Internet DRAFT - draft-chen-ospf-tts
draft-chen-ospf-tts
Internet Engineering Task Force H. Chen
Internet-Draft Futurewei
Intended status: Standards Track M. Toy
Expires: April 4, 2020 Verizon
V. Liu
China Mobile
L. Liu
Fijitsu
October 2, 2019
Extensions to OSPF for Temporal LSP
draft-chen-ospf-tts-03.txt
Abstract
This document specifies extensions to OSPF for distributing Traffic
Engineering (TE) information on a link in a sequence of time
intervals.
Status of this Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at http://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on April 4, 2020.
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(http://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
Chen, et al. Expires April 4, 2020 [Page 1]
Internet-Draft OSPF for Temporal LSP October 2019
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Conventions Used in This Document . . . . . . . . . . . . . . 3
4. Representation of TE Information . . . . . . . . . . . . . . . 4
4.1. TE Information in Absolute Time . . . . . . . . . . . . . 4
4.2. TE Information in Relative Time . . . . . . . . . . . . . 5
5. Extensions to OSPF . . . . . . . . . . . . . . . . . . . . . . 6
5.1. TE LSA . . . . . . . . . . . . . . . . . . . . . . . . . . 6
5.2. TTS Link TLV . . . . . . . . . . . . . . . . . . . . . . . 7
6. Security Considerations . . . . . . . . . . . . . . . . . . . 10
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 10
8. Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . 10
9. References . . . . . . . . . . . . . . . . . . . . . . . . . . 10
9.1. Normative References . . . . . . . . . . . . . . . . . . . 10
9.2. Informative References . . . . . . . . . . . . . . . . . . 10
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . . 11
Chen, et al. Expires April 4, 2020 [Page 2]
Internet-Draft OSPF for Temporal LSP October 2019
1. Introduction
Once an existing multiprotocol label switching (MPLS) traffic
engineering (TE) label switched path (LSP) is set up, it is assumed
to carry traffic forever until it is down. When an MPLS TE LSP
tunnel is up, it is assumed that the LSP consumes its reserved
network resources forever even though the LSP may only use network
resources during some period of time. As a result, the network
resources are not used efficiently. Moreover, a tunnel service can
not be reserved or booked in advance for a period of time.
This document specifies extensions to OSPF for supporting the setup
of an MPLS TE LSP in a period of time called a time interval or a
sequence of time intervals. It is assumed that the LSP carries
traffic during this time interval or each of these time intervals.
Thus the network resources are efficiently used. More importantly,
some new services can be provided. For example, a consumer can book
a tunnel service in advance for a time interval or a sequence of time
intervals. Tunnel services may be scheduled.
2. Terminology
A Time Interval: a time period from time Ta to time Tb.
LSP: Label Switched Path. An LSP is a P2P (point-to-point) LSP or a
P2MP (point-to-multipoiint) LSP.
LSP in a time interval: LSP that carries traffic in the time
interval.
LSP in a sequence of time intervals: LSP that carries traffic in each
of the time intervals.
Temporal LSP: LSP in a time interval or LSP in a sequence of time
intervals.
TEDB: Traffic Engineering Database.
This document uses terminologies defined in RFC2328 and RFC3630.
3. Conventions Used in This Document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119.
Chen, et al. Expires April 4, 2020 [Page 3]
Internet-Draft OSPF for Temporal LSP October 2019
4. Representation of TE Information
The existing Open Shortest Path First (OSPF) Traffic Engineering (TE)
distributes an unreserved bandwidth Bi at each of eight priority
levels for a link at one point of time, for example, at the current
time.
Bandwidth
^
|
Bi|______________________________________________________
|
|
-+------------------------------------------------------> Time
|
This means that the link has bandwidth Bi at a priority level from
now to forever until there is a change to it. This TE information on
the link is stored in TEDB.
Thus, a temporal LSP (i.e., an LSP in a time interval) cannot be set
up using the information in the TEDB and the bandwidth cannot be
reserved in advance for the LSP in the time interval.
To support temporal LSPs, we should extend OSPF to distribute TE
information on a link in a series of time intervals.
4.1. TE Information in Absolute Time
Suppose that the amount of the unreserved bandwidth at a priority
level on a link is Bj in a time interval from time Tj to Tk (k =
j+1), where j = 0, 1, 2, .... The unreserved bandwidth on the link
can be represented as
[T0, B0], [T1, B1], [T2, B2], [T3, B3], ....
This is an absolute time representation of bandwidths on a link.
Time Tj (j = 0, 1, 2, ...) MUST be a synchronized time among all
network nodes.
Chen, et al. Expires April 4, 2020 [Page 4]
Internet-Draft OSPF for Temporal LSP October 2019
Bandwidth
^
| B3
| B1 ___________
| __________
|B0 B4
|__________ B2 _________
| ________________
|
-+-------------------------------------------------------> Time
|T0 T1 T2 T3 T4
If an LSP is deleted or down at time T and uses bandwidth B, then for
every time interval/period (after time T) during which bandwidth B is
reserved for the LSP on a link attached to a network node, the
network node adds B to the link for that interval/period.
If an LSP is set up at time T and uses bandwidth B, then for every
time interval/period (after time T) during which bandwidth B is
reserved for the LSP on a link attached to a network node, the
network node subtracts bandwidth B from the link for that interval/
period.
If there are significant changes to the bandwidths on a link attached
to a network node, the network node distributes the bandwidths on the
link to other network nodes. That is that a updated [T0, B0], [T1,
B1], [T2, B2], [T3, B3], etc., are distributed to other network nodes
in the network. Each of the other network nodes can construct or
determine the bandwidth for a series of time intervals/periods on a
link after receiving the information.
4.2. TE Information in Relative Time
Alternatively, a relative time representation of bandwidths on a link
can be used. For example, the amount of the unreserved bandwidth at
a priority level on a link is Bj during a series of time intervals/
periods can be expressed as
[P0, B0], [P1, B1], [P2, B2], [P3, B3], ..., where
Pj = Tk - Tj, k = (j+1) and j = 0, 1, 2, 3, ....
In this representation, every time Tj (j = 0, 1, 2, ...) can be a
local time. A timer may expire after every unit of time (e.g., every
second) and trigger --P0, which decrements P0. When P0 = 0, P1
becomes P0, P2 becomes p1, and so on.
Chen, et al. Expires April 4, 2020 [Page 5]
Internet-Draft OSPF for Temporal LSP October 2019
If there are significant changes to the bandwidths on a link attached
to a node, the node distributes the bandwidths on the link to other
nodes. That is that a updated [P0, B0], [P1, B1], [P2, B2], [P3,
B3], ..., are distributed to other network nodes in the network. On
each of the other network nodes, a timer may expire for every unit of
time (e.g., every second) and trigger --P0, which decrements P0.
When P0 = 0, P1 becomes P0, P2 becomes p1, and so on.
An advantage of using relative time representation is that the times
or clocks on all the network nodes can be different.
5. Extensions to OSPF
This section describes the extensions to OSPF for supporting the
setup of temporal LSPs.
5.1. TE LSA
An opaque LSA of type 10 is originated by a network node to
distribute TE information such as the bandwidth of a link that is
attached to the network node.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS age | Options | LS Type=10 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| 1 | Opaque ID |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Advertising Router |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS sequence number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| LS checksum | length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ TLVs ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The opaque LSA comprises a link-state (LS) age field, an options
field, an LS type field, an opaque identifier (ID) field, an
advertising router field, an LS sequence number field, an LS checksum
field, a length field, and one or more TLVs.
The LS age field indicates the time since the LSA was originated in
seconds. The options field indicates the optional capabilities
Chen, et al. Expires April 4, 2020 [Page 6]
Internet-Draft OSPF for Temporal LSP October 2019
supported by the described portion of the routing domain. The LS
type field indicates the type of the LSA. The opaque ID field is a
number used to maintain multiple opaque LSAs. The advertising router
field indicates the Router ID of the router that originated the LSA.
The LS sequence number field is used to detect old or duplicate LSAs.
Successive instances of an LSA are given successive LS sequence
numbers. The LS checksum field indicates the Fletcher checksum of
the complete contents of the LSA, including the LSA header but
excluding the LS age field. The length field indicates the length of
the LSA in bytes.
5.2. TTS Link TLV
In addition to existing router address TLV and link TLV, TLVs fields
may comprise a new temporal tunnel service (TTS) link TLV.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (5) | Length (variable) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Reserved (0) | Segment-Number |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| sub TLVs |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
The TTS link TLV comprises a type field, a length field, a reserved
field, a segment-number field, and a sub TLVs field.
The type field may comprise a value assigned by the Internet Assigned
Number Authority (IANA) to indicate that the TLV is a TTS link TLV.
For example, the type field may comprise a value of 5. The length
field may indicate the length of the values in the TTS link TLV in
bytes.
The segment-number indicates a segment of the TTS link TLV. The
information on a link may be too big to fit into one TTS link TLV.
In this case, the information may be split into a few of segments,
each of which is put into a TTS link TLV and identified by a segment
number.
The sub TLV field comprises a link type sub-TLV and a link ID sub-
TLV. It may further comprise a local address sub-TLV, a remote
address sub-TLV, a TE metric sub-TLV, a maximum bandwidth sub-TLV, a
maximum reservable bandwidth sub-TLV, an unreserved bandwidth sub-
TLV, an administrator group sub-TLV, a relative TTS unreserved
Chen, et al. Expires April 4, 2020 [Page 7]
Internet-Draft OSPF for Temporal LSP October 2019
bandwidth sub-TLV, an absolute TTS unreserved bandwidth sub-TLV, and
any other suitable sub-TLVs.
The format of an absolute TTS unreserved bandwidth sub-TLV is shown
below.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (21) | Length (36+36*n) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| T0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| B0[8] |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| T1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| B1[8] |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Tn |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bn[8] |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
It comprises a type field, a length field, absolute time fields, and
unreserved bandwidth fields.
The type field may comprise a value assigned by the IANA to indicate
that the sub-TLV is an absolute TTS unreserved bandwidth sub-TLV.
For example, the type field may comprise a value of 21.
The length field may indicate the length of the values in the
absolute TTS unreserved bandwidth sub-TLV in bytes.
The absolute time fields and the unreserved bandwidth fields may be
in pairs such as
[ T0, B0[8] ], [ T1, B1[8] ], ..., [ Tn, Bn[8] ],
Chen, et al. Expires April 4, 2020 [Page 8]
Internet-Draft OSPF for Temporal LSP October 2019
where T0, T1, ..., Tn are the times synchronized among all the nodes
and Bj[8] (j=0, 1,..., n) are the amount of unreserved bandwidth at
eight priority levels in the time interval/period from Tj to Tk
(k=j+1).
The format of a relative TTS unreserved bandwidth sub-TLV is
illustrated as follows.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type (22) | Length (36+36*n) |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| P0 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| B0[8] |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| P1 |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| B1[8] |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| |
~ ~
| |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Pn |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Bn[8] |
~ ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
It comprises a type field, a length field, relative time fields, and
unreserved bandwidth fields.
The type field may comprise a value assigned by the IANA to indicate
that the sub-TLV is a relative TTS unreserved bandwidth sub-TLV. For
example, the type field may comprise a value of 22.
The length field may indicate the length of the values in the
relative TTS unreserved bandwidth sub-TLV in bytes.
The relative time fields and the unreserved bandwidth fields may be
in pairs such as
[ P0, B0[8] ], [ P1, B1[8] ], ... , [ Pn, Bn[8] ],
Chen, et al. Expires April 4, 2020 [Page 9]
Internet-Draft OSPF for Temporal LSP October 2019
where Pj (j=0, 1,..., n) is the time period during which the
unreserved bandwidth is Bj[8], containing the amount of unreserved
bandwidth at eight priority levels.
6. Security Considerations
The mechanism described in this document does not raise any new
security issues for the OSPF protocols.
7. IANA Considerations
This section specifies requests for IANA allocation.
8. Acknowledgement
The author would like to thank people for their valuable comments on
this draft.
9. References
9.1. Normative References
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119, DOI 10.17487/
RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328, DOI 10.17487/
RFC2328, April 1998,
<https://www.rfc-editor.org/info/rfc2328>.
[RFC5250] Berger, L., Bryskin, I., Zinin, A., and R. Coltun, "The
OSPF Opaque LSA Option", RFC 5250, DOI 10.17487/RFC5250,
July 2008, <https://www.rfc-editor.org/info/rfc5250>.
[RFC3630] Katz, D., Kompella, K., and D. Yeung, "Traffic Engineering
(TE) Extensions to OSPF Version 2", RFC 3630,
DOI 10.17487/RFC3630, September 2003,
<https://www.rfc-editor.org/info/rfc3630>.
9.2. Informative References
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Chen, et al. Expires April 4, 2020 [Page 10]
Internet-Draft OSPF for Temporal LSP October 2019
Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<https://www.rfc-editor.org/info/rfc3209>.
Authors' Addresses
Huaimo Chen
Futurewei
Boston, MA
US
Email: huaimo.chen@futurewei.com
Mehmet Toy
Verizon
USA
Email: mehmet.toy@verizon.com
Vic Liu
China Mobile
No.32 Xuanwumen West Street, Xicheng District
Beijing, 100053
China
Email: liu.cmri@gmail.com
Lei Liu
Fijitsu
USA
Email: lliu@us.fujitsu.com
Chen, et al. Expires April 4, 2020 [Page 11]