Internet DRAFT - draft-brockners-nvo3-ioam-geneve
draft-brockners-nvo3-ioam-geneve
Network Working Group F. Brockners
Internet-Draft S. Bhandari
Intended status: Standards Track V. Govindan
Expires: May 3, 2018 C. Pignataro
Cisco
H. Gredler
RtBrick Inc.
J. Leddy
Comcast
S. Youell
JMPC
T. Mizrahi
Marvell
D. Mozes
Mellanox Technologies Ltd.
P. Lapukhov
Facebook
R. Chang
Barefoot Networks
October 30, 2017
Geneve encapsulation for In-situ OAM Data
draft-brockners-nvo3-ioam-geneve-00
Abstract
In-situ Operations, Administration, and Maintenance (IOAM) records
operational and telemetry information in the packet while the packet
traverses a path between two points in the network. This document
outlines how IOAM data fields are encapsulated in Geneve.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on May 3, 2018.
Brockners, et al. Expires May 3, 2018 [Page 1]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
Copyright Notice
Copyright (c) 2017 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Conventions . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.1. Requirement Language . . . . . . . . . . . . . . . . . . 3
2.2. Abbreviations . . . . . . . . . . . . . . . . . . . . . . 3
3. IOAM Data Field Encapsulation in Geneve . . . . . . . . . . . 3
3.1. IOAM Trace Data in Geneve . . . . . . . . . . . . . . . . 3
3.2. IOAM POT Data in Geneve . . . . . . . . . . . . . . . . . 7
3.3. IOAM Edge-to-Edge Data in Geneve . . . . . . . . . . . . 8
4. Discussion of the encapsulation approach . . . . . . . . . . 9
5. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10
6. Security Considerations . . . . . . . . . . . . . . . . . . . 10
7. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 11
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 11
8.1. Normative References . . . . . . . . . . . . . . . . . . 11
8.2. Informative References . . . . . . . . . . . . . . . . . 12
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 12
1. Introduction
In-situ OAM (IOAM) records OAM information within the packet while
the packet traverses a particular network domain. The term "in-situ"
refers to the fact that the IOAM data fields are added to the data
packets rather than is being sent within packets specifically
dedicated to OAM. This document defines how IOAM data fields are
transported as part of the Geneve [I-D.ietf-nvo3-geneve]
encapsulation. The IOAM data fields are defined in
[I-D.ietf-ippm-ioam-data].
Brockners, et al. Expires May 3, 2018 [Page 2]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
2. Conventions
2.1. Requirement Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in [RFC2119].
2.2. Abbreviations
Abbreviations used in this document:
IOAM: In-situ Operations, Administration, and Maintenance
MTU: Maximum Transmit Unit
OAM: Operations, Administration, and Maintenance
POT: Proof of Transit
Geneve: Generic Network Virtualization Encapsulation
3. IOAM Data Field Encapsulation in Geneve
For encapsulating IOAM data fields into Geneve [I-D.ietf-nvo3-geneve]
the different IOAM data fields are included in the Geneve header
using tunnel options. IOAM data fields use a tunnel option class
which includes the different types of IOAM data, including trace
data, proof-of-transit data, and edge-to-edge data. In an
administrative domain where IOAM is used, insertion of the IOAM
tunnel option(s) in Geneve is enabled at the Geneve tunnel endpoints
which also serve as IOAM encapsulating/decapsulating nodes by means
of configuration. The Geneve header is defined in
[I-D.ietf-nvo3-geneve]. IOAM specific fields for Geneve are defined
in this document.
3.1. IOAM Trace Data in Geneve
IOAM tracing data represents data that is inserted at nodes that a
packet traverses. To allow for optimal implementations in both
software as well as hardware forwarders, two different ways to
encapsulate IOAM data are defined: "Pre-allocated" and "incremental".
See [I-D.ietf-ippm-ioam-data] for details on IOAM tracing and the
pre-allocated and incremental IOAM trace options.
The packet formats of the pre-allocated IOAM trace and incremental
IOAM trace when encapsulated in Geneve are defined as below.
Brockners, et al. Expires May 3, 2018 [Page 3]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+
|Ver| Opt Len |O|C| Rsvd. | Protocol Type | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Hdr
| Virtual Network Identifier (VNI) | Reserved | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+
| Option Class = IOAM_Trace |Type (prealloc)|R|R|R| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ IOAM
| IOAM-Trace-Type |NodeLen| Flags | Octets-left | Trace
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
| | |
| node data list [0] | IOAM
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ D
| | a
| node data list [1] | t
| | a
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ... ~ S
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ p
| | a
| node data list [n-1] | c
| | e
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| | |
| node data list [n] | |
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-<--+
| |
| |
| Payload + Padding (L2/L3/ESP/...) |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Pre-allocated Trace Option Data MUST be 4-octet aligned.
Figure 1: IOAM Pre-allocated Trace Option Format as a Geneve Tunnel
Option
Brockners, et al. Expires May 3, 2018 [Page 4]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+
|Ver| Opt Len |O|C| Rsvd. | Protocol Type | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Hdr
| Virtual Network Identifier (VNI) | Reserved | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+
| Option Class = IOAM_Trace | Type (incr.) |R|R|R| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ IOAM
| IOAM-Trace-Type |NodeLen| Flags | Max Length | Trace
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
| | |
| node data list [0] | IOAM
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ D
| | a
| node data list [1] | t
| | a
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ... ~ S
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ p
| | a
| node data list [n-1] | c
| | e
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| | |
| node data list [n] | |
| | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-<--+
| |
| |
| Payload + Padding (L2/L3/ESP/...) |
| |
| |
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
IOAM Incremental Trace Option Data MUST be 4-octet aligned.
Figure 2: IOAM Incremental Trace Option Format as a Geneve Tunnel
Option
The IOAM Trace header consists of 8 octets, as illustrated in
Figure 1 and Figure 2. The first 4 octets are the Geneve Tunnel
Option header [I-D.ietf-nvo3-geneve]. The next 4 octets are the
trace option header; its format is defined in
[I-D.ietf-ippm-ioam-data], and is described here for the sake of
clarity.
Brockners, et al. Expires May 3, 2018 [Page 5]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Class = IOAM_Trace | Type |R|R|R| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Geneve Tunnel Option for IOAM
The fields of the Geneve tunnel option are as follows:
Option Class: 16-bit unsigned integer that determines the IOAM
option class. The value is from the IANA registry setup for
Geneve option classes as defined in [I-D.ietf-nvo3-geneve].
Type: 8-bit unsigned integer defining IOAM header type. Two values
are defined here: IOAM_TRACE_Preallocated and
IOAM_Trace_Incremental.
R (3 bits): Option control flags reserved for future use. MUST be
zero on transmission and ignored on receipt.
Length: 5-bit unsigned integer. Length of the IOAM HDR in 4-octet
units.
The fields of the trace option header [I-D.ietf-ippm-ioam-data] are
as follows:
IOAM-Trace-Type: 16-bit identifier of IOAM Trace Type as defined in
[I-D.ietf-ippm-ioam-data] IOAM-Trace-Types.
Node Data Length: 4-bit unsigned integer as defined in
[I-D.ietf-ippm-ioam-data].
Flags: 5-bit field as defined in [I-D.ietf-ippm-ioam-data].
Octets-left: 7-bit unsigned integer as defined in
[I-D.ietf-ippm-ioam-data].
Maximum-length: 7-bit unsigned integer as defined in
[I-D.ietf-ippm-ioam-data].
Node data List [n]: Variable-length field as defined in
[I-D.ietf-ippm-ioam-data].
Brockners, et al. Expires May 3, 2018 [Page 6]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
3.2. IOAM POT Data in Geneve
IOAM proof of transit (POT, see also
[I-D.brockners-proof-of-transit]) offers a means to verify that a
packet has traversed a defined set of nodes. IOAM POT data fields
are encapsulated in Geneve as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+
|Ver| Opt Len |O|C| Rsvd. | Protocol Type | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Hdr
| Virtual Network Identifier (VNI) | Reserved | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+
| Option Class = IOAM_POT | Type |P|R|R|R| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ IOAM
| Random | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ P
| Random(contd.) | O
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ T
| Cumulative | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ |
| Cumulative (contd.) | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
Figure 4: IOAM POT Header Following using a Geneve Tunnel Option
The first 4 octets of the IOAM POT are the Geneve tunnel option
header (Figure 5), which includes the following fields:
Option Class: 16-bit unsigned integer that determines the IOAM_POT
option class.The value is from the IANA registry setup for Geneve
option classes as defined in [I-D.ietf-nvo3-geneve].
Type: 7-bit identifier of a particular POT variant that specifies
the POT data that is to be included as defined in
[I-D.ietf-ippm-ioam-data].
Profile to use (P): 1-bit as defined in [I-D.ietf-ippm-ioam-data]
IOAM POT Option.
R (3 bits): Option control flags reserved for future use. MUST be
zero on transmission and ignored on receipt.
Length: 5-bit unsigned integer. Length of the IOAM HDR in 4-octet
units.
Brockners, et al. Expires May 3, 2018 [Page 7]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Class = IOAM_POT | Type |P|R|R|R| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Geneve Tunnel Option for IOAM POT
The rest of the fields in the POT option [I-D.ietf-ippm-ioam-data]
are as follows:
Random: 64-bit Per-packet random number.
Cumulative: 64-bit Cumulative value that is updated by the Service
Functions.
3.3. IOAM Edge-to-Edge Data in Geneve
The IOAM edge-to-edge option is to carry data that is added by the
IOAM encapsulating node and interpreted by the IOAM decapsulating
node. IOAM specific fields to encapsulate IOAM Edge-to-Edge data
fields are defined as follows:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+
|Ver| Opt Len |O|C| Rsvd. | Protocol Type | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ Hdr
| Virtual Network Identifier (VNI) | Reserved | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+--+
| Option Class = IOAM_E2E | Type |R|R|R| Length | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+ IOAM
| E2E Option data field determined by IOAM-E2E-Type | |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+<-+
Figure 6: IOAM Edge-to-Edge using a Geneve Tunnel Option
The first 4 octets of the IOAM E2E option are the Geneve tunnel
option header (Figure 5), which includes the following fields:
Option Class 16-bit unsigned integer that determines the IOAM_E2E
option class.The value is from the IANA registry setup for Geneve
option classes as defined in [I-D.ietf-nvo3-geneve].
Type: 8-bit identifier of a particular E2E variant that specifies
the E2E data that is included as defined in
[I-D.ietf-ippm-ioam-data].
Brockners, et al. Expires May 3, 2018 [Page 8]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
R (3 bits): Option control flags reserved for future use. MUST be
zero on transmission and ignored on receipt.
Length: 5-bit unsigned integer. Length of the IOAM HDR in 4-octet
units.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Option Class = IOAM_E2E | Type |R|R|R| Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Geneve Tunnel Option for IOAM E2E
The rest of the E2E option [I-D.ietf-ippm-ioam-data] consists of:
E2E Option data field: Variable length field as defined in
[I-D.ietf-ippm-ioam-data] IOAM E2E Option.
4. Discussion of the encapsulation approach
This section is to support the working group discussion in selecting
the most appropriate approach for encapsulating IOAM data fields in
Geneve.
An encapsulation of IOAM data fields in Geneve should be friendly to
an implementation in both hardware as well as software forwarders and
support a wide range of deployment cases, including large networks
that desire to leverage multiple IOAM data fields at the same time.
Hardware and software friendly implementation: Hardware forwarders
benefit from an encapsulation that minimizes iterative look-ups of
fields within the packet: Any operation which looks up the value
of a field within the packet, based on which another lookup is
performed, consumes additional gates and time in an implementation
- both of which are desired to be kept to a minimum. This means
that flat TLV structures are to be preferred over nested TLV
structures. IOAM data fields are grouped into three option
categories: Trace, proof-of-transit, and edge-to-edge. Each of
these three options defines a TLV structure. A hardware-friendly
encapsulation approach avoids grouping these three option
categories into yet another TLV structure, but would rather carry
the options as a serial sequence.
Total length of the IOAM data fields: The total length of IOAM
data can grow quite large in case multiple different IOAM data
fields are used and large path-lengths need to be considered. If
for example an operator would consider using the IOAM trace option
Brockners, et al. Expires May 3, 2018 [Page 9]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
and capture node-id, app_data, egress/ingress interface-id,
timestamp seconds, timestamps nanoseconds at every hop, then a
total of 20 octets would be added to the packet at every hop. In
case this particular deployment would have a maximum path length
of 15 hops in the IOAM domain, then a maximum of 300 octets of
IOAM data were to be encapsulated in the packet.
Concerns with the current encapsulation approach:
Hardware support: Using Geneve tunnel options to encapsulate IOAM
data fields leads to a nested TLV structure. Each IOAM data field
option (trace, proof-of-transit, and edge-to-edge) represents a
type, with the different IOAM data fields being TLVs within this
the particular option type. Nested TLVs require iterative look-
ups, a fact that creates potential challenges for implementations
in hardware. It would be desirable to offer a way to encapsulate
IOAM in a way that keeps TLV nesting to a minimum.
Length: Geneve tunnel option length is a 5-bit field in the
current specification [I-D.ietf-nvo3-geneve] resulting in a
maximum option length of 128 (2^5 x 4) octets which constrains the
use of IOAM to either small domains or a few IOAM data fields
only. Support for large domains with a variety of IOAM data
fields would be desirable.
5. IANA Considerations
IANA is requested to allocate a Geneve "option class" numbers for the
following IOAM types:
+---------------+-------------+---------------+
| Option Class | Description | Reference |
+---------------+-------------+---------------+
| x | IOAM_Trace | This document |
| y | IOAM_POT | This document |
| z | IOAM_E2E | This document |
+---------------+-------------+---------------+
6. Security Considerations
The security considerations of Geneve are discussed in
[I-D.ietf-nvo3-geneve], and the security considerations of IOAM in
general are discussed in [I-D.ietf-ippm-ioam-data].
IOAM is considered a "per domain" feature, where one or several
operators decide on leveraging and configuring IOAM according to
their needs. Still, operators need to properly secure the IOAM
Brockners, et al. Expires May 3, 2018 [Page 10]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
domain to avoid malicious configuration and use, which could include
injecting malicious IOAM packets into a domain.
7. Acknowledgements
The authors would like to thank Eric Vyncke, Nalini Elkins, Srihari
Raghavan, Ranganathan T S, Karthik Babu Harichandra Babu, Akshaya
Nadahalli, Stefano Previdi, Hemant Singh, Erik Nordmark, LJ Wobker,
and Andrew Yourtchenko for the comments and advice.
8. References
8.1. Normative References
[ETYPES] "IANA Ethernet Numbers",
<https://www.iana.org/assignments/ethernet-numbers/
ethernet-numbers.xhtml>.
[I-D.brockners-inband-oam-requirements]
Brockners, F., Bhandari, S., Dara, S., Pignataro, C.,
Gredler, H., Leddy, J., Youell, S., Mozes, D., Mizrahi,
T., <>, P., and r. remy@barefootnetworks.com,
"Requirements for In-situ OAM", draft-brockners-inband-
oam-requirements-03 (work in progress), March 2017.
[I-D.ietf-ippm-ioam-data]
Brockners, F., Bhandari, S., Pignataro, C., Gredler, H.,
Leddy, J., Youell, S., Mizrahi, T., Mozes, D., Lapukhov,
P., Chang, R., and d. daniel.bernier@bell.ca, "Data Fields
for In-situ OAM", draft-ietf-ippm-ioam-data-00 (work in
progress), September 2017.
[I-D.ietf-nvo3-geneve]
Gross, J., Ganga, I., and T. Sridhar, "Geneve: Generic
Network Virtualization Encapsulation", draft-ietf-
nvo3-geneve-05 (work in progress), September 2017.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997, <https://www.rfc-
editor.org/info/rfc2119>.
[RFC2784] Farinacci, D., Li, T., Hanks, S., Meyer, D., and P.
Traina, "Generic Routing Encapsulation (GRE)", RFC 2784,
DOI 10.17487/RFC2784, March 2000, <https://www.rfc-
editor.org/info/rfc2784>.
Brockners, et al. Expires May 3, 2018 [Page 11]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
[RFC3232] Reynolds, J., Ed., "Assigned Numbers: RFC 1700 is Replaced
by an On-line Database", RFC 3232, DOI 10.17487/RFC3232,
January 2002, <https://www.rfc-editor.org/info/rfc3232>.
8.2. Informative References
[FD.io] "Fast Data Project: FD.io", <https://fd.io/>.
[I-D.brockners-proof-of-transit]
Brockners, F., Bhandari, S., Dara, S., Pignataro, C.,
Leddy, J., Youell, S., Mozes, D., and T. Mizrahi, "Proof
of Transit", draft-brockners-proof-of-transit-03 (work in
progress), March 2017.
[RFC7665] Halpern, J., Ed. and C. Pignataro, Ed., "Service Function
Chaining (SFC) Architecture", RFC 7665,
DOI 10.17487/RFC7665, October 2015, <https://www.rfc-
editor.org/info/rfc7665>.
Authors' Addresses
Frank Brockners
Cisco Systems, Inc.
Hansaallee 249, 3rd Floor
DUESSELDORF, NORDRHEIN-WESTFALEN 40549
Germany
Email: fbrockne@cisco.com
Shwetha Bhandari
Cisco Systems, Inc.
Cessna Business Park, Sarjapura Marathalli Outer Ring Road
Bangalore, KARNATAKA 560 087
India
Email: shwethab@cisco.com
Vengada Prasad Govindan
Cisco Systems, Inc.
Email: venggovi@cisco.com
Brockners, et al. Expires May 3, 2018 [Page 12]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
Carlos Pignataro
Cisco Systems, Inc.
7200-11 Kit Creek Road
Research Triangle Park, NC 27709
United States
Email: cpignata@cisco.com
Hannes Gredler
RtBrick Inc.
Email: hannes@rtbrick.com
John Leddy
Comcast
Email: John_Leddy@cable.comcast.com
Stephen Youell
JP Morgan Chase
25 Bank Street
London E14 5JP
United Kingdom
Email: stephen.youell@jpmorgan.com
Tal Mizrahi
Marvell
6 Hamada St.
Yokneam 20692
Israel
Email: talmi@marvell.com
David Mozes
Mellanox Technologies Ltd.
Email: davidm@mellanox.com
Brockners, et al. Expires May 3, 2018 [Page 13]
Internet-Draft In-situ OAM Geneve encapsulation October 2017
Petr Lapukhov
Facebook
1 Hacker Way
Menlo Park, CA 94025
US
Email: petr@fb.com
Remy Chang
Barefoot Networks
2185 Park Boulevard
Palo Alto, CA 94306
US
Brockners, et al. Expires May 3, 2018 [Page 14]