Internet DRAFT - draft-cls-ppr-te-attributes
draft-cls-ppr-te-attributes
LSR Working Group U. Chunduri, Ed.
Internet-Draft R. Li
Intended status: Standards Track Huawei USA
Expires: November 17, 2019 K. Smith
Vodafone
May 16, 2019
Resources for Preferred Path Routes in IGPs
draft-cls-ppr-te-attributes-01
Abstract
Preferred Path Routing (PPR) is concerned with setting up the route
for a given prefix as specified in the path description along with a
corresponding data plane/forwarding identifier PPR-ID. This document
specifies an extension to PPR, a mechanism to perform resource
reservations nodes on Preferred Path Routes (PPR) for IGPs (IS-IS,
OSPFv2, OSPFv3). This is done by specifying the resources that need
to be reserved along the path using PPR path attributes.
Requirements Language
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this
document are to be interpreted as described in RFC2119 [RFC2119],
RFC8174 [RFC8174] when, and only when they appear in all capitals, as
shown here.
Status of This Memo
This Internet-Draft is submitted in full conformance with the
provisions of BCP 78 and BCP 79.
Internet-Drafts are working documents of the Internet Engineering
Task Force (IETF). Note that other groups may also distribute
working documents as Internet-Drafts. The list of current Internet-
Drafts is at https://datatracker.ietf.org/drafts/current/.
Internet-Drafts are draft documents valid for a maximum of six months
and may be updated, replaced, or obsoleted by other documents at any
time. It is inappropriate to use Internet-Drafts as reference
material or to cite them other than as "work in progress."
This Internet-Draft will expire on November 17, 2019.
Chunduri, et al. Expires November 17, 2019 [Page 1]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
Copyright Notice
Copyright (c) 2019 IETF Trust and the persons identified as the
document authors. All rights reserved.
This document is subject to BCP 78 and the IETF Trust's Legal
Provisions Relating to IETF Documents
(https://trustee.ietf.org/license-info) in effect on the date of
publication of this document. Please review these documents
carefully, as they describe your rights and restrictions with respect
to this document. Code Components extracted from this document must
include Simplified BSD License text as described in Section 4.e of
the Trust Legal Provisions and are provided without warranty as
described in the Simplified BSD License.
Table of Contents
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . 3
1.1. Acronyms . . . . . . . . . . . . . . . . . . . . . . . . 3
2. Solution Overview . . . . . . . . . . . . . . . . . . . . . . 4
3. PPR Resource Reservation Related Parameters . . . . . . . . . 4
3.1. IS-IS Parameters . . . . . . . . . . . . . . . . . . . . 4
3.1.1. Bandwidth Sub-TLV . . . . . . . . . . . . . . . . . . 4
3.1.2. Burst Size Sub-TLV . . . . . . . . . . . . . . . . . 5
3.1.3. Per-hop Queuing Latency Sub-TLV . . . . . . . . . . . 5
3.1.4. Lifetime Sub-TLV . . . . . . . . . . . . . . . . . . 6
3.1.5. Node Resource Capability Sub-TLV . . . . . . . . . . 7
3.1.6. Node Status TLV . . . . . . . . . . . . . . . . . . . 8
3.1.7. IS-IS TE Metric Extensions . . . . . . . . . . . . . 9
3.1.7.1. Per PPR queuing delay on the node . . . . . . . . 10
3.1.7.2. Unidirectional Utilized PPR Bandwidth . . . . . . 10
3.2. OSPFv2/OSPFv3 Parameters . . . . . . . . . . . . . . . . 11
4. Elements of Procedure . . . . . . . . . . . . . . . . . . . . 11
5. Acknowledgements . . . . . . . . . . . . . . . . . . . . . . 12
6. IANA Considerations . . . . . . . . . . . . . . . . . . . . . 12
6.1. IGP Common Parameters . . . . . . . . . . . . . . . . . . 12
6.2. IS-IS Registries . . . . . . . . . . . . . . . . . . . . 12
6.3. OSPFv2 Registries . . . . . . . . . . . . . . . . . . . . 13
6.4. OSPFv3 Registries . . . . . . . . . . . . . . . . . . . . 13
7. Security Considerations . . . . . . . . . . . . . . . . . . . 13
8. References . . . . . . . . . . . . . . . . . . . . . . . . . 14
8.1. Normative References . . . . . . . . . . . . . . . . . . 14
8.2. Informative References . . . . . . . . . . . . . . . . . 14
Authors' Addresses . . . . . . . . . . . . . . . . . . . . . . . 16
Chunduri, et al. Expires November 17, 2019 [Page 2]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
1. Introduction
RSVP [RFC2205] allows out of band signaling along a specified path
for resource reservations. This is done by sending PATH/RESV message
with flow-spec/filter-spec. RSVP-TE [RFC3209], builds on RSVP
protocol and defines new objects, modifies existing objects for MPLS
LSP establishment with resources (reserved bandwidth). This is less
widely deployed perhaps due to soft-state maintenance, scaling and
management overhead considerations. [RFC8370] addresses some of the
concerns by specifying refresh independence and per-peer flow control
which would reduce processing cycles required to maintain LSP state.
Segment Routing [RFC8402] enables packet steering with a specified
path in the packet itself designed for MPLS and IPv6 data plane SRH.
Routing with Preferred Paths with an optimized data plane (regardless
of the type of data plane) is described in
[I-D.chunduri-lsr-isis-preferred-path-routing]. With PPR nodes in
IGP compute the nexthops based on the path description of the prefix
for increasing dataplane performance and reducing the packet
overhead. While both these allow packet steering on a specified path
(either encoded in the packet itself or through a data plane
identifier), they do not have any notion of QoS or resources reserved
along the path.
This document extends PPR to indicate the resources to be reserved
along the preferred path. These resources are required in some
deployments [I-D.clt-dmm-tn-aware-mobility], for not only providing
committed bandwidth or deterministic latency, but also for assuring
overall service level guarantee in the network. This approach does
not require per-hop provisioning and also reduces the OPEX by
minimizing the number of protocols needed and allows dynamism with
FRR capabilities. Unlike [RFC3209], this does not rely on periodic
refreshes between neighbors for state synchronization.
1.1. Acronyms
IS-IS LSP- IS-IS Link State PDU
LSP - Label Switched Path
MPLS - Multi Protocol Label Switching
MTU - Maximum Transferrable Unit
PPR - Preferred Path Routing/Route
PPR-ID - Preferred Path Route Identifier, a data plane identifier
Chunduri, et al. Expires November 17, 2019 [Page 3]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
SID - Segment Identifier
SR-MPLS - Segment Routing with MPLS data plane
SRH - Segment Routing Header - IPv6 routing Extension header
SRv6 - Segment Routing with Ipv6 data plane with SRH
TE - Traffic Engineering
2. Solution Overview
Key aspect of the solution concerns with specifying the resources to
be reserved along the preferred path
[I-D.chunduri-lsr-isis-preferred-path-routing],
[I-D.chunduri-lsr-ospf-preferred-path-routing].Reservations are
expressed in terms of required resources (bandwidth), traffic
characteristics (burst size), and service level parameters (expected
maximum latency at each hop) based on the capabilities of each node
and link along the path. The second part of the solution is
providing mechanism to indicate the status of the reservations
requested i.e., if these have been honored by individual node/links
in the path. This is done by defining a new TLV/Sub-TLV in
respective IGPS. Another aspect is additional node level TLVs and
extensions to [RFC7810] and [RFC7471] to provide accounting/usage
statistics that have to be maintained at each node per preferred
path. All the above is specified for IS-IS/OSPFv2/OSPFv3 protocols.
3. PPR Resource Reservation Related Parameters
This section describes the encoding of additional TLVs and Sub-TLVs
needed for resource reservations, associated accounting statistics
for Preferred Path Routes in IS-IS/OSPFv2/OSPFv3 protocols.
3.1. IS-IS Parameters
[I-D.chunduri-lsr-isis-preferred-path-routing] defines few PPR-
Attribute Sub-TLVs and this document extends the same for resources
to be reserved through various Sub-TLVs. The following additional
IS-IS PPR-Attribute Sub-TLVs (Type - IANA TBD) are defined:
3.1.1. Bandwidth Sub-TLV
This is the required bandwidth for the PPR at each node/link in the
path description. It has minimum (CIR) and maximum bandwidth (PIR).
Chunduri, et al. Expires November 17, 2019 [Page 4]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Minimum bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Maximum bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 1: Bandwidth Sub-TLV Format
o Type: 5 (IANA)
o Length: 10 Octets
o Minimum bandwidth: The minimum bandwidth required, or CIR, unit
Mbps
o Maximum bandwidth: The maximum bandwidth required, or PIR, unit
Mbps
3.1.2. Burst Size Sub-TLV
This is the required burst for the PPR and is the maximum burst size.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Burst Size |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 2: Burst Size Sub-TLV Format
o Type: 6 (IANA)
o Length: 6 Octets
o Burst size: The burst size, unit K bytes
3.1.3. Per-hop Queuing Latency Sub-TLV
This is the bounded latency for each hop on the PPR. This is not the
end to end latency.
Chunduri, et al. Expires November 17, 2019 [Page 5]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Type | Length | Reserved |T| Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Latency |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 3: Per-hop Queuing Latency Sub-TLV Format
o Type: 7 (IANA)
o Length: 6 Octets
o Flags: 1 Octet
T Bit - Set to 0, if Queuing Latency in milliseconds and Set to 1, If
Queuing Latency in microseconds
Latency: Expected maximum queuing latency for each hop
When an expected hop-by-hop latency is given, the bandwidth
expectation (CIR) MUST be present.
3.1.4. Lifetime Sub-TLV
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Type | Length | Reserved| Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Lifetime |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 4: Lifetime Sub-TLV Format
o Type: 8 (IANA)
o Length: 6 Octets
o Flags: 1 Octet
o Life Time: Life time of reservations done at each node in Seconds
See the usage of this TLV and procedures after Lifetime expiration
and related details in Section 4.
Chunduri, et al. Expires November 17, 2019 [Page 6]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
3.1.5. Node Resource Capability Sub-TLV
The node Resource Capability Sub-TLV is defined within the body of
the IS-IS Router Capability TLV [RFC7981]. This would allow what all
TE parameters than can be supported by a node. This sub-TLV lists
all supported TE capabilities.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Type | Length | RC Flags |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 5: IS-IS Reservation Capability Sub-TLV Format
o Type: TBD (IANA) from IS-IS Router Capability TLV Registry
o Length: Total length of the value field in bytes
o RC Flags: 2 Octets
Reservation Capability Sub-TLV bit-field Format
Reservation Capability bit-field Format
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|B|S|L|T| Reserved |E|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o Bit-0: B Bit: If this bit is set, Min/Max bandwidth reservation is
supported by the node
o Bit-1: S Bit: If this bit is set burst size handling is supported
by the node
o Bit-2: L Bit: If this bit is set per hop maximum queuing latency
is supported by the node
o Bit-3: T Bit: If this bit is set an expiration timer for PPR-ID is
supported by the node
o Bit-15: E Bit: If this bit is set one more 16-bit status bit-field
is followed to this bit-field.
Chunduri, et al. Expires November 17, 2019 [Page 7]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
Rest of the bits undefined and transmitted as unset/0.
3.1.6. Node Status TLV
A new top level IS-IS TLV is defined to indicate the status of per
preferred path TE resource reservation by each node, where it is part
of one ore more PPRs. This TLV should be generated by a node which
is along the preferred path and which does the reservation of
resources as indicated in the above TE parameters.
Structure of this TLV:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Type | Length | Reserved |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// Sub-TLVs //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 6: Node Status TLV Format
o Type: TBD (IANA) - From IS-IS top level TLV registry
o Length: Total length of the value field in bytes
o Sub-TLVs : One or more Sub-TLVs
This document defines one of the Sub-TLVs in the above TLV.
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|Type | Length | PPR-ID Type | PPR-ID Len |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
// PPR-ID Value (Size variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|16-bit status bit-field |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 7: Reservation Status Sub-TLV Format
Chunduri, et al. Expires November 17, 2019 [Page 8]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
Reservation Status Sub-TLV bit-field Format
Reservation Status bit-field Format
0 1 2 3 4 5 6 7
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|B|S|L|T| Reserved |E|
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
o Bit-0: B Bit: If this bit is set, Min/Max bandwidth reservation
for the PPR-ID is present
o Bit-1: S Bit: If this bit is set burst size handling for the PPR-
ID is present
o Bit-2: L Bit: If this bit is set per hop maximum queuing latency
enforcement is present
o Bit-3: T Bit: If this bit is set an expiration timer is present
o Bit-15: E Bit: If this bit is set one more 16-bit status bit-field
is followed to this bit-field.
Rest of the bits undefined and transmitted as unset/0.
Once preferred path is received through IGP as defined in
[I-D.chunduri-lsr-isis-preferred-path-routing] and with the
extensions as specified in this document for resources reservation, a
node on the path allocate the resources requested in the hardware.
However after resources are allocated in the hardware, status of the
same is given to the respective IGP in the control plane, which would
enable IGP to indicate the status in the structure described above.
If record is missing in the above structure, for that preferred path
reservations could have been withdrawn.
3.1.7. IS-IS TE Metric Extensions
Once resource reservations are done, usage statistics need to be
maintained and further transported to a central entity. Each node on
PPR path, the following stat(s) need to be maintained. More
parameters TBD.
Chunduri, et al. Expires November 17, 2019 [Page 9]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
3.1.7.1. Per PPR queuing delay on the node
This Sub-TLV advertises the average PPR queue delay variation in the
node. This is a 24-bit field carries the average PPR queue delay
over a configurable interval in microseconds The delay variation
advertised. The format of this Sub-TLV is shown in the following
diagram:
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| RESERVED | Avg. queue Delay Variation |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PPR-ID Type | PPR-ID Len | PPR-ID Value (Size variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 8: QUEUE Delay Sub-TLV Format
o where:
Type: TBD IANA - from the node capabilities TLV.
Length: Variable
RESERVED: This field is reserved for future use. It MUST be set to 0
when sent and MUST be ignored when received.
Delay Variation: This 24-bit field carries the average PPR queue
delay variation over a configurable interval in microseconds, encoded
as an integer value. When set to 0, it has not been measured. When
set to the maximum value 16,777,215 (16.777215 sec), then the delay
is at least that value and may be larger.
3.1.7.2. Unidirectional Utilized PPR Bandwidth
This Sub-TLV advertises the PPR bandwidth utilization per PPR-ID in
the node. The bandwidth utilization advertised by this Sub-TLV MUST
be the bandwidth from the system originating this Sub-TLV. The
format of this Sub-TLV is shown in the following diagram:
Chunduri, et al. Expires November 17, 2019 [Page 10]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
0 1 2 3
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Type | Length |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| Utilized Bandwidth |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|PPR-ID Type | PPR-ID Len | PPR-ID Value (Size variable) //
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
Figure 9: TLV Format
where:
o Type: IANA (TBD) - from the "Sub-TLVs for TLVs 22, 23, 141, 222,
and 223" registry:
o Length: Total length of the value field in bytes
o Utilized Bandwidth: This field carries the bandwidth utilization
per PPR-ID on a link , forwarding adjacency, or bundled link in
IEEE floating-point format with units of bytes per second.
Considerations for a link or forwarding adjacency or for a bundled
link is similar to Section 4.7 of RFC 7810.
3.2. OSPFv2/OSPFv3 Parameters
Similar extensions are needed for OSPFv2 and OSPFv3 PPR TLV's PPR
attributes except the Type (respective suggested values in
Section 6.3 and Section 6.4) and Length fields are 2 octets each.
New Sub-TLVs are also needed for Node status similar to Figure 6 and
TE parameter extensions similar to Section 3.1.7 for OSPFv2 and
OSPFv3 protocols.
4. Elements of Procedure
If a PPR has attributes as specified in Section 3 for reserving
resources along the path, individual nodes in the path description
acts on the path attributes. Section 3 defines few PPR-Attributes
for allocating/reserving resources in each node of the PPR path
description. Presence of these Sub-TLVs instruct to provision the
hardware with appropriate parameters as specified. Traffic
accounting should happen concerning to the resource in question, when
the actual data traffic hits for the PPR-ID in the forwarding plane.
New attribute values can be updated for an existing PPR-ID and when
the PPR-ID is withdrawn corresponding resources along the path MUST
be removed along with the Status TLV Figure 7 update.
Chunduri, et al. Expires November 17, 2019 [Page 11]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
After the data plane is programmed for a TE, a TE state is created.
The TE state life is determined by the "Life Time" in the PPR
attribute Sub-TLV. Whenever there is a packet processed by a TE
state for the respective PPR-ID, the associated timer for the TE
state is reset. If the timer of a TE state is expired, the TE state
will be erased and the associated resource can be released and
accordingly and Node Status TLV Figure 7 would be updated. In order
to keep the TE state active, IGP LSP/LSA refresh has to happen and it
should be less than the time of "Life time" attribute
(Section 3.1.4).
5. Acknowledgements
TBD.
6. IANA Considerations
6.1. IGP Common Parameters
This document requests additional IANA registries in an IANA managed
registry "Interior Gateway Protocol (IGP) Parameters" for various PPR
TLV parameters. The registration procedure is based on the "Expert
Review" as defined in [RFC8126]. The suggested registry names are:
6.2. IS-IS Registries
This document requests IANA to create a new Sub-TLV registry for IS-
IS PPR TLV Section 3 with the following initial entries (suggested
values):
Sub-TLV # Sub-TLV Name
--------- ---------------------------------------------------------
5 Bandwidth (Section 3.1.1)
6 Burst Size (Section 3.1.2)
7 Per-hop Queuing Latency (Section 3.1.3)
8 Lifetime (Section 3.1.4)
This document also requests a new Sub-TLV code point from IS-IS
Router Capability TLV Registry as defined by [RFC8126] and an IS-IS
top level Status TLV code point from IANA IS-IS TLV code- point
registry.
Chunduri, et al. Expires November 17, 2019 [Page 12]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
6.3. OSPFv2 Registries
This document requests IANA to create a new Sub-TLV registry for
OSPFv2 PPR TLV Section 3 with the following initial entries
(suggested values):
Sub-TLV # Sub-TLV Name
--------- ---------------------------------------------------------
4 Bandwidth (Section 3.2)
5 Burst Size (Section 3.2)
6 Per-hop Queuing Latency (Section 3.2)
7 Lifetime (Section 3.2)
6.4. OSPFv3 Registries
This document requests IANA to create a new Sub-TLV registry for
OSPV3 PPR TLV Section 3 with the following initial entries (suggested
values):
Sub-TLV # Sub-TLV Name
--------- ---------------------------------------------------------
4 Bandwidth (Section 3.2)
5 Burst Size (Section 3.2)
6 Per-hop Queuing Latency (Section 3.2)
7 Lifetime (Section 3.2)
7. Security Considerations
Security concerns for IS-IS are addressed in [RFC5304] and [RFC5310].
Further security analysis for IS-IS protocol is done in [RFC7645]
with detailed analysis of various security threats and why [RFC5304]
should not be used in the deployments.
OSPF security extensions are described in [RFC2328] and [RFC7684] and
these apply to the extensions specified in this document. While OSPF
is under a single administrative domain, there can be deployments
where potential attackers have access to one or more networks in the
OSPF routing domain. In these deployments, stronger authentication
mechanisms such as those specified in [RFC7474] SHOULD be used.
Chunduri, et al. Expires November 17, 2019 [Page 13]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
Advertisement of the additional information defined in this document
introduces no new security concerns in IS-IS or OSPF protocols.
8. References
8.1. Normative References
[I-D.chunduri-lsr-isis-preferred-path-routing]
Chunduri, U., Li, R., White, R., Tantsura, J., Contreras,
L., and Y. Qu, "Preferred Path Routing (PPR) in IS-IS",
draft-chunduri-lsr-isis-preferred-path-routing-03 (work in
progress), May 2019.
[I-D.chunduri-lsr-ospf-preferred-path-routing]
Chunduri, U., Qu, Y., White, R., Tantsura, J., and L.
Contreras, "Preferred Path Routing (PPR) in OSPF", draft-
chunduri-lsr-ospf-preferred-path-routing-03 (work in
progress), May 2019.
[RFC2119] Bradner, S., "Key words for use in RFCs to Indicate
Requirement Levels", BCP 14, RFC 2119,
DOI 10.17487/RFC2119, March 1997,
<https://www.rfc-editor.org/info/rfc2119>.
8.2. Informative References
[I-D.clt-dmm-tn-aware-mobility]
Chunduri, U., Li, R., Bhaskaran, S., Tantsura, J.,
Contreras, L., and P. Muley, "Transport Network aware
Mobility for 5G", draft-clt-dmm-tn-aware-mobility-03 (work
in progress), February 2019.
[RFC2205] Braden, R., Ed., Zhang, L., Berson, S., Herzog, S., and S.
Jamin, "Resource ReSerVation Protocol (RSVP) -- Version 1
Functional Specification", RFC 2205, DOI 10.17487/RFC2205,
September 1997, <https://www.rfc-editor.org/info/rfc2205>.
[RFC2328] Moy, J., "OSPF Version 2", STD 54, RFC 2328,
DOI 10.17487/RFC2328, April 1998,
<https://www.rfc-editor.org/info/rfc2328>.
[RFC3209] Awduche, D., Berger, L., Gan, D., Li, T., Srinivasan, V.,
and G. Swallow, "RSVP-TE: Extensions to RSVP for LSP
Tunnels", RFC 3209, DOI 10.17487/RFC3209, December 2001,
<https://www.rfc-editor.org/info/rfc3209>.
Chunduri, et al. Expires November 17, 2019 [Page 14]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
[RFC5304] Li, T. and R. Atkinson, "IS-IS Cryptographic
Authentication", RFC 5304, DOI 10.17487/RFC5304, October
2008, <https://www.rfc-editor.org/info/rfc5304>.
[RFC5310] Bhatia, M., Manral, V., Li, T., Atkinson, R., White, R.,
and M. Fanto, "IS-IS Generic Cryptographic
Authentication", RFC 5310, DOI 10.17487/RFC5310, February
2009, <https://www.rfc-editor.org/info/rfc5310>.
[RFC7471] Giacalone, S., Ward, D., Drake, J., Atlas, A., and S.
Previdi, "OSPF Traffic Engineering (TE) Metric
Extensions", RFC 7471, DOI 10.17487/RFC7471, March 2015,
<https://www.rfc-editor.org/info/rfc7471>.
[RFC7474] Bhatia, M., Hartman, S., Zhang, D., and A. Lindem, Ed.,
"Security Extension for OSPFv2 When Using Manual Key
Management", RFC 7474, DOI 10.17487/RFC7474, April 2015,
<https://www.rfc-editor.org/info/rfc7474>.
[RFC7645] Chunduri, U., Tian, A., and W. Lu, "The Keying and
Authentication for Routing Protocol (KARP) IS-IS Security
Analysis", RFC 7645, DOI 10.17487/RFC7645, September 2015,
<https://www.rfc-editor.org/info/rfc7645>.
[RFC7684] Psenak, P., Gredler, H., Shakir, R., Henderickx, W.,
Tantsura, J., and A. Lindem, "OSPFv2 Prefix/Link Attribute
Advertisement", RFC 7684, DOI 10.17487/RFC7684, November
2015, <https://www.rfc-editor.org/info/rfc7684>.
[RFC7810] Previdi, S., Ed., Giacalone, S., Ward, D., Drake, J., and
Q. Wu, "IS-IS Traffic Engineering (TE) Metric Extensions",
RFC 7810, DOI 10.17487/RFC7810, May 2016,
<https://www.rfc-editor.org/info/rfc7810>.
[RFC7981] Ginsberg, L., Previdi, S., and M. Chen, "IS-IS Extensions
for Advertising Router Information", RFC 7981,
DOI 10.17487/RFC7981, October 2016,
<https://www.rfc-editor.org/info/rfc7981>.
[RFC8126] Cotton, M., Leiba, B., and T. Narten, "Guidelines for
Writing an IANA Considerations Section in RFCs", BCP 26,
RFC 8126, DOI 10.17487/RFC8126, June 2017,
<https://www.rfc-editor.org/info/rfc8126>.
[RFC8174] Leiba, B., "Ambiguity of Uppercase vs Lowercase in RFC
2119 Key Words", BCP 14, RFC 8174, DOI 10.17487/RFC8174,
May 2017, <https://www.rfc-editor.org/info/rfc8174>.
Chunduri, et al. Expires November 17, 2019 [Page 15]
Internet-Draft Resources for Preferred Path Routes in IGPs May 2019
[RFC8370] Beeram, V., Ed., Minei, I., Shakir, R., Pacella, D., and
T. Saad, "Techniques to Improve the Scalability of RSVP-TE
Deployments", RFC 8370, DOI 10.17487/RFC8370, May 2018,
<https://www.rfc-editor.org/info/rfc8370>.
[RFC8402] Filsfils, C., Ed., Previdi, S., Ed., Ginsberg, L.,
Decraene, B., Litkowski, S., and R. Shakir, "Segment
Routing Architecture", RFC 8402, DOI 10.17487/RFC8402,
July 2018, <https://www.rfc-editor.org/info/rfc8402>.
Authors' Addresses
Uma Chunduri (editor)
Huawei USA
2330 Central Expressway
Santa Clara, CA 95050
USA
Email: uma.chunduri@huawei.com
Richard Li
Huawei USA
2330 Central Expressway
Santa Clara, CA 95050
USA
Email: renwei.li@huawei.com
Kevin Smith
Vodafone
UK
Email: kevin.smith@vodafone.com
Chunduri, et al. Expires November 17, 2019 [Page 16]