUB]
3 OSPF Traffic Engineering support [TE]
4 OSPF point-to-point over LAN [P2PLAN]
5 OSPF Experimental TE [EXP-TE]
6-31 Unassigned (Standards Action)
OSPF Router Informational Capabilities Bits
References for [GRACE], [STUB], [TE], [P2PLAN], and [EXP-TE] are
included herein.
2.5. OSPF Router Functional Capabilities TLV
This specification also defines the Router Functional Capabilities
TLV for advertisement within the OSPF Router Information LSA. An
OSPF router advertising an OSPF RI LSA MAY include the Router
Functional Capabilities TLV. If included, it MUST be the included in
the first instance of the LSA. Additionally, the TLV MUST be used to
reflect OSPF router functional capabilities. If the TLV is not
included or the length doesn't include the assigned OSPF functional
capability bit, the corresponding OSPF functional capabilty is
implicitly advertised as not being support by the advertising OSPF
router.
The format of the Router Functional Capabilities TLV is as follows:
Lindem, et al. Expires February 1, 2015 [Page 8]
Internet-Draft OSPF Capability Extensions July 2014
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Functional Capabilities |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Type A 16-bit field set to 1.
Length A 16-bit field that indicates the length of the value
portion in octets and will be a multiple of 4 octets
dependent on the number of capabilities advertised.
Initially, the length will be 4, denoting 4 octets of
informational capability bits.
Value A variable length sequence of capability bits rounded
to a multiple of 4 octets padded with undefined bits.
Initially, there are 4 octets of capability bits. Bits
are numbered left-to-right starting with the most
significant bit being bit 0.
OSPF Router Functional Capabilities TLV
The Router Functional Capabilities TLV MAY be followed by optional
TLVs that further specify a capability. In contrast to the Router
Informatioal Capabilities TLV, the OSPF extensions advertised in this
TLV MAY be used to by other OSPF routers to dicate protocol
operation. The specifications for functional capabilities
adveritised in this TLV MUST describe protocol behavior and address
backward compatibility.
2.6. Flooding Scope of the Router Information LSA
The flooding scope for a Router Information LSA is determined by the
LSA type. For OSPFv2, type 9 (link-scoped), type 10 (area-scoped),
or a type 11 (AS-scoped) opaque LSA may be flooded. For OSPFv3, the
S1 and S2 bits in the LSA type determine the flooding scope. If AS-
wide flooding scope is chosen, the originating router should also
advertise area-scoped LSA(s) into any attached Not-So-Stubby Area
(NSSA) area(s). An OSPF router MAY advertise different capabilities
when both NSSA area scoped LSA(s) and an AS-scoped LSA are
advertised. This allows functional capabilities to be limited in
scope. For example, a router may be an area border router but only
support traffic engineering (TE) in a subset of its attached areas.
The choice of flooding scope is made by the advertising router and is
Lindem, et al. Expires February 1, 2015 [Page 9]
Internet-Draft OSPF Capability Extensions July 2014
a matter of local policy. The originating router MAY advertise
multiple RI LSAs as long as the flooding scopes differ. TLV flooding
scope rules will be specified on a per-TLV basis and MUST be
specified in the accompanying specifications for new Router
Information LSA TLVs.
Lindem, et al. Expires February 1, 2015 [Page 10]
Internet-Draft OSPF Capability Extensions July 2014
3. Security Considerations
This document describes both a generic mechanism for advertising
router capabilities and a TLV for advertising informational and
functional capability bits. The capability TLVs are less critical
than the topology information currently advertised by the base OSPF
protocol. The security considerations for the generic mechanism are
dependent on the future application and, as such, should be described
as additional capabilities are proposed for advertisement. Security
considerations for the base OSPF protocol are covered in [OSPF] and
[OSPFV3].
Lindem, et al. Expires February 1, 2015 [Page 11]
Internet-Draft OSPF Capability Extensions July 2014
4. IANA Considerations
The following IANA assignment was made from an existing registry:
The OSPFv2 opaque LSA type 4 has been reserved for the OSPFv2 RI
opaque LSA.
The following registries have been defined for the following
purposes:
1. Registry for OSPFv3 LSA Function Codes - This new top-level
registry will be comprised of the fields Value, LSA function code
name, and Document Reference. The OSPFv3 LSA function code is
defined in section A.4.2.1 of [OSPFV3]. The OSPFv3 LSA function
code 12 has been reserved for the OSPFv3 Router Information (RI)
LSA.
+-----------+-------------------------------------+
| Range | Assignment Policy |
+-----------+-------------------------------------+
| 0 | Reserved (not to be assigned) |
| | |
| 1-9 | Already assigned |
| | |
| 10-11 | Unassigned (Standards Action) |
| | |
| 12 | OSPFv3 RI LSA (Assigned herein) |
| | |
| 13-255 | Unassigned (Standards Action) |
| | |
| 256-8175 | Reserved (No assignments) |
| | |
| 8176-8183 | Experimentation (No assignments) |
| | |
| 8184-8191 | Vendor Private Use (No assignments) |
+-----------+-------------------------------------+
OSPFv3 LSA Function Codes
* OSPFv3 LSA function codes in the range 256-8175 are not to be
assigned at this time. Before any assignments can be made in
this range, there MUST be a Standards Track RFC that specifies
IANA Considerations that cover the range being assigned.
* OSPFv3 LSA function codes in the range 8176-8181 are for
experimental use; these will not be registered with IANA and
MUST NOT be mentioned by RFCs.
Lindem, et al. Expires February 1, 2015 [Page 12]
Internet-Draft OSPF Capability Extensions July 2014
* OSPFv3 LSAs with an LSA Function Code in the Vendor Private
Use range 8184-8191 MUST include the Vendor Enterprise Code as
the first 4 octets following the 20 octets of LSA header.
* If a new LSA Function Code is documented, the documentation
MUST include the valid combinations of the U, S2, and S1 bits
for the LSA. It SHOULD also describe how the Link State ID is
to be assigned.
2. Registry for OSPF RI TLVs - This top-level registry will be
comprised of the fields Value, TLV Name, and Document Reference.
The value of 1 for the capabilities TLV is defined herein.
+-------------+-----------------------------------+
| Range | Assignment Policy |
+-------------+-----------------------------------+
| 0 | Reserved (not to be assigned) |
| | |
| 1 | Already assigned |
| | |
| 2-32767 | Unassigned (Standards Action) |
| | |
| 32768-32777 | Experimentation (No assignements) |
| | |
| 32778-65535 | Reserved (Not to be assigned) |
+-----------+-------------------------------------+
OSPF RI TLVs
* Types in the range 32768-32777 are for experimental use; these
will not be registered with IANA and MUST NOT be mentioned by
RFCs.
* Types in the range 32778-65535 are reserved and are not to be
assigned at this time. Before any assignments can be made in
this range, there MUST be a Standards Track RFC that specifies
IANA Considerations that covers the range being assigned.
3. Registry for OSPF Router Informational Capability Bits - This
sub-registry of the OSPF RI TLV registry will be comprised of the
fields Bit Number, Capability Name, and Document Reference. The
values are defined in Section 2.4. All Router Informational
Capability TLV additions are to be assigned through standards
action.
4. Registry for OSPF Router Functional Capability Bits - This sub-
registry of the OSPF RI TLV registry will be comprised of the
fields Bit Number, Capability Name, and Document Reference.
Lindem, et al. Expires February 1, 2015 [Page 13]
Internet-Draft OSPF Capability Extensions July 2014
Initially, the sub-registry will be empty but will be available
for future capabilities. All Router Functional Capability TLV
additions are to be assigned through standards action.
Lindem, et al. Expires February 1, 2015 [Page 14]
Internet-Draft OSPF Capability Extensions July 2014
5. References
5.1. Normative References
[OPAQUE] Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The
OSPF Opaque LSA Option", RFC 5250, July 2008.
[OSPF] Moy, J., "OSPF Version 2", STD 54, RFC 2328, April 1998.
[OSPFV3] Coltun, R., Ferguson, D., Moy, J., and A. Lindem, "OSPF
for IPv6", RFC 5340, July 2008.
[RFC-KEYWORDS]
Bradner, S., "Key words for use in RFC's to Indicate
Requirement Levels", BCP 14, RFC 2119, March 1997.
[RFC4970] Lindem, A., Shen, N., Vasseur, J., Aggarwal, R., and S.
Shaffer, "Extensions to OSPF for Advertising Optional
Router Capabilities", RFC 4970, July 2007.
[TE] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
Extensions to OSPF", RFC 3630, September 2003.
5.2. Informative References
[EXP-TE] Srisuresh, P. and P. Joseph, "OSPF-xTE: Experimental
Extension to OSPF for Traffic Engineering", RFC 4973,
July 2007.
[GRACE] Moy, J., Pillay-Esnault, P., and A. Lindem, "Graceful OSPF
Restart", RFC 3623, November 2003.
[P2PLAN] Shen, N. and A. Zinin, "Point-to-point operation over LAN
in link-state routing protocols", RFC 5309, October 2008.
[STUB] Retana, A., Nguyen, L., White, R., Zinin, A., and D.
McPherson, "OSPF Stub Router Advertisement", RFC 6987,
September 2013.
Lindem, et al. Expires February 1, 2015 [Page 15]
Internet-Draft OSPF Capability Extensions July 2014
Appendix A. Acknowledgments
The idea for this work grew out of a conversation with Andrew Partan
and we would like to thank him for his contribution. The authors
would like to thanks Peter Psenak for his review and helpful comments
on early versions of the document.
Comments from Abhay Roy, Vishwas Manral, Vivek Dubey, and Adrian
Farrel have been incorporated into later versions.
The RFC text was produced using Marshall Rose's xml2rfc tool.
Lindem, et al. Expires February 1, 2015 [Page 16]
Internet-Draft OSPF Capability Extensions July 2014
Authors' Addresses
Acee Lindem (editor)
Cisco Systems
301 Midenhall Way
Cary, NC 27513
USA
Email: acee@cisco.com
Naiming Shen
Cisco Systems
225 West Tasman Drive
San Jose, CA 95134
USA
Email: naiming@cisco.com
Jean-Philippe Vasseur
Cisco Systems
1414 Massachusetts Avenue
Boxborough, MA 01719
USA
Email: jpv@cisco.com
Rahul Aggarwal
Arktan
Email: raggarwa_1@yahoo.com
Scott Shaffer
Akamai
8 Cambridge Center
Cambridge, MA 02142
USA
Email: sshaffer@akamai.com
Lindem, et al. Expires February 1, 2015 [Page 17]