Internet DRAFT - draft-chen-idr-sr-ingress-protection
draft-chen-idr-sr-ingress-protection
Network Working Group H. Chen
Internet-Draft Futurewei
Intended status: Standards Track M. Toy
Expires: 10 April 2024 Verizon
A. Wang
China Telecom
Z. Li
China Mobile
L. Liu
Fujitsu
X. Liu
Volta Networks
8 October 2023
SR Path Ingress Protection
draft-chen-idr-sr-ingress-protection-09
Abstract
This document describes extensions to Border Gateway Protocol (BGP)
for protecting the ingress node of a Segment Routing (SR) tunnel or
path.
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC 2119 [RFC2119].
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 10 April 2024.
Chen, et al. Expires 10 April 2024 [Page 1]
Internet-Draft SR Ingress Protection October 2023
Copyright Notice
Copyright (c) 2023 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Terminologies . . . . . . . . . . . . . . . . . . . . . . . . 3
3. SR Path Ingress Protection Example . . . . . . . . . . . . . 4
4. Behavior after Ingress Failure . . . . . . . . . . . . . . . 4
5. Extensions to BGP . . . . . . . . . . . . . . . . . . . . . . 5
5.1. SR Path Ingress Protection Sub-TLV . . . . . . . . . . . 5
5.1.1. Primary Ingress Sub-TLV . . . . . . . . . . . . . . . 6
5.1.2. Service Sub-TLV . . . . . . . . . . . . . . . . . . . 7
5.1.3. Traffic Description Sub-TLVs . . . . . . . . . . . . 8
6. Backup Ingress Behavior . . . . . . . . . . . . . . . . . . . 11
7. Security Considerations . . . . . . . . . . . . . . . . . . . 12
8. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 13
9. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 13
9.1. BGP Tunnel Encapsulation Attribute Sub-TLVs . . . . . . . 13
9.2. Ingress Protection Information Sub-TLVs . . . . . . . . . 13
10. References . . . . . . . . . . . . . . . . . . . . . . . . . 13
10.1. Normative References . . . . . . . . . . . . . . . . . . 13
10.2. Informative References . . . . . . . . . . . . . . . . . 14
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 15
1. Introduction
The fast protection of a transit node of a Segment Routing (SR) path
or tunnel is described in [I-D.bashandy-rtgwg-segment-routing-ti-lfa]
and [I-D.hu-spring-segment-routing-proxy-forwarding]. [RFC8424]
presents extensions to RSVP-TE for the fast protection of the ingress
node of a traffic engineering (TE) Label Switching Path (LSP).
However, these documents do not discuss any protocol extensions for
the fast protection of the ingress node of an SR path or tunnel.
Chen, et al. Expires 10 April 2024 [Page 2]
Internet-Draft SR Ingress Protection October 2023
This document fills that void and specifies protocol extensions to
Border Gateway Protocol (BGP) for the fast protection of the ingress
node of an SR path or tunnel. Ingress node and ingress, fast
protection and protection as well as SR path and SR tunnel will be
used exchangeably in the following sections.
2. Terminologies
The following terminologies are used in this document.
SR: Segment Routing
SRv6: SR for IPv6
SRH: Segment Routing Header
SID: Segment Identifier
CE: Customer Edge
PE: Provider Edge
LFA: Loop-Free Alternate
TI-LFA: Topology Independent LFA
TE: Traffic Engineering
BFD: Bidirectional Forwarding Detection
VPN: Virtual Private Network
L3VPN: Layer 3 VPN
FIB: Forwarding Information Base
PLR: Point of Local Repair
BGP: Border Gateway Protocol
IGP: Interior Gateway Protocol
OSPF: Open Shortest Path First
IS-IS: Intermediate System to Intermediate System
Chen, et al. Expires 10 April 2024 [Page 3]
Internet-Draft SR Ingress Protection October 2023
3. SR Path Ingress Protection Example
To protect against the failure of the (primary) ingress node of a
(primary) SR path, a backup ingress node is configured or selected
and is different from the (primary) ingress node. A backup SR path
from the backup ingress node is computed and installed. Primary
ingress and ingress as well as primary SR path and SR path will be
used exchangeably.
Figure 1 shows an example of protecting ingress PE1 of a SR path,
which is from ingress PE1 to egress PE3.
******* *******
[PE1]-----[P1]-----[PE3] PE1 Ingress
/ | |& &&&&& | \ PEx Provider Edge
/ | |& | \ CEx Customer Edge
[CE1] | |& | [CE2] Px Non Provider Edge
\ | |& | / *** SR Path
\ | &&&&&& |& | / &&& Backup Path
[PE2]-----[P2]-----[PE4]
Figure 1: Protecting Ingress PE1 of SR Path PE1-P1-PE3
In normal operations, CE1 sends the traffic with destination PE3 to
ingress PE1, which imports the traffic into the SR path.
When CE1 detects the failure of ingress PE1, it switches the traffic
to backup ingress PE2, which imports the traffic from CE1 into a
backup SR path. The backup path is from the backup ingress PE2 to
the egress PE3. When the traffic is imported into the backup path,
it is sent to the egress PE3 along the path.
4. Behavior after Ingress Failure
After the failure of the ingress of an SR path happens, there are a
couple of different ways to detect the failure. In each way, there
may be some specific behavior for the traffic source (e.g., CE1) and
the backup ingress (e.g., PE2).
In one way, the traffic source (e.g., CE1) is responsible for fast
detecting the failure of the ingress (e.g., PE1) of an SR path. Fast
detecting the failure means detecting the failure in a few or tens of
milliseconds. The backup ingress (e.g., PE2) is ready to import the
traffic from the traffic source into the backup SR path installed.
Chen, et al. Expires 10 April 2024 [Page 4]
Internet-Draft SR Ingress Protection October 2023
In normal operations, the source sends the traffic to the ingress of
the SR path. When the source detects the failure of the ingress, it
switches the traffic to the backup ingress, which delivers the
traffic to the egress of the SR path via the backup SR path.
In another way, the backup ingress is responsible for fast detecting
the failure of the ingress of an SR path.
In normal operations, the source (e.g., CE1) sends the traffic to the
ingress (e.g., PE1) and may send the traffic to the backup ingress
(e.g., PE2). It sends the traffic to the backup ingress (e.g., PE2)
after the ingress fails.
The backup ingress does not import any traffic from the source into
the backup SR path in normal operations. When it detects the failure
of the ingress, it imports the traffic from the source into the
backup SR path.
5. Extensions to BGP
For a SR path from a primary ingress node to an egress node, a backup
ingress node is selected to protect the failure of the primary
ingress node of the SR path. This section describes the extensions
to BGP for representing the information for protecting the primary
ingress node in a BGP UPDATE message and distributing the information
to the backup ingress node. The information includes a SR backup
path.
[I-D.ietf-idr-segment-routing-te-policy] specifies a way of
representing a SR path in a BGP UPDATE message and distributing the
SR path to the ingress node of the SR path.
This is extended to represent the information for protecting the
primary ingress by defining a few of new Sub-TLVs.
5.1. SR Path Ingress Protection Sub-TLV
A new Sub-TLV, called SR Path Ingress Protection Sub-TLV, is defined.
When a UPDATE message is sent to the backup ingress node for
protecting the primary ingress node of a SR path, the message
contains this Sub-TLV. Its format is illustrated below.
Chen, et al. Expires 10 April 2024 [Page 5]
Internet-Draft SR Ingress Protection October 2023
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (TBD1) | Length (variable) | Flags |A|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ ~
~ Sub-TLVs (optional) ~
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: SR Path Ingress Protection Sub-TLV
Type: TBD1 is to be assigned by IANA.
Length: Variable.
Flags: 1 octet. One flag is defined.
Flag A: 1 bit. It is set to
1: request a backup ingress to let the forwarding entry for
the backup SR path be Active.
0: request a backup ingress to let the forwarding entry for
the backup SR path be inactive initially and to make the
entry be active after detecting the failure of the primary
ingress node of the primary SR path.
A few optional Sub-TLVs are defined, which are Primary Ingress Sub-
TLV, Service Sub-TLV and Traffic Description Sub-TLV.
5.1.1. Primary Ingress Sub-TLV
A Primary Ingress Sub-TLV indicates the IP address of the primary
ingress node of a primary SR path. It has two formats: one for
primary ingress node IPv4 address and the other for primary ingress
node IPv6 address, which are illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (1) | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Primary Ingress IPv4 Address (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Primary Ingress IPv4 Address Sub-TLV
Chen, et al. Expires 10 April 2024 [Page 6]
Internet-Draft SR Ingress Protection October 2023
Type: Its value (1 suggested) is to be assigned by IANA.
Length: 4.
Primary Ingress IPv4 Address: 4 octets. It represents an IPv4 host
address of the primary ingress node of a primary SR path.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (2) | Length (16) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Primary Ingress IPv6 Address (16 octets) |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Primary Ingress IPv6 Address Sub-TLV
Type: Its value (2 suggested) is to be assigned by IANA.
Length: 16.
Primary Ingress IPv6 Address: 16 octets. It represents an IPv6 host
address of the primary ingress node of a primary SR path.
5.1.2. Service Sub-TLV
A Service Sub-TLV contains a service ID or label to be added into a
packet to be carried by a SR path. It has three formats: the first
one for the service identified by a label, the second one for the
service identified by a service identifier (ID) of 32 bits, and the
third one for the service identified by a service identifier (ID) of
128 bits. Their formats are illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (3) | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| zero | Service Label (20 bits) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: Service Label Sub-TLV
Type: Its value (3 suggested) is to be assigned by IANA.
Chen, et al. Expires 10 April 2024 [Page 7]
Internet-Draft SR Ingress Protection October 2023
Length: 4.
Service Label: the least significant 20 bits. It represents a label
of 20 bits.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (4) | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Service ID (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: 32 Bits Service ID Sub-TLV
Type: Its value (4 suggested) is to be assigned by IANA.
Length: 4.
Service ID: 4 octets. It represents a Service Identifier (ID) of 32
bits.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (5) | Length (16) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Service ID (16 octets) |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: 128 Bits Service ID Sub-TLV
Type: Its value (5 suggested) is to be assigned by IANA.
Length: 16.
Service ID: 16 octets. It represents a Service Identifier (ID) of
128 bits.
5.1.3. Traffic Description Sub-TLVs
A Traffic Description Sub-TLV describes the traffic to be imported
into a backup SR path. Five Traffic Description Sub-TLVs are
defined. Two of them are FEC Sub-TLVs and the others are interface
Sub-TLVs.
Chen, et al. Expires 10 April 2024 [Page 8]
Internet-Draft SR Ingress Protection October 2023
Two FEC Sub-TLVs are IPv4 and IPv6 FEC Sub-TLVs. Their formats are
illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (6) |Length(variable|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|IPv4 Prefix Len| IPv4 Prefix ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ (Optional) Virtual Network ID (2 octets) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: IPv4 FEC Sub-TLV
Type: Its value (6 suggested) is to be assigned by IANA.
Length: Variable.
IPv4 Prefix Len: Indicates the length of the IPv4 Prefix.
IPv4 Prefix: IPv4 Prefix rounded to octets.
Virtual Network ID: 2 octets. This is optional. It indicates the
ID of a virtual network.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (7) |Length(variable|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|IPv6 Prefix Len| IPv6 Prefix ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~ Optional Virtual Network ID (2 octets) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: IPv6 FEC Sub-TLV
Type: Its value (7 suggested) is to be assigned by IANA.
Length: Variable.
IPv6 Prefix Len: Indicates the length of the IPv6 Prefix.
IPv6 Prefix: IPv6 Prefix rounded to octets.
Chen, et al. Expires 10 April 2024 [Page 9]
Internet-Draft SR Ingress Protection October 2023
Virtual Network ID: 2 octets. This is optional. It indicates the
ID of a virtual network.
An Interface sub-TLV indicates the interface from which the traffic
is received and imported into the backup SR path/tunnel. It has
three formats: one for interface index, the other two for IPv4 and
IPv6 address, which are illustrated below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (8) | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface Index (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 10: Interface Index Sub-TLV
Type: Its value (8 suggested) is to be assigned by IANA.
Length: 4.
Interface Index: 4 octets. It indicates the index of an interface.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (9) | Length (4) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface IPv4 Address (4 octets) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 11: Interface IPv4 Address Sub-TLV
Type: Its value (9 suggested) is to be assigned by IANA.
Length: 4.
Interface IPv4 Address: 4 octets. It represents the IPv4 address of
an interface.
Chen, et al. Expires 10 April 2024 [Page 10]
Internet-Draft SR Ingress Protection October 2023
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (10) | Length (16) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Interface IPv6 Address (16 octets) |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 12: Interface IPv6 Address Sub-TLV
Type: Its value (10 suggested) is to be assigned by IANA.
Length: 16.
Interface IPv6 Address: 16 octets. It represents the IPv6 address
of an interface.
6. Backup Ingress Behavior
When a backup ingress node receives a UPDATE message containing the
information for protecting the primary ingress node of a SR path, it
installs a forwarding entry in its FIB based on the information. The
information is encoded in a SR policy of the following structure:
SR Policy SAFI NLRI: <Distinguisher, Policy-Color, Endpoint>
Attributes:
Tunnel Encaps Attribute (23)
Tunnel Type (15): SR Policy
SR Path Ingress Protection Sub-TLV
Primary Ingress Sub-TLV
Service Sub-TLV
Traffic Description Sub-TLV
Preference Sub-TLV
Binding SID Sub-TLV
Explicit NULL Label Policy (ENLP) Sub-TLV
Priority Sub-TLV
Policy Name Sub-TLV
Segment List Sub-TLV
Weight Sub-TLV
Segment Sub-TLV
Segment Sub-TLV
...
...
Where:
Chen, et al. Expires 10 April 2024 [Page 11]
Internet-Draft SR Ingress Protection October 2023
o SR Policy SAFI NLRI is defined in
[I-D.ietf-idr-segment-routing-te-policy].
o Tunnel Encapsulation Attribute is defined in
[I-D.ietf-idr-tunnel-encaps].
o Tunnel Type of SR Policy is defined in
[I-D.ietf-idr-segment-routing-te-policy].
o SR Path Ingress Protection, Primary Ingress, Service and Traffic
Description Sub-TLVs are defined in this document.
o Preference, Binding SID, ENLP, Priority, Policy Name, Segment
List, Weight and Segment Sub-TLVs are defined in
[I-D.ietf-idr-segment-routing-te-policy].
After receiving a SR policy with a SR Path Ingress Protection Sub-
TLV, the backup ingress node will install one or more candidate paths
into its "BGP table". Another module such as SRPM will choose one or
more paths and install the forwarding entries for them in the data
plane.
The forwarding entries for the paths installed in the data plane will
be set to be inactive if the flag A in the SR Path Ingress Protection
Sub-TLV is zero. When the primary ingress node fails, these
forwarding entries are set to be active. The failure of the primary
ingress may be detected by the backup ingress node through using a
mechanism such as BFD. The IP address of the primary ingress in the
Primary Ingress Sub-TLV may be used for detecting the failure of the
primary ingress node.
If the flag A in the SR Path Ingress Protection Sub-TLV is one, then
the forwarding entries for the paths installed in the data plane will
be set to be active.
When there is a Service Sub-TLV in the SR Path Ingress Protection
Sub-TLV, the ID or Label in the Service Sub-TLV will be included in
the forwarding entries. When a packet is imported into a backup SR
path using the forwarding entries, the service ID or Label is pushed
first and then the sequence of segments represented in the Segment
List Sub-TLV.
7. Security Considerations
Protocol extensions defined in this document do not affect the BGP
security other than those as discussed in the Security Considerations
section of [RFC5575].
Chen, et al. Expires 10 April 2024 [Page 12]
Internet-Draft SR Ingress Protection October 2023
8. Acknowledgements
The authors of this document would like to thank Dhruv Dhody for the
comments.
9. IANA Considerations
9.1. BGP Tunnel Encapsulation Attribute Sub-TLVs
Under Existing Registry Name: "BGP Tunnel Encapsulation Attribute
Sub-TLVs", IANA is requested to assign a new Sub-TLV value for SR
Path Ingress Protection as follows:
Value sub-TLV Name Reference
----- ------------------------------------ --------------
TBD1 SR Path Ingress Protection Sub-TLV This Document
9.2. Ingress Protection Information Sub-TLVs
A new registry called "Ingress Protection Information Sub-TLVs" is
defined in this document. IANA is requested to create and maintain
new registry:
o Ingress Protection Information Sub-TLVs
Initial values for the registry are given below. The future
assignments are to be made through IETF Review [RFC5226].
Value sub-TLV Name Reference
----- ------------------------------------- --------------
0 Reserved
1 Primary Ingress IPv4 Address Sub-TLV This Document
2 Primary Ingress IPv6 Address Sub-TLV This Document
3 Service Label Sub-TLV This Document
4 32 Bits Service ID Sub-TLV This Document
5 128 Bits Service ID Sub-TLV This Document
6 IPv4 FEC Sub-TLV This Document
7 IPv6 FEC Sub-TLV This Document
8 Interface Index Sub-TLV This Document
9 Interface IPv4 Address Sub-TLV This Document
10 Interface IPv6 Address Sub-TLV This Document
11-255 Unassigned
10. References
10.1. Normative References
Chen, et al. Expires 10 April 2024 [Page 13]
Internet-Draft SR Ingress Protection October 2023
[I-D.ietf-idr-segment-routing-te-policy]
Previdi, S., Filsfils, C., Talaulikar, K., Mattes, P., and
D. Jain, "Advertising Segment Routing Policies in BGP",
Work in Progress, Internet-Draft, draft-ietf-idr-segment-
routing-te-policy-25, 26 September 2023,
<https://datatracker.ietf.org/doc/html/draft-ietf-idr-
segment-routing-te-policy-25>.
[I-D.ietf-idr-tunnel-encaps]
Patel, K., Van de Velde, G., Sangli, S. R., and J.
Scudder, "The BGP Tunnel Encapsulation Attribute", Work in
Progress, Internet-Draft, draft-ietf-idr-tunnel-encaps-22,
7 January 2021, <https://datatracker.ietf.org/doc/html/
draft-ietf-idr-tunnel-encaps-22>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC7356] Ginsberg, L., Previdi, S., and Y. Yang, "IS-IS Flooding
Scope Link State PDUs (LSPs)", RFC 7356,
DOI 10.17487/RFC7356, September 2014,
<https://www.rfc-editor.org/info/rfc7356>.
[RFC8424] Chen, H., Ed. and R. Torvi, Ed., "Extensions to RSVP-TE
for Label Switched Path (LSP) Ingress Fast Reroute (FRR)
Protection", RFC 8424, DOI 10.17487/RFC8424, August 2018,
<https://www.rfc-editor.org/info/rfc8424>.
10.2. Informative References
[I-D.bashandy-rtgwg-segment-routing-ti-lfa]
Bashandy, A., Filsfils, C., Decraene, B., Litkowski, S.,
Francois, P., Voyer, D., Clad, F., and P. Camarillo,
"Topology Independent Fast Reroute using Segment Routing",
Work in Progress, Internet-Draft, draft-bashandy-rtgwg-
segment-routing-ti-lfa-05, 4 October 2018,
<https://datatracker.ietf.org/doc/html/draft-bashandy-
rtgwg-segment-routing-ti-lfa-05>.
[I-D.hegde-spring-node-protection-for-sr-te-paths]
Hegde, S., Bowers, C., Litkowski, S., Xu, X., and F. Xu,
"Node Protection for SR-TE Paths", Work in Progress,
Internet-Draft, draft-hegde-spring-node-protection-for-sr-
te-paths-07, 30 July 2020,
<https://datatracker.ietf.org/doc/html/draft-hegde-spring-
node-protection-for-sr-te-paths-07>.
Chen, et al. Expires 10 April 2024 [Page 14]
Internet-Draft SR Ingress Protection October 2023
[I-D.hu-spring-segment-routing-proxy-forwarding]
Hu, Z., Chen, H., Yao, J., Bowers, C., Zhu, Y., and Y.
Liu, "SR-TE Path Midpoint Restoration", Work in Progress,
Internet-Draft, draft-hu-spring-segment-routing-proxy-
forwarding-24, 21 August 2023,
<https://datatracker.ietf.org/doc/html/draft-hu-spring-
segment-routing-proxy-forwarding-24>.
[I-D.ietf-spring-segment-routing-policy]
Filsfils, C., Talaulikar, K., Voyer, D., Bogdanov, A., and
P. Mattes, "Segment Routing Policy Architecture", Work in
Progress, Internet-Draft, draft-ietf-spring-segment-
routing-policy-22, 22 March 2022,
<https://datatracker.ietf.org/doc/html/draft-ietf-spring-
segment-routing-policy-22>.
[I-D.sivabalan-pce-binding-label-sid]
Sivabalan, S., Filsfils, C., Tantsura, J., Hardwick, J.,
Previdi, S., and C. Li, "Carrying Binding Label/Segment-ID
in PCE-based Networks.", Work in Progress, Internet-Draft,
draft-sivabalan-pce-binding-label-sid-07, 8 July 2019,
<https://datatracker.ietf.org/doc/html/draft-sivabalan-
pce-binding-label-sid-07>.
[RFC5226] Narten, T. and H. Alvestrand, "Guidelines for Writing an
IANA Considerations Section in RFCs", RFC 5226,
DOI 10.17487/RFC5226, May 2008,
<https://www.rfc-editor.org/info/rfc5226>.
[RFC5462] Andersson, L. and R. Asati, "Multiprotocol Label Switching
(MPLS) Label Stack Entry: "EXP" Field Renamed to "Traffic
Class" Field", RFC 5462, DOI 10.17487/RFC5462, February
2009, <https://www.rfc-editor.org/info/rfc5462>.
[RFC5575] Marques, P., Sheth, N., Raszuk, R., Greene, B., Mauch, J.,
and D. McPherson, "Dissemination of Flow Specification
Rules", RFC 5575, DOI 10.17487/RFC5575, August 2009,
<https://www.rfc-editor.org/info/rfc5575>.
Authors' Addresses
Huaimo Chen
Futurewei
Boston, MA,
United States of America
Email: huaimo.chen@futurewei.com
Chen, et al. Expires 10 April 2024 [Page 15]
Internet-Draft SR Ingress Protection October 2023
Mehmet Toy
Verizon
United States of America
Email: mehmet.toy@verizon.com
Aijun Wang
China Telecom
Beiqijia Town, Changping District
Beijing
102209
China
Email: wangaj3@chinatelecom.cn
Zhenqiang Li
China Mobile
32 Xuanwumen West Ave, Xicheng District
Beijing
100053
China
Email: lizhengqiang@chinamobile.com
Lei Liu
Fujitsu
United States of America
Email: liulei.kddi@gmail.com
Xufeng Liu
Volta Networks
McLean, VA
United States of America
Email: xufeng.liu.ietf@gmail.com
Chen, et al. Expires 10 April 2024 [Page 16]