Internet DRAFT - draft-claise-netconf-metadata-for-collection

draft-claise-netconf-metadata-for-collection







NETCONF                                                        B. Claise
Internet-Draft                                                    Huawei
Intended status: Standards Track                               M. Nayyar
Expires: 29 July 2022                                    A. Reddy Sesani
                                                     Cisco Systems, Inc.
                                                         25 January 2022


     Per-Node Capabilities for Optimum Operational Data Collection
            draft-claise-netconf-metadata-for-collection-03

Abstract

   This document proposes a YANG module that provides per-node
   capabilities for optimum operational data collection.  This YANG
   module augments the YANG Modules for describing System Capabilities
   and YANG-Push Notification capabilities.

   This module defines augmented nodes to publish the metadata
   information specific to YANG node-identifier as per ietf-system-
   capabilities datatree.

   Complementary RPCs, based on the same node capabilities, simplify the
   data collection operations.

Status of This Memo

   This Internet-Draft is submitted in full conformance with the
   provisions of BCP 78 and BCP 79.

   Internet-Drafts are working documents of the Internet Engineering
   Task Force (IETF).  Note that other groups may also distribute
   working documents as Internet-Drafts.  The list of current Internet-
   Drafts is at https://datatracker.ietf.org/drafts/current/.

   Internet-Drafts are draft documents valid for a maximum of six months
   and may be updated, replaced, or obsoleted by other documents at any
   time.  It is inappropriate to use Internet-Drafts as reference
   material or to cite them other than as "work in progress."

   This Internet-Draft will expire on 29 July 2022.

Copyright Notice

   Copyright (c) 2022 IETF Trust and the persons identified as the
   document authors.  All rights reserved.





Claise, et al.            Expires 29 July 2022                  [Page 1]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


   This document is subject to BCP 78 and the IETF Trust's Legal
   Provisions Relating to IETF Documents (https://trustee.ietf.org/
   license-info) in effect on the date of publication of this document.
   Please review these documents carefully, as they describe your rights
   and restrictions with respect to this document.  Code Components
   extracted from this document must include Revised BSD License text as
   described in Section 4.e of the Trust Legal Provisions and are
   provided without warranty as described in the Revised BSD License.

Table of Contents

   1.  Terminology . . . . . . . . . . . . . . . . . . . . . . . . .   2
   2.  Introduction  . . . . . . . . . . . . . . . . . . . . . . . .   3
   3.  Concepts  . . . . . . . . . . . . . . . . . . . . . . . . . .   4
   4.  Base ietf-system-node-metadata YANG module  . . . . . . . . .   7
     4.1.  Tree View . . . . . . . . . . . . . . . . . . . . . . . .   7
     4.2.  Full Tree View  . . . . . . . . . . . . . . . . . . . . .   8
     4.3.  YANG Module . . . . . . . . . . . . . . . . . . . . . . .   9
   5.  Examples  . . . . . . . . . . . . . . . . . . . . . . . . . .  15
   6.  Security Considerations . . . . . . . . . . . . . . . . . . .  21
   7.  IANA Considerations . . . . . . . . . . . . . . . . . . . . .  21
     7.1.  The IETF XML Registry . . . . . . . . . . . . . . . . . .  21
   8.  Open Issues . . . . . . . . . . . . . . . . . . . . . . . . .  22
   9.  References  . . . . . . . . . . . . . . . . . . . . . . . . .  22
     9.1.  Normative References  . . . . . . . . . . . . . . . . . .  22
     9.2.  Informative References  . . . . . . . . . . . . . . . . .  23
   Acknowledgements  . . . . . . . . . . . . . . . . . . . . . . . .  24
   Authors' Addresses  . . . . . . . . . . . . . . . . . . . . . . .  24

1.  Terminology

   The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
   "SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
   "OPTIONAL" in this document are to be interpreted as described in BCP
   14 [RFC2119] [RFC8174] when, and only when, they appear in all
   capitals, as shown here.

   The term Client and Server are specified in [RFC8342].

   The term Implementation-time and Run-time are specified in
   [I-D.ietf-netconf-notification-capabilities].










Claise, et al.            Expires 29 July 2022                  [Page 2]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


2.  Introduction

   This document specifies a way to learn from the devices how granular
   its telemetry and data can be to provide the best post-processing
   analytics.  In the end, the service assurance architecture
   [I-D.claise-opsawg-service-assurance-architecture], it's not
   sufficient to simply stream (or poll) telemetry data, it is equally
   important to be able to act on the data.  As such, a series of extra
   information about the node capabilities is essential.

   The module ietf-system-capabilities
   [I-D.ietf-netconf-notification-capabilities] provides a structure
   that can be used to specify YANG related system capabilities for
   servers.  The module can be used in conjunction with YANG Instance
   Data to make this information available at implementation-time.  The
   module can also be used to report capability information from the
   server at run-time.

   The module ietf-notification-capabilities
   [I-D.ietf-netconf-notification-capabilities] augments ietf-system-
   capabilities to specify capabilities related to "Subscription to YANG
   Datastores" (YANG-Push) [RFC8639].  It provides a starting point by
   specifying some per-node telemetry-related capabilities.  Of
   particular interest are the following node capabilities:

   *  minimum-dampening-period

   *  on-change-supported

   *  periodic-notifications-supported

   *  supported-excluded-change-type

   Taking the example of on-change-supported and periodic-notifications-
   supported, it's key to understand whether a publisher is capable of
   sending on-change notifications versus sending periodic notifications
   for the selected data store or data nodes.  Indeed, not only would
   the telemetry configuration change depending on the capabilities (on-
   change versus periodic), but more importantly the client's handling
   of the telemetry information would change.  Upon receipt of an on-
   change telemetry message, an immediate action could be taken to
   correct or mitigate the issue, while in case of periodic
   notification, a comparison with the previous value must first be
   performed in order to understand if and how the network state has
   changed.






Claise, et al.            Expires 29 July 2022                  [Page 3]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


   Exactly like a client that connects to a server is able to discover
   the capabilities in terms of supported YANG modules, features,
   deviations, and protocol capabilities; the same client must also be
   able to discover the required per-node capabilities (also known as
   metadata) to correctly act on the telemetry information.  It forms
   part of the API contract for managing and monitoring the device.
   Extending the per-node capabilities specified in
   [I-D.ietf-netconf-notification-capabilities], additional per-node
   capabilities are required.

   The YANG module in this document augments the ietf-system-
   capabilities YANG module in "YANG Modules for describing System
   Capabilities and Yang-Push Notification Capabilities"
   [I-D.ietf-netconf-notification-capabilities].

   The YANG data model in this document conform to the Network
   Management Datastore Architecture (NMDA) defined in [RFC8342].

3.  Concepts

   Doing networking data collection for the sake of doing collection is
   not useful.  At the time of network automation, displaying nice
   graphs from collected data is not useful: the collected data must be
   acted upon immediately.  Some use cases are: network availability,
   closed loop automation (reconfiguring network based on observed
   network state changes), service assurance
   [I-D.claise-opsawg-service-assurance-architecture], etc.

   Along with the capabilities specified in ietf-netconf-notification-
   capabilities [I-D.ietf-netconf-notification-capabilities] YANG model,
   there is some additional information that can be made available per
   node-selector to help with this optimum collection of operational
   data.  For example, these additional metadata can help reduce the
   load on the devices being managed along with the performance
   improvements because of the way data is subscribed to.  Some other
   metadata can help with the collection automation itself (mapping of
   config and oper data node, mapping of MIB oid to YANG leaf).

   Some metadata are static and can augment the node-capabilities in
   [I-D.ietf-netconf-notification-capabilities], for both implementation
   time and run time environments.  Other metadata are dynamic and have
   to be derived during the run-time.  They can change based on the role
   of the device and the scale of the data being observed.

   Per-node static metadata includes:






Claise, et al.            Expires 29 July 2022                  [Page 4]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


   *  minimum-observable-period: This is the minimum observable period
      in nanoseconds for the node-selector.  Streaming or polling more
      frequently then this interval may not fetch useful information as
      the node could be updated only at this frequency internally.  If a
      close loop automation system would stream or poll more frequently,
      it could actually draw the wrong conclusions.  Let's take the
      example of interface counters than are updated more frequently
      than 30 seconds in a distributed system.  Streaming interface
      counters every 30 seconds would see an natural increase in the
      interface counters.  However, streaming those interface counters
      every 10 seconds could lead to the wrong conclusion that no
      packets are received/sent on that specific interface ...
      triggering an automatic interface troubleshooting action.  Hence
      determining the minimum-observable-period for every monitored leaf
      is essential for closed loop automation and assurance systems.

   *  suggested-observable-period: The suggested observable period for
      this node-selector.  This value represents factory default
      suggested information, only available at implementation time.  Let
      us assume that an assurance system would like to monitor all FIB
      entries in the router.  The router would advertise that the
      suggested observable period is, let's say, 30 seconds.  Those 5
      seconds are the factory defaults, provided at the implementation
      time.  Once the router is in production, the observable period
      would obviously change depending on the environment (as an
      example, a FIB containing all BGP entries is huge): this dynamic
      suggest observable period is called the computed-observable-period
      and is available part of the get-measurement-metadata RPC.

   *  optimized-measurement-point: In some server design, operational
      data are usually modeled/structured in a way that the relevant
      data are grouped together and reside together.  In most cases, it
      is more performant to fetch this data together than as individual
      leaves: data are structured together internally, grouped together,
      and therefore fetched together.  This feature specifies optimum
      observable points in the model at which data can be collected and
      streamed in an efficient way.  Depending on the implementation,
      optimum points can be leaves or a container nodes in the YANG
      tree.  This is a selection node, that means its presence for a
      node-selector indicates it is the optimized measurement point.

   *  corresponding-mib-oid: The object identifier (OID) assigned to a
      SMIv2 definition, corresponding to the node-selector.  The object
      identifier value is written in decimal dotted notation.  Existing
      SNMP MIBs based automations can use this information to migrate to
      more analytics-ready YANG Modeled data.  Working from a single
      data model system (YANG-based in this case) for data collection
      simplifies the management, as opposed to use different data



Claise, et al.            Expires 29 July 2022                  [Page 5]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


      models.  Therefore, knowing the mapping MIB OID/YANG leaf is
      important, as transition mechanism towards YANG (for example:
      moving away from SNMP polling to model-driven telemetry) but also
      as a way to understand whether the same operational data is
      metered in both the MIB and YANG worlds, adding to the load on
      devices.  Some IETF RFCs, such as the YANG Interface Management
      [RFC8343], specify the mapping in the document.  However,
      providing this mapping directly from the server helps automation
      from a client point of view.

   *  related-node: Data nodes that are related for closed-loop scenario
      for data node specified in node-capabilities.  In case node-
      capabilities is an operational node then the associated node-
      instance-identifier represents config paths directly related to
      this operational node capabilities.  In case node-capabilities is
      an config node then the associated node-instance-identifier
      represents operational leaf directly related to this configuration
      node capabilities.  This node is specifically interesting for non
      NMDA [RFC8342], non openconfig YANG modules.  For example, in the
      initial YANG data model for interface management [RFC7223], which
      is not NMDA-compliant, advertising the mapping between the admin-
      status and the oper-status leaves would clearly simplify the
      closed loop automation.  Note that NMDA and the openconfig -state
      container solved that issue but not all servers are NMDA compliant
      and openconfig models don't cover all server functions.

   A generic RPC, get-system-node-capabilities, provides the
   capabilities for the nodes in the subtree of the input.  If the input
   node passed is a leaf/leaf-list, then all the metadata for that input
   node are returned.  If the input node is not leaf/leaf-list then the
   RPC returns the metadata of all of its subtree nodes.

   There is some run-time information that is very helpful for the
   applications to know, to be able to start listening to the device
   without adding too much additional resource strain on the device.
   The get-measurement-metadata RPC can be used to fetch this data.

   Per-node dynamic metadata includes, part of the get-measurement-
   metadata RPC:

   *  optimized-measurement-point: The node-selector is searched up the
      data tree chain to find the parent node that is the optimized
      measurement point (if the optimized-measurement-point-feature is
      supported).  If the node-selector itself is the optimized point
      then same data node is returned in the output.  If the node-
      selector has no optimized measurement point then this optimized-
      measurement-point leaf is not returned.




Claise, et al.            Expires 29 July 2022                  [Page 6]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


   *  computed-observable-period: the computed observable period for
      this node-selector (and optimized-measurement-point).  The system
      internally dynamically computes the suggested observable period
      (relevant for polling or streaming cadence) which can be greater-
      or-equal to the minimal-observable-period.  Since this value is
      dynamic, this metadata is only available in a run time
      environment.

   *  active-measurements - subscribed-measurement-period: List of
      existing subscriptions for this node-selector.  If there are no
      active subscriptions then system calculate the measurement-period
      and this list is not-returned, else, each instance in this list
      will be pair of active measurement with intended and actual period
      used by the system.

4.  Base ietf-system-node-metadata YANG module

4.1.  Tree View

   The following tree diagram [RFC8340] provides an overview of the
   ietf-system-node-metadata data model.






























Claise, et al.            Expires 29 July 2022                  [Page 7]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


module: ietf-system-node-metadata
  augment /sysc:system-capabilities/sysc:datastore-capabilities/sysc:per-node-capabilities/sysc:node-selection/sysc:node-selector:
    +--ro minimum-observable-period?    uint64
    +--ro suggested-observable-period?   uint64
    +--ro optimized-measurement-point?   empty {optimized-measurement-point-feature}?
    +--ro corresponding-mib-oid?         yang:object-identifier-128
    +--ro related-node?                  yang:node-instance-identifier

  rpcs:
    +---x get-measurement-metadata
    |  +---w input
    |  |  +---w node-selector?   yang:node-instance-identifier
    |  +--ro output
    |     +--ro optimized-measurement-point?   yang:node-instance-identifier {optimized-measurement-point-feature}?
    |     +--ro computed-observable-period?    uint64
    |     +--ro active-measurements* []
    |        +--ro subscribed-measurement-period?   uint64
    +---x get-system-node-capabilities
       +---w input
       |  +---w node-selector?   yang:node-instance-identifier
       +--ro output
          +--ro node-selector-capability* []
             +--ro node?                          yang:node-instance-identifier
             +--ro minimum-observable-period?    uint64
             +--ro suggested-observable-period?   uint64
             +--ro optimized-measurement-point?   empty {optimized-measurement-point-feature}?
             +--ro corresponding-mib-oid?         yang:object-identifier-128
             +--ro related-node?                  yang:node-instance-identifier

4.2.  Full Tree View

   The following tree diagram [RFC8340] provides an overview of the
   ietf-system-capabilities and ietf-system-node-metadata data models.


















Claise, et al.            Expires 29 July 2022                  [Page 8]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


module: ietf-system-node-metadata

  rpcs:
    +---x get-measurement-metadata
    |  +---w input
    |  |  +---w node-selector?   yang:node-instance-identifier
    |  +--ro output
    |     +--ro optimized-measurement-point?   yang:node-instance-identifier {optimized-measurement-point-feature}?
    |     +--ro computed-observable-period?    uint64
    |     +--ro active-measurements* []
    |        +--ro subscribed-measurement-period?   uint64
    +---x get-system-node-capabilities
       +---w input
       |  +---w node-selector?   yang:node-instance-identifier
       +--ro output
          +--ro node-selector-capability* []
             +--ro node?                          yang:node-instance-identifier
             +--ro minimum-observable-period?    uint64
             +--ro suggested-observable-period?   uint64
             +--ro optimized-measurement-point?   empty {optimized-measurement-point-feature}?
             +--ro corresponding-mib-oid?         yang:object-identifier-128
             +--ro related-node?                  yang:node-instance-identifier
module: ietf-system-capabilities
  +--ro system-capabilities
     +--ro datastore-capabilities* [datastore]
        +--ro datastore                -> /yanglib:yang-library/datastore/name
        +--ro per-node-capabilities* []
           +--ro (node-selection)?
              +--:(node-selector)
                 +--ro node-selector?                              nacm:node-instance-identifier
                 +--ro sys-metadata:minimum-observable-period?    uint64
                 +--ro sys-metadata:suggested-observable-period?   uint64
                 +--ro sys-metadata:optimized-measurement-point?   empty {optimized-measurement-point-feature}?
                 +--ro sys-metadata:corresponding-mib-oid?         yang:object-identifier-128
                 +--ro sys-metadata:related-node?                  yang:node-instance-identifier

4.3.  YANG Module

   <CODE BEGINS> file "ietf-system-node-metadata@2020-03-20.yang"

   module ietf-system-node-metadata {
     yang-version 1.1;
     namespace "urn:ietf:params:xml:ns:yang:ietf-system-node-metadata";
     prefix sys-metadata;

     import ietf-system-capabilities {
       prefix sysc;
       reference



Claise, et al.            Expires 29 July 2022                  [Page 9]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


         "RFC XXXX: YANG Modules for describing System Capabilities and
          Yang-Push Notification Capabilities";
     }
     import ietf-yang-types {
       prefix yang;
       reference
         "RFC XXXX: Currently draft-ietf-netmod-rfc6991-bis-04, Common
          YANG Data types";
     }

     organization
       "IETF NETCONF (Network Configuration) Working Group";
     contact
       "WG Web:   <https://datatracker.ietf.org/wg/netconf/>
        WG List:  <mailto:netconf@ietf.org>

        Editor:   Benoit Claise
                  <mailto:bclaise@cisco.com>

        Editor:   Munish Nayyar
                  <mailto:mnayyar@cisco.com>

        Editor:   Adithya Reddy Sesani
                  <mailto:adithyas@cisco.com>
       ";
     description
       "This document proposes a YANG module that provides per-node
        capabilities for optimum operational data collection.

        This YANG module augments the YANG Modules for describing
        System Capabilities and Yang-Push Notification capabilities
        [RFC XXXX].

        This module defines augmented nodes to publish the
        metadata information specific to YANG node-identifier as per
        ietf-system-capabilities datatree.

        Complementary RPCs, based on the same node capabilities,
        simplify the data collection operations.

        The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
        'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
        'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
        are to be interpreted as described in BCP 14 (RFC 2119)
        (RFC 8174) when, and only when, they appear in all
        capitals, as shown here.

        Copyright (c) 2020 IETF Trust and the persons identified as



Claise, et al.            Expires 29 July 2022                 [Page 10]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


        authors of the code.  All rights reserved.

        Redistribution and use in source and binary forms, with or
        without modification, is permitted pursuant to, and subject
        to the license terms contained in, the Simplified BSD License
        set forth in Section 4.c of the IETF Trust's Legal Provisions
        Relating to IETF Documents
        (http://trustee.ietf.org/license-info).

        This version of this YANG module is part of RFC XXXX
        (https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
        for full legal notices.";

     revision 2020-03-23 {
       description
         "Initial version";
       reference
         "RFC XXX: Per-Node Capabilities For Closed Loop Automation.";
     }

     feature optimized-measurement-point-feature {
       description
         "Support for optimized measurement point within data tree.";
     }

     grouping system-node-metadata-info {
       description
         "group of metadata properties associated to the
          node-instance.";
       leaf minimum-observable-period {
         type uint64;
         units "nanoseconds";
         description
           "The minimum observable period for this node-selector. Don't
            poll or stream more frequently that minimum observable
            period in nanoseconds as the corresponding counter is not
            updated more frequently.";
       }
       leaf suggested-observable-period {
         type uint64;
         units "nanoseconds";
         description
           "The suggested observable period for this node-selector.
            This value represents factory default suggested
            information, only available at implementation time.";
       }
       leaf optimized-measurement-point {
         if-feature "optimized-measurement-point-feature";



Claise, et al.            Expires 29 July 2022                 [Page 11]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


         type empty;
         description
           "This node-selector is an optimized measurement point.";
       }
       leaf corresponding-mib-oid {
         type yang:object-identifier-128;
         description
           "The object identifier (OID) assigned to a SMIv2 definition,
            corresponding to this node-selector.";
       }
       leaf related-node {
         type yang:node-instance-identifier;
         description
           "In case the node instance is an operational node then the
            associated node-instance-identifier represents the config
            leaf directly related to this operational node. In case the
            node instance is an config node then the associated
            node-instance-identifier represents the operational leaf
            directly related to this configuration node. A typical
            example is the relationship between the admin-status and
            oper-status, which is impossible to detect automatically in
            a non-NMDA environment or for non-openconfig YANG moduels.
            The related-node SHOULD NOT reported for NMDA architectures
            and openconfig YANG modules.";
       }
     }

     augment
       "/sysc:system-capabilities/sysc:datastore-capabilities/"
        + "sysc:per-node-capabilities/"
        + "sysc:node-selection/sysc:node-selector" {
       description
         "Metadata information tied to the per-node-capabilities";
       uses system-node-metadata-info;
     }

     rpc get-measurement-metadata {
       description
         "RPC that returns the optimized measurement per-node
          capabilities and some measurement parameters. This RPC
          is added to allow clients to learn dynamically changing
          metadata for a specific leaf on a server.

          If the server supports the optimized-measurement-point
          feature, then the output data refers to
          optimized-measurement-point. The server will internally
          find the optimized-measurement-point. If it can not find it,
          then no output is returned (for the



Claise, et al.            Expires 29 July 2022                 [Page 12]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


          optimized-measurement-point, computed-observable-period,
          and active-measurements).

          If the server doesn't support the optimized-measurement-point
          feature, then the output data refers to input node selector.";
       input {
         leaf node-selector {
           type yang:node-instance-identifier;
           description
             "node instance for which metadata is requested";
         }
       }
       output {
         leaf optimized-measurement-point {
           if-feature "optimized-measurement-point-feature";
           type yang:node-instance-identifier;
           description
             "The node-selector is searched up the data tree chain to
              find the parent node that is the optimized measurement
              point (if the optimized-measurement-point-feature is
              supported).

              If the node-selector itself is the optimized point then
              same data node is returned in the output.

              If the node-selector has no optimized measurement point
              then this optimized-measurement-point leaf is not
              returned.";
         }
         leaf computed-observable-period {
           type uint64;
           units "nanoseconds";
           description
             "the computed observable period for this node-selector (and
              optimized-measurement-point). The system internally
              dynamically computes the suggested observable period
              (relevant for polling or streaming cadence) which can be
              greater-or-equal to the minimal-observable-period.
              Since this value is dynamic, this metadata is only
              available in a run time environment.";
         }
         list active-measurements {
           description
             "list of existing subscriptions for this node-selector. If
              there are no active subscriptions then system calculate
              the measurement-period and this list is not-returned,
              else, each instance in this list will be pair of active
              measurement with intended and actual period used by the



Claise, et al.            Expires 29 July 2022                 [Page 13]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


              system";
           leaf subscribed-measurement-period {
             type uint64;
             units "nanoseconds";
             description
               "Currently subscribed measurement period for this
                node-selector (and optimized-measurement-point)";
           }
         }
       }
     }

     rpc get-system-node-capabilities {
       description
         "RPC to get the capabilities for the nodes in the subtree of
          the input.
          If the input node passed is a leaf/leaf-list, then
          the same node metadata is returned in the output.
          If the input node is not leaf/leaf-list then metadata of its
          subtree nodes is returned.";
       input {
         leaf node-selector {
           type yang:node-instance-identifier;
           description
             "node instance whose subtree which metadata is requested.";
         }
       }
       output {
         list node-selector-capability {
           description
             "metadata of nodes in the subtree of node-selector.";
           leaf node {
             type yang:node-instance-identifier;
             description
               "instance path of the node inside subtree of
                node-selector.";
           }
           uses system-node-metadata-info;
         }
       }
     }
   }

   <CODE ENDS>







Claise, et al.            Expires 29 July 2022                 [Page 14]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


5.  Examples

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC8446].

   XML data tree for the ietf-interface YANG module [RFC8343]:

     <interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
       <interface>
         <name/>
         <description/>
         <type/>
         <link-up-down-trap-enable/>
         <admin-status/>
         <oper-status/>
         <last-change/>
         <if-index/>
         <phys-address/>
         <higher-layer-if>
           <!-- # entries: 0.. -->
         </higher-layer-if>
         <lower-layer-if>
           <!-- # entries: 0.. -->
         </lower-layer-if>
         <speed/>
         <statistics>
           <discontinuity-time/>
           <in-octets/>
           <in-unicast-pkts/>
           <in-broadcast-pkts/>
           <in-multicast-pkts/>
           <in-discards/>
           <in-errors/>
           <in-unknown-protos/>
           <out-octets/>
           <out-unicast-pkts/>
           <out-broadcast-pkts/>
           <out-multicast-pkts/>
           <out-discards/>
           <out-errors/>
         </statistics>
       </interface>
     </interfaces>



Claise, et al.            Expires 29 July 2022                 [Page 15]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


   Example1: Demonstrating the querying metadata for all system schema
   nodes for the ietf-interfaces [RFC8343].

  <!-- Request -->
 <rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
  <get>
    <filter>
      <system-capabilities xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities">
      </system-capabilities>
    </filter>
  </get>
</rpc>

  <!-- Response -->
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <data>
  <system-capabilities xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities" xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
    <datastore-capabilities>
      <datastore>ds:operational</datastore>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface</node-selector>
        <optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"></corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:admin-status</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.7</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:oper-status</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.8</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:if-index</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.1</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:phys-address</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.6</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>



Claise, et al.            Expires 29 July 2022                 [Page 16]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:lower-layer-if</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.2.1.2</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:higher-layer-if</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.2.1.1</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:speed</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.5</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics</node-selector>
        <optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:discontinuity-time</node-selector>
        <optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.19</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:in-octets</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.10</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:in-unicast-pkts</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.11</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:in-multicast-pkts</node-selector>



Claise, et al.            Expires 29 July 2022                 [Page 17]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.2</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:in-broadcast-pkts</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.3</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:in-discards</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.13</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:in-errors</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.14</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:in-unknown-protos</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.15</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:out-octets</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.16</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:out-unicast-pkts</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.17</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:out-multicast-pkts</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.4</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:out-broadcast-pkts</node-selector>



Claise, et al.            Expires 29 July 2022                 [Page 18]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.5</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:out-discards</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.19</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics/if:out-errors</node-selector>
        <corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.20</corresponding-mib-oid>
        <minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
        <suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
      </per-node-capabilities>
    </datastore-capabilities>
  </system-capabilities>
</data>
</rpc-reply>

   Example2: Demonstrating the querying metadata of all optimized-
   measurement-point(s).  Use containment and selection nodes filtering
   criteria to express which all metadata you want.  In this example:
   get query filter only to "select" the node-instance-identifier,
   optimized-measurement-point nodes, for the ietf-interfaces [RFC8343].
   There are two optimized-measurement-points: interface and statistics.
























Claise, et al.            Expires 29 July 2022                 [Page 19]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


   <!-- Request -->
 <rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
   <get>
     <filter type="subtree">
     <system-capabilities xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities"></system-capabilities>
      <datastore-capabilities>
        <datastore>ds:operational</datastore>
        <per-node-capabilities>
        <optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
        </per-node-capabilities>
      </datastore-capabilities>
    </filter>
   </get>
 </rpc>

  <!-- Response -->

<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <data>
  <system-capabilities xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities" xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
    <datastore-capabilities>
      <datastore>ds:operational</datastore>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface</node-selector>
        <optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
      </per-node-capabilities>
      <per-node-capabilities>
        <node-selector>/if:interfaces/if:interface/if:statistics</node-selector>
        <optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
      </per-node-capabilities>
    </datastore-capabilities>
  </system-capabilities>
</data>
</rpc-reply>

   Example3: Demonstrating the usage of RPC to query the device for
   computed-measurement-period and the subscribed-measurement-period(s)
   for the in-errors YANG leaf.













Claise, et al.            Expires 29 July 2022                 [Page 20]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


<!-- Request -->

<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
  <get-measurement-metadata xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">
    <node-selector>/if:interfaces/if:interface/if:statistics/if:in-errors</node-selector>
  </get-measurement-metadata>
</rpc>

<!-- Response -->
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
  <optimized-measurement-point>/if:interfaces/if:interface/if:statistics</optimized-measurement-point>
  <computed-measurement-period>3000</computed-measurement-period>
  <active-measurements>
    <subscribed-measurement-period>1000</subscribed-measurement-period>
  </active-measurements>
  <active-measurements>
    <subscribed-measurement-period>1000</subscribed-measurement-period>
  </active-measurements>
  <active-measurements>
    <subscribed-measurement-period>1000</subscribed-measurement-period>
  </active-measurements>
</rpc-reply>

6.  Security Considerations

   The YANG module specified in this document defines a schema for data
   that is designed to be accessed via network management protocols such
   as NETCONF [RFC6241] or RESTCONF [RFC8040].  The lowest NETCONF layer
   is the secure transport layer, and the mandatory-to-implement secure
   transport is Secure Shell (SSH) [RFC6242].  The lowest RESTCONF layer
   is HTTPS, and the mandatory-to-implement secure transport is TLS
   [RFC8446].

   The Network Configuration Access Control Model (NACM) [RFC8341]
   provides the means to restrict access for particular NETCONF or
   RESTCONF users to a preconfigured subset of all available NETCONF or
   RESTCONF protocol operations and content.

7.  IANA Considerations

7.1.  The IETF XML Registry

   This document registers two URIs in the IETF XML registry [RFC3688].
   Following the format in [RFC3688], the following registrations are
   requested:






Claise, et al.            Expires 29 July 2022                 [Page 21]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


      URI: urn:ietf:params:xml:ns:yang:ietf-system-node-metadata
      Registrant Contact: The NETCONF WG of the IETF.
      XML: N/A, the requested URI is an XML namespace.

8.  Open Issues

      "related-node" should be split into two: "related-config-node" and
      "related-state-node"?

      Explain how to use the RPC from the client side, along with the
      different options.

      Expand on the active measurement use case

      nanosecond: an overkill?

      security considerations: see https://trac.ietf.org/trac/ops/wiki/
      yang-security-guidelines

9.  References

9.1.  Normative References

   [I-D.ietf-netconf-notification-capabilities]
              Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
              describing Capabilities for Systems and Datastore Update
              Notifications", Work in Progress, Internet-Draft, draft-
              ietf-netconf-notification-capabilities-21, 15 October
              2021, <https://www.ietf.org/archive/id/draft-ietf-netconf-
              notification-capabilities-21.txt>.

   [I-D.ietf-netmod-rfc6991-bis]
              Schoenwaelder, J., "Common YANG Data Types", Work in
              Progress, Internet-Draft, draft-ietf-netmod-rfc6991-bis-
              10, 14 January 2022, <https://www.ietf.org/archive/id/
              draft-ietf-netmod-rfc6991-bis-10.txt>.

   [RFC2119]  Bradner, S., "Key words for use in RFCs to Indicate
              Requirement Levels", BCP 14, RFC 2119,
              DOI 10.17487/RFC2119, March 1997,
              <https://www.rfc-editor.org/info/rfc2119>.

   [RFC8174]  Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
              2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
              May 2017, <https://www.rfc-editor.org/info/rfc8174>.






Claise, et al.            Expires 29 July 2022                 [Page 22]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


   [RFC8341]  Bierman, A. and M. Bjorklund, "Network Configuration
              Access Control Model", STD 91, RFC 8341,
              DOI 10.17487/RFC8341, March 2018,
              <https://www.rfc-editor.org/info/rfc8341>.

   [RFC8639]  Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
              E., and A. Tripathy, "Subscription to YANG Notifications",
              RFC 8639, DOI 10.17487/RFC8639, September 2019,
              <https://www.rfc-editor.org/info/rfc8639>.

9.2.  Informative References

   [I-D.claise-opsawg-service-assurance-architecture]
              Claise, B., Quilbeuf, J., Lopez, D. R., Voyer, D., and T.
              Arumugam, "Service Assurance for Intent-based Networking
              Architecture", Work in Progress, Internet-Draft, draft-
              claise-opsawg-service-assurance-architecture-05, 23 April
              2021, <https://www.ietf.org/archive/id/draft-claise-
              opsawg-service-assurance-architecture-05.txt>.

   [RFC3688]  Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
              DOI 10.17487/RFC3688, January 2004,
              <https://www.rfc-editor.org/info/rfc3688>.

   [RFC6241]  Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
              and A. Bierman, Ed., "Network Configuration Protocol
              (NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
              <https://www.rfc-editor.org/info/rfc6241>.

   [RFC6242]  Wasserman, M., "Using the NETCONF Protocol over Secure
              Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
              <https://www.rfc-editor.org/info/rfc6242>.

   [RFC7223]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
              <https://www.rfc-editor.org/info/rfc7223>.

   [RFC8040]  Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
              Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
              <https://www.rfc-editor.org/info/rfc8040>.

   [RFC8340]  Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
              BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
              <https://www.rfc-editor.org/info/rfc8340>.







Claise, et al.            Expires 29 July 2022                 [Page 23]

Internet-Draft  Node Capabilities For Closed Loop Automa    January 2022


   [RFC8342]  Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
              and R. Wilton, "Network Management Datastore Architecture
              (NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
              <https://www.rfc-editor.org/info/rfc8342>.

   [RFC8343]  Bjorklund, M., "A YANG Data Model for Interface
              Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
              <https://www.rfc-editor.org/info/rfc8343>.

   [RFC8446]  Rescorla, E., "The Transport Layer Security (TLS) Protocol
              Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
              <https://www.rfc-editor.org/info/rfc8446>.

Acknowledgements

   The authors would like to thank ... for their reviews and feedback.

Authors' Addresses

   Benoit Claise
   Huawei

   Email: benoit.claise@huawei.com


   Munish Nayyar
   Cisco Systems, Inc.
   Milpitas
   California,
   United States

   Email: mnayyar@cisco.com


   Adithya Reddy Sesani
   Cisco Systems, Inc.
   Milpitas
   California,
   United States

   Email: adithyas@cisco.com










Claise, et al.            Expires 29 July 2022                 [Page 24]