Internet DRAFT - draft-claise-netconf-metadata-for-collection
draft-claise-netconf-metadata-for-collection
NETCONF B. Claise
Internet-Draft Huawei
Intended status: Standards Track M. Nayyar
Expires: 29 July 2022 A. Reddy Sesani
Cisco Systems, Inc.
25 January 2022
Per-Node Capabilities for Optimum Operational Data Collection
draft-claise-netconf-metadata-for-collection-03
Abstract
This document proposes a YANG module that provides per-node
capabilities for optimum operational data collection. This YANG
module augments the YANG Modules for describing System Capabilities
and YANG-Push Notification capabilities.
This module defines augmented nodes to publish the metadata
information specific to YANG node-identifier as per ietf-system-
capabilities datatree.
Complementary RPCs, based on the same node capabilities, simplify the
data collection operations.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on 29 July 2022.
Copyright Notice
Copyright (c) 2022 IETF Trust and the persons identified as the
document authors. All rights reserved.
Claise, et al. Expires 29 July 2022 [Page 1]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents (https://trustee.ietf.org/
license-info) in effect on the date of publication of this document.
Please review these documents carefully, as they describe your rights
and restrictions with respect to this document. Code Components
extracted from this document must include Revised BSD License text as
described in Section 4.e of the Trust Legal Provisions and are
provided without warranty as described in the Revised BSD License.
Table of Contents
1. Terminology . . . . . . . . . . . . . . . . . . . . . . . . . 2
2. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
3. Concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 4
4. Base ietf-system-node-metadata YANG module . . . . . . . . . 7
4.1. Tree View . . . . . . . . . . . . . . . . . . . . . . . . 7
4.2. Full Tree View . . . . . . . . . . . . . . . . . . . . . 8
4.3. YANG Module . . . . . . . . . . . . . . . . . . . . . . . 9
5. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6. Security Considerations . . . . . . . . . . . . . . . . . . . 21
7. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 21
7.1. The IETF XML Registry . . . . . . . . . . . . . . . . . . 21
8. Open Issues . . . . . . . . . . . . . . . . . . . . . . . . . 22
9. References . . . . . . . . . . . . . . . . . . . . . . . . . 22
9.1. Normative References . . . . . . . . . . . . . . . . . . 22
9.2. Informative References . . . . . . . . . . . . . . . . . 23
Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . 24
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 24
1. Terminology
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "NOT RECOMMENDED", "MAY", and
"OPTIONAL" in this document are to be interpreted as described in BCP
14 [RFC2119] [RFC8174] when, and only when, they appear in all
capitals, as shown here.
The term Client and Server are specified in [RFC8342].
The term Implementation-time and Run-time are specified in
[I-D.ietf-netconf-notification-capabilities].
Claise, et al. Expires 29 July 2022 [Page 2]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
2. Introduction
This document specifies a way to learn from the devices how granular
its telemetry and data can be to provide the best post-processing
analytics. In the end, the service assurance architecture
[I-D.claise-opsawg-service-assurance-architecture], it's not
sufficient to simply stream (or poll) telemetry data, it is equally
important to be able to act on the data. As such, a series of extra
information about the node capabilities is essential.
The module ietf-system-capabilities
[I-D.ietf-netconf-notification-capabilities] provides a structure
that can be used to specify YANG related system capabilities for
servers. The module can be used in conjunction with YANG Instance
Data to make this information available at implementation-time. The
module can also be used to report capability information from the
server at run-time.
The module ietf-notification-capabilities
[I-D.ietf-netconf-notification-capabilities] augments ietf-system-
capabilities to specify capabilities related to "Subscription to YANG
Datastores" (YANG-Push) [RFC8639]. It provides a starting point by
specifying some per-node telemetry-related capabilities. Of
particular interest are the following node capabilities:
* minimum-dampening-period
* on-change-supported
* periodic-notifications-supported
* supported-excluded-change-type
Taking the example of on-change-supported and periodic-notifications-
supported, it's key to understand whether a publisher is capable of
sending on-change notifications versus sending periodic notifications
for the selected data store or data nodes. Indeed, not only would
the telemetry configuration change depending on the capabilities (on-
change versus periodic), but more importantly the client's handling
of the telemetry information would change. Upon receipt of an on-
change telemetry message, an immediate action could be taken to
correct or mitigate the issue, while in case of periodic
notification, a comparison with the previous value must first be
performed in order to understand if and how the network state has
changed.
Claise, et al. Expires 29 July 2022 [Page 3]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
Exactly like a client that connects to a server is able to discover
the capabilities in terms of supported YANG modules, features,
deviations, and protocol capabilities; the same client must also be
able to discover the required per-node capabilities (also known as
metadata) to correctly act on the telemetry information. It forms
part of the API contract for managing and monitoring the device.
Extending the per-node capabilities specified in
[I-D.ietf-netconf-notification-capabilities], additional per-node
capabilities are required.
The YANG module in this document augments the ietf-system-
capabilities YANG module in "YANG Modules for describing System
Capabilities and Yang-Push Notification Capabilities"
[I-D.ietf-netconf-notification-capabilities].
The YANG data model in this document conform to the Network
Management Datastore Architecture (NMDA) defined in [RFC8342].
3. Concepts
Doing networking data collection for the sake of doing collection is
not useful. At the time of network automation, displaying nice
graphs from collected data is not useful: the collected data must be
acted upon immediately. Some use cases are: network availability,
closed loop automation (reconfiguring network based on observed
network state changes), service assurance
[I-D.claise-opsawg-service-assurance-architecture], etc.
Along with the capabilities specified in ietf-netconf-notification-
capabilities [I-D.ietf-netconf-notification-capabilities] YANG model,
there is some additional information that can be made available per
node-selector to help with this optimum collection of operational
data. For example, these additional metadata can help reduce the
load on the devices being managed along with the performance
improvements because of the way data is subscribed to. Some other
metadata can help with the collection automation itself (mapping of
config and oper data node, mapping of MIB oid to YANG leaf).
Some metadata are static and can augment the node-capabilities in
[I-D.ietf-netconf-notification-capabilities], for both implementation
time and run time environments. Other metadata are dynamic and have
to be derived during the run-time. They can change based on the role
of the device and the scale of the data being observed.
Per-node static metadata includes:
Claise, et al. Expires 29 July 2022 [Page 4]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
* minimum-observable-period: This is the minimum observable period
in nanoseconds for the node-selector. Streaming or polling more
frequently then this interval may not fetch useful information as
the node could be updated only at this frequency internally. If a
close loop automation system would stream or poll more frequently,
it could actually draw the wrong conclusions. Let's take the
example of interface counters than are updated more frequently
than 30 seconds in a distributed system. Streaming interface
counters every 30 seconds would see an natural increase in the
interface counters. However, streaming those interface counters
every 10 seconds could lead to the wrong conclusion that no
packets are received/sent on that specific interface ...
triggering an automatic interface troubleshooting action. Hence
determining the minimum-observable-period for every monitored leaf
is essential for closed loop automation and assurance systems.
* suggested-observable-period: The suggested observable period for
this node-selector. This value represents factory default
suggested information, only available at implementation time. Let
us assume that an assurance system would like to monitor all FIB
entries in the router. The router would advertise that the
suggested observable period is, let's say, 30 seconds. Those 5
seconds are the factory defaults, provided at the implementation
time. Once the router is in production, the observable period
would obviously change depending on the environment (as an
example, a FIB containing all BGP entries is huge): this dynamic
suggest observable period is called the computed-observable-period
and is available part of the get-measurement-metadata RPC.
* optimized-measurement-point: In some server design, operational
data are usually modeled/structured in a way that the relevant
data are grouped together and reside together. In most cases, it
is more performant to fetch this data together than as individual
leaves: data are structured together internally, grouped together,
and therefore fetched together. This feature specifies optimum
observable points in the model at which data can be collected and
streamed in an efficient way. Depending on the implementation,
optimum points can be leaves or a container nodes in the YANG
tree. This is a selection node, that means its presence for a
node-selector indicates it is the optimized measurement point.
* corresponding-mib-oid: The object identifier (OID) assigned to a
SMIv2 definition, corresponding to the node-selector. The object
identifier value is written in decimal dotted notation. Existing
SNMP MIBs based automations can use this information to migrate to
more analytics-ready YANG Modeled data. Working from a single
data model system (YANG-based in this case) for data collection
simplifies the management, as opposed to use different data
Claise, et al. Expires 29 July 2022 [Page 5]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
models. Therefore, knowing the mapping MIB OID/YANG leaf is
important, as transition mechanism towards YANG (for example:
moving away from SNMP polling to model-driven telemetry) but also
as a way to understand whether the same operational data is
metered in both the MIB and YANG worlds, adding to the load on
devices. Some IETF RFCs, such as the YANG Interface Management
[RFC8343], specify the mapping in the document. However,
providing this mapping directly from the server helps automation
from a client point of view.
* related-node: Data nodes that are related for closed-loop scenario
for data node specified in node-capabilities. In case node-
capabilities is an operational node then the associated node-
instance-identifier represents config paths directly related to
this operational node capabilities. In case node-capabilities is
an config node then the associated node-instance-identifier
represents operational leaf directly related to this configuration
node capabilities. This node is specifically interesting for non
NMDA [RFC8342], non openconfig YANG modules. For example, in the
initial YANG data model for interface management [RFC7223], which
is not NMDA-compliant, advertising the mapping between the admin-
status and the oper-status leaves would clearly simplify the
closed loop automation. Note that NMDA and the openconfig -state
container solved that issue but not all servers are NMDA compliant
and openconfig models don't cover all server functions.
A generic RPC, get-system-node-capabilities, provides the
capabilities for the nodes in the subtree of the input. If the input
node passed is a leaf/leaf-list, then all the metadata for that input
node are returned. If the input node is not leaf/leaf-list then the
RPC returns the metadata of all of its subtree nodes.
There is some run-time information that is very helpful for the
applications to know, to be able to start listening to the device
without adding too much additional resource strain on the device.
The get-measurement-metadata RPC can be used to fetch this data.
Per-node dynamic metadata includes, part of the get-measurement-
metadata RPC:
* optimized-measurement-point: The node-selector is searched up the
data tree chain to find the parent node that is the optimized
measurement point (if the optimized-measurement-point-feature is
supported). If the node-selector itself is the optimized point
then same data node is returned in the output. If the node-
selector has no optimized measurement point then this optimized-
measurement-point leaf is not returned.
Claise, et al. Expires 29 July 2022 [Page 6]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
* computed-observable-period: the computed observable period for
this node-selector (and optimized-measurement-point). The system
internally dynamically computes the suggested observable period
(relevant for polling or streaming cadence) which can be greater-
or-equal to the minimal-observable-period. Since this value is
dynamic, this metadata is only available in a run time
environment.
* active-measurements - subscribed-measurement-period: List of
existing subscriptions for this node-selector. If there are no
active subscriptions then system calculate the measurement-period
and this list is not-returned, else, each instance in this list
will be pair of active measurement with intended and actual period
used by the system.
4. Base ietf-system-node-metadata YANG module
4.1. Tree View
The following tree diagram [RFC8340] provides an overview of the
ietf-system-node-metadata data model.
Claise, et al. Expires 29 July 2022 [Page 7]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
module: ietf-system-node-metadata
augment /sysc:system-capabilities/sysc:datastore-capabilities/sysc:per-node-capabilities/sysc:node-selection/sysc:node-selector:
+--ro minimum-observable-period? uint64
+--ro suggested-observable-period? uint64
+--ro optimized-measurement-point? empty {optimized-measurement-point-feature}?
+--ro corresponding-mib-oid? yang:object-identifier-128
+--ro related-node? yang:node-instance-identifier
rpcs:
+---x get-measurement-metadata
| +---w input
| | +---w node-selector? yang:node-instance-identifier
| +--ro output
| +--ro optimized-measurement-point? yang:node-instance-identifier {optimized-measurement-point-feature}?
| +--ro computed-observable-period? uint64
| +--ro active-measurements* []
| +--ro subscribed-measurement-period? uint64
+---x get-system-node-capabilities
+---w input
| +---w node-selector? yang:node-instance-identifier
+--ro output
+--ro node-selector-capability* []
+--ro node? yang:node-instance-identifier
+--ro minimum-observable-period? uint64
+--ro suggested-observable-period? uint64
+--ro optimized-measurement-point? empty {optimized-measurement-point-feature}?
+--ro corresponding-mib-oid? yang:object-identifier-128
+--ro related-node? yang:node-instance-identifier
4.2. Full Tree View
The following tree diagram [RFC8340] provides an overview of the
ietf-system-capabilities and ietf-system-node-metadata data models.
Claise, et al. Expires 29 July 2022 [Page 8]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
module: ietf-system-node-metadata
rpcs:
+---x get-measurement-metadata
| +---w input
| | +---w node-selector? yang:node-instance-identifier
| +--ro output
| +--ro optimized-measurement-point? yang:node-instance-identifier {optimized-measurement-point-feature}?
| +--ro computed-observable-period? uint64
| +--ro active-measurements* []
| +--ro subscribed-measurement-period? uint64
+---x get-system-node-capabilities
+---w input
| +---w node-selector? yang:node-instance-identifier
+--ro output
+--ro node-selector-capability* []
+--ro node? yang:node-instance-identifier
+--ro minimum-observable-period? uint64
+--ro suggested-observable-period? uint64
+--ro optimized-measurement-point? empty {optimized-measurement-point-feature}?
+--ro corresponding-mib-oid? yang:object-identifier-128
+--ro related-node? yang:node-instance-identifier
module: ietf-system-capabilities
+--ro system-capabilities
+--ro datastore-capabilities* [datastore]
+--ro datastore -> /yanglib:yang-library/datastore/name
+--ro per-node-capabilities* []
+--ro (node-selection)?
+--:(node-selector)
+--ro node-selector? nacm:node-instance-identifier
+--ro sys-metadata:minimum-observable-period? uint64
+--ro sys-metadata:suggested-observable-period? uint64
+--ro sys-metadata:optimized-measurement-point? empty {optimized-measurement-point-feature}?
+--ro sys-metadata:corresponding-mib-oid? yang:object-identifier-128
+--ro sys-metadata:related-node? yang:node-instance-identifier
4.3. YANG Module
<CODE BEGINS> file "ietf-system-node-metadata@2020-03-20.yang"
module ietf-system-node-metadata {
yang-version 1.1;
namespace "urn:ietf:params:xml:ns:yang:ietf-system-node-metadata";
prefix sys-metadata;
import ietf-system-capabilities {
prefix sysc;
reference
Claise, et al. Expires 29 July 2022 [Page 9]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
"RFC XXXX: YANG Modules for describing System Capabilities and
Yang-Push Notification Capabilities";
}
import ietf-yang-types {
prefix yang;
reference
"RFC XXXX: Currently draft-ietf-netmod-rfc6991-bis-04, Common
YANG Data types";
}
organization
"IETF NETCONF (Network Configuration) Working Group";
contact
"WG Web: <https://datatracker.ietf.org/wg/netconf/>
WG List: <mailto:netconf@ietf.org>
Editor: Benoit Claise
<mailto:bclaise@cisco.com>
Editor: Munish Nayyar
<mailto:mnayyar@cisco.com>
Editor: Adithya Reddy Sesani
<mailto:adithyas@cisco.com>
";
description
"This document proposes a YANG module that provides per-node
capabilities for optimum operational data collection.
This YANG module augments the YANG Modules for describing
System Capabilities and Yang-Push Notification capabilities
[RFC XXXX].
This module defines augmented nodes to publish the
metadata information specific to YANG node-identifier as per
ietf-system-capabilities datatree.
Complementary RPCs, based on the same node capabilities,
simplify the data collection operations.
The key words 'MUST', 'MUST NOT', 'REQUIRED', 'SHALL',
'SHALL NOT', 'SHOULD', 'SHOULD NOT', 'RECOMMENDED',
'NOT RECOMMENDED', 'MAY', and 'OPTIONAL' in this document
are to be interpreted as described in BCP 14 (RFC 2119)
(RFC 8174) when, and only when, they appear in all
capitals, as shown here.
Copyright (c) 2020 IETF Trust and the persons identified as
Claise, et al. Expires 29 July 2022 [Page 10]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
authors of the code. All rights reserved.
Redistribution and use in source and binary forms, with or
without modification, is permitted pursuant to, and subject
to the license terms contained in, the Simplified BSD License
set forth in Section 4.c of the IETF Trust's Legal Provisions
Relating to IETF Documents
(http://trustee.ietf.org/license-info).
This version of this YANG module is part of RFC XXXX
(https://www.rfc-editor.org/info/rfcXXXX); see the RFC itself
for full legal notices.";
revision 2020-03-23 {
description
"Initial version";
reference
"RFC XXX: Per-Node Capabilities For Closed Loop Automation.";
}
feature optimized-measurement-point-feature {
description
"Support for optimized measurement point within data tree.";
}
grouping system-node-metadata-info {
description
"group of metadata properties associated to the
node-instance.";
leaf minimum-observable-period {
type uint64;
units "nanoseconds";
description
"The minimum observable period for this node-selector. Don't
poll or stream more frequently that minimum observable
period in nanoseconds as the corresponding counter is not
updated more frequently.";
}
leaf suggested-observable-period {
type uint64;
units "nanoseconds";
description
"The suggested observable period for this node-selector.
This value represents factory default suggested
information, only available at implementation time.";
}
leaf optimized-measurement-point {
if-feature "optimized-measurement-point-feature";
Claise, et al. Expires 29 July 2022 [Page 11]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
type empty;
description
"This node-selector is an optimized measurement point.";
}
leaf corresponding-mib-oid {
type yang:object-identifier-128;
description
"The object identifier (OID) assigned to a SMIv2 definition,
corresponding to this node-selector.";
}
leaf related-node {
type yang:node-instance-identifier;
description
"In case the node instance is an operational node then the
associated node-instance-identifier represents the config
leaf directly related to this operational node. In case the
node instance is an config node then the associated
node-instance-identifier represents the operational leaf
directly related to this configuration node. A typical
example is the relationship between the admin-status and
oper-status, which is impossible to detect automatically in
a non-NMDA environment or for non-openconfig YANG moduels.
The related-node SHOULD NOT reported for NMDA architectures
and openconfig YANG modules.";
}
}
augment
"/sysc:system-capabilities/sysc:datastore-capabilities/"
+ "sysc:per-node-capabilities/"
+ "sysc:node-selection/sysc:node-selector" {
description
"Metadata information tied to the per-node-capabilities";
uses system-node-metadata-info;
}
rpc get-measurement-metadata {
description
"RPC that returns the optimized measurement per-node
capabilities and some measurement parameters. This RPC
is added to allow clients to learn dynamically changing
metadata for a specific leaf on a server.
If the server supports the optimized-measurement-point
feature, then the output data refers to
optimized-measurement-point. The server will internally
find the optimized-measurement-point. If it can not find it,
then no output is returned (for the
Claise, et al. Expires 29 July 2022 [Page 12]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
optimized-measurement-point, computed-observable-period,
and active-measurements).
If the server doesn't support the optimized-measurement-point
feature, then the output data refers to input node selector.";
input {
leaf node-selector {
type yang:node-instance-identifier;
description
"node instance for which metadata is requested";
}
}
output {
leaf optimized-measurement-point {
if-feature "optimized-measurement-point-feature";
type yang:node-instance-identifier;
description
"The node-selector is searched up the data tree chain to
find the parent node that is the optimized measurement
point (if the optimized-measurement-point-feature is
supported).
If the node-selector itself is the optimized point then
same data node is returned in the output.
If the node-selector has no optimized measurement point
then this optimized-measurement-point leaf is not
returned.";
}
leaf computed-observable-period {
type uint64;
units "nanoseconds";
description
"the computed observable period for this node-selector (and
optimized-measurement-point). The system internally
dynamically computes the suggested observable period
(relevant for polling or streaming cadence) which can be
greater-or-equal to the minimal-observable-period.
Since this value is dynamic, this metadata is only
available in a run time environment.";
}
list active-measurements {
description
"list of existing subscriptions for this node-selector. If
there are no active subscriptions then system calculate
the measurement-period and this list is not-returned,
else, each instance in this list will be pair of active
measurement with intended and actual period used by the
Claise, et al. Expires 29 July 2022 [Page 13]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
system";
leaf subscribed-measurement-period {
type uint64;
units "nanoseconds";
description
"Currently subscribed measurement period for this
node-selector (and optimized-measurement-point)";
}
}
}
}
rpc get-system-node-capabilities {
description
"RPC to get the capabilities for the nodes in the subtree of
the input.
If the input node passed is a leaf/leaf-list, then
the same node metadata is returned in the output.
If the input node is not leaf/leaf-list then metadata of its
subtree nodes is returned.";
input {
leaf node-selector {
type yang:node-instance-identifier;
description
"node instance whose subtree which metadata is requested.";
}
}
output {
list node-selector-capability {
description
"metadata of nodes in the subtree of node-selector.";
leaf node {
type yang:node-instance-identifier;
description
"instance path of the node inside subtree of
node-selector.";
}
uses system-node-metadata-info;
}
}
}
}
<CODE ENDS>
Claise, et al. Expires 29 July 2022 [Page 14]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
5. Examples
The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
XML data tree for the ietf-interface YANG module [RFC8343]:
<interfaces xmlns="urn:ietf:params:xml:ns:yang:ietf-interfaces">
<interface>
<name/>
<description/>
<type/>
<link-up-down-trap-enable/>
<admin-status/>
<oper-status/>
<last-change/>
<if-index/>
<phys-address/>
<higher-layer-if>
<!-- # entries: 0.. -->
</higher-layer-if>
<lower-layer-if>
<!-- # entries: 0.. -->
</lower-layer-if>
<speed/>
<statistics>
<discontinuity-time/>
<in-octets/>
<in-unicast-pkts/>
<in-broadcast-pkts/>
<in-multicast-pkts/>
<in-discards/>
<in-errors/>
<in-unknown-protos/>
<out-octets/>
<out-unicast-pkts/>
<out-broadcast-pkts/>
<out-multicast-pkts/>
<out-discards/>
<out-errors/>
</statistics>
</interface>
</interfaces>
Claise, et al. Expires 29 July 2022 [Page 15]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
Example1: Demonstrating the querying metadata for all system schema
nodes for the ietf-interfaces [RFC8343].
<!-- Request -->
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get>
<filter>
<system-capabilities xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities">
</system-capabilities>
</filter>
</get>
</rpc>
<!-- Response -->
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<system-capabilities xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities" xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
<datastore-capabilities>
<datastore>ds:operational</datastore>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface</node-selector>
<optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"></corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:admin-status</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.7</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:oper-status</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.8</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:if-index</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.1</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:phys-address</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.6</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
Claise, et al. Expires 29 July 2022 [Page 16]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:lower-layer-if</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.2.1.2</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:higher-layer-if</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.2.1.1</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:speed</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.5</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics</node-selector>
<optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:discontinuity-time</node-selector>
<optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.19</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:in-octets</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.10</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:in-unicast-pkts</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.11</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:in-multicast-pkts</node-selector>
Claise, et al. Expires 29 July 2022 [Page 17]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.2</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:in-broadcast-pkts</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.3</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:in-discards</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.13</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:in-errors</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.14</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:in-unknown-protos</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.15</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:out-octets</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.16</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:out-unicast-pkts</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.17</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:out-multicast-pkts</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.4</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:out-broadcast-pkts</node-selector>
Claise, et al. Expires 29 July 2022 [Page 18]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.31.1.1.1.5</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:out-discards</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.19</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics/if:out-errors</node-selector>
<corresponding-mib-oid xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1.3.6.1.2.1.2.2.1.20</corresponding-mib-oid>
<minimum-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</minimum-observable-period>
<suggested-observable-period xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">1000</suggested-observable-period>
</per-node-capabilities>
</datastore-capabilities>
</system-capabilities>
</data>
</rpc-reply>
Example2: Demonstrating the querying metadata of all optimized-
measurement-point(s). Use containment and selection nodes filtering
criteria to express which all metadata you want. In this example:
get query filter only to "select" the node-instance-identifier,
optimized-measurement-point nodes, for the ietf-interfaces [RFC8343].
There are two optimized-measurement-points: interface and statistics.
Claise, et al. Expires 29 July 2022 [Page 19]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
<!-- Request -->
<rpc message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<get>
<filter type="subtree">
<system-capabilities xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities"></system-capabilities>
<datastore-capabilities>
<datastore>ds:operational</datastore>
<per-node-capabilities>
<optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
</per-node-capabilities>
</datastore-capabilities>
</filter>
</get>
</rpc>
<!-- Response -->
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<data>
<system-capabilities xmlns="urn:ietf:params:xml:ns:yang:ietf-system-capabilities" xmlns:ds="urn:ietf:params:xml:ns:yang:ietf-datastores">
<datastore-capabilities>
<datastore>ds:operational</datastore>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface</node-selector>
<optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
</per-node-capabilities>
<per-node-capabilities>
<node-selector>/if:interfaces/if:interface/if:statistics</node-selector>
<optimized-measurement-point xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata"/>
</per-node-capabilities>
</datastore-capabilities>
</system-capabilities>
</data>
</rpc-reply>
Example3: Demonstrating the usage of RPC to query the device for
computed-measurement-period and the subscribed-measurement-period(s)
for the in-errors YANG leaf.
Claise, et al. Expires 29 July 2022 [Page 20]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
<!-- Request -->
<rpc xmlns="urn:ietf:params:xml:ns:netconf:base:1.0" message-id="101">
<get-measurement-metadata xmlns="urn:ietf:params:xml:ns:yang:ietf-system-node-metadata">
<node-selector>/if:interfaces/if:interface/if:statistics/if:in-errors</node-selector>
</get-measurement-metadata>
</rpc>
<!-- Response -->
<rpc-reply message-id="101" xmlns="urn:ietf:params:xml:ns:netconf:base:1.0">
<optimized-measurement-point>/if:interfaces/if:interface/if:statistics</optimized-measurement-point>
<computed-measurement-period>3000</computed-measurement-period>
<active-measurements>
<subscribed-measurement-period>1000</subscribed-measurement-period>
</active-measurements>
<active-measurements>
<subscribed-measurement-period>1000</subscribed-measurement-period>
</active-measurements>
<active-measurements>
<subscribed-measurement-period>1000</subscribed-measurement-period>
</active-measurements>
</rpc-reply>
6. Security Considerations
The YANG module specified in this document defines a schema for data
that is designed to be accessed via network management protocols such
as NETCONF [RFC6241] or RESTCONF [RFC8040]. The lowest NETCONF layer
is the secure transport layer, and the mandatory-to-implement secure
transport is Secure Shell (SSH) [RFC6242]. The lowest RESTCONF layer
is HTTPS, and the mandatory-to-implement secure transport is TLS
[RFC8446].
The Network Configuration Access Control Model (NACM) [RFC8341]
provides the means to restrict access for particular NETCONF or
RESTCONF users to a preconfigured subset of all available NETCONF or
RESTCONF protocol operations and content.
7. IANA Considerations
7.1. The IETF XML Registry
This document registers two URIs in the IETF XML registry [RFC3688].
Following the format in [RFC3688], the following registrations are
requested:
Claise, et al. Expires 29 July 2022 [Page 21]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
URI: urn:ietf:params:xml:ns:yang:ietf-system-node-metadata
Registrant Contact: The NETCONF WG of the IETF.
XML: N/A, the requested URI is an XML namespace.
8. Open Issues
"related-node" should be split into two: "related-config-node" and
"related-state-node"?
Explain how to use the RPC from the client side, along with the
different options.
Expand on the active measurement use case
nanosecond: an overkill?
security considerations: see https://trac.ietf.org/trac/ops/wiki/
yang-security-guidelines
9. References
9.1. Normative References
[I-D.ietf-netconf-notification-capabilities]
Lengyel, B., Clemm, A., and B. Claise, "YANG Modules
describing Capabilities for Systems and Datastore Update
Notifications", Work in Progress, Internet-Draft, draft-
ietf-netconf-notification-capabilities-21, 15 October
2021, <https://www.ietf.org/archive/id/draft-ietf-netconf-
notification-capabilities-21.txt>.
[I-D.ietf-netmod-rfc6991-bis]
Schoenwaelder, J., "Common YANG Data Types", Work in
Progress, Internet-Draft, draft-ietf-netmod-rfc6991-bis-
10, 14 January 2022, <https://www.ietf.org/archive/id/
draft-ietf-netmod-rfc6991-bis-10.txt>.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
Claise, et al. Expires 29 July 2022 [Page 22]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
[RFC8341] Bierman, A. and M. Bjorklund, "Network Configuration
Access Control Model", STD 91, RFC 8341,
DOI 10.17487/RFC8341, March 2018,
<https://www.rfc-editor.org/info/rfc8341>.
[RFC8639] Voit, E., Clemm, A., Gonzalez Prieto, A., Nilsen-Nygaard,
E., and A. Tripathy, "Subscription to YANG Notifications",
RFC 8639, DOI 10.17487/RFC8639, September 2019,
<https://www.rfc-editor.org/info/rfc8639>.
9.2. Informative References
[I-D.claise-opsawg-service-assurance-architecture]
Claise, B., Quilbeuf, J., Lopez, D. R., Voyer, D., and T.
Arumugam, "Service Assurance for Intent-based Networking
Architecture", Work in Progress, Internet-Draft, draft-
claise-opsawg-service-assurance-architecture-05, 23 April
2021, <https://www.ietf.org/archive/id/draft-claise-
opsawg-service-assurance-architecture-05.txt>.
[RFC3688] Mealling, M., "The IETF XML Registry", BCP 81, RFC 3688,
DOI 10.17487/RFC3688, January 2004,
<https://www.rfc-editor.org/info/rfc3688>.
[RFC6241] Enns, R., Ed., Bjorklund, M., Ed., Schoenwaelder, J., Ed.,
and A. Bierman, Ed., "Network Configuration Protocol
(NETCONF)", RFC 6241, DOI 10.17487/RFC6241, June 2011,
<https://www.rfc-editor.org/info/rfc6241>.
[RFC6242] Wasserman, M., "Using the NETCONF Protocol over Secure
Shell (SSH)", RFC 6242, DOI 10.17487/RFC6242, June 2011,
<https://www.rfc-editor.org/info/rfc6242>.
[RFC7223] Bjorklund, M., "A YANG Data Model for Interface
Management", RFC 7223, DOI 10.17487/RFC7223, May 2014,
<https://www.rfc-editor.org/info/rfc7223>.
[RFC8040] Bierman, A., Bjorklund, M., and K. Watsen, "RESTCONF
Protocol", RFC 8040, DOI 10.17487/RFC8040, January 2017,
<https://www.rfc-editor.org/info/rfc8040>.
[RFC8340] Bjorklund, M. and L. Berger, Ed., "YANG Tree Diagrams",
BCP 215, RFC 8340, DOI 10.17487/RFC8340, March 2018,
<https://www.rfc-editor.org/info/rfc8340>.
Claise, et al. Expires 29 July 2022 [Page 23]
Internet-Draft Node Capabilities For Closed Loop Automa January 2022
[RFC8342] Bjorklund, M., Schoenwaelder, J., Shafer, P., Watsen, K.,
and R. Wilton, "Network Management Datastore Architecture
(NMDA)", RFC 8342, DOI 10.17487/RFC8342, March 2018,
<https://www.rfc-editor.org/info/rfc8342>.
[RFC8343] Bjorklund, M., "A YANG Data Model for Interface
Management", RFC 8343, DOI 10.17487/RFC8343, March 2018,
<https://www.rfc-editor.org/info/rfc8343>.
[RFC8446] Rescorla, E., "The Transport Layer Security (TLS) Protocol
Version 1.3", RFC 8446, DOI 10.17487/RFC8446, August 2018,
<https://www.rfc-editor.org/info/rfc8446>.
Acknowledgements
The authors would like to thank ... for their reviews and feedback.
Authors' Addresses
Benoit Claise
Huawei
Email: benoit.claise@huawei.com
Munish Nayyar
Cisco Systems, Inc.
Milpitas
California,
United States
Email: mnayyar@cisco.com
Adithya Reddy Sesani
Cisco Systems, Inc.
Milpitas
California,
United States
Email: adithyas@cisco.com
Claise, et al. Expires 29 July 2022 [Page 24]